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A GROUP-THEORETIC CHARACTERIZATION OF THE ORDINARY
AND ISOTROPIC EUCLIDEAN PLANES*

SISTER MARY JUSTIN MARKHAM R.S.M.

I. INTRODUCTION. It is known that every geometry determines a
unique group, namely, the group of transformations under which the geom-
etry remains invariant.

The converse problem is concerned with the determination of a geom-
etry corresponding to an abstract group. The problem of characterizing a
geometric space group-theoretically is solved by defining an abstract group
in such a way that it determines uniquely the geometric space in question
and such that its structure corresponds to that of the transformation group
of the space.

Group-the ore tic characterization of a geometric space is based on the
line reflection as its fundamental concept. G. Hessenberg [δ] and
J. Hjelmslev [6, 7] first brought out the significance of the property—known
as the theorem of the three reflections—that the product of the reflections
in three lines concurrent in a point is again a reflection in a line through
the same point. Hjelmslev used methods based on reflections systemati-
cally and studied the foundations of geometry in this light.

G. Thomsen [l3] described the Euclidean plane group-theoretically and
developed effective methods of proof based on reflection calculus. In his
work Thomsen also indicated the extension of these methods to higher
dimensional Euclidean spaces and to the projective and non-Euclidean
planes.

A. Schmidt [lO] assumed the theorem of the three reflections as an
axiom. He was the first to formulate group-theoretic axioms for the plane
absolute geometry, including the elliptic plane, giving dominance to the im-
portance of the line reflections as generating the other motions. F. Bach-
mann [2] later reduced Schmidt's axioms and developed methods of consid-
ering metric planes for the Euclidean, hyperbolic and elliptic cases.

*This paper was written as the author's dissertation for the Ph.D. degree in mathematics
at the University of Notre Dame (1964) under the direction of Professor Hans J.
Zassenhaus, to whom the author is also indebted for the suggestion of the problem.
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More recently work has been done oy E. Sperner and H. Karzel in an
effort to characterize geometric planes group-theoretically. As an
example, Sperner [ l l ] has given a group-theoretic proof of the theorem of
Desargues, using an axiom system based on Bachmann's. With a view to
making these methods universally applicable, i.e., to higher dimensions, he
has studied general affine spaces in the light of the problem of coordina-
tization [12].

A modification of Sperner's axioms was employed by Karzel [8] to
characterize the classes of elliptic, regular pole-free, and "Lotkern"
(every line is incident with the pencil of its perpendiculars) geometries.
Karzel has also characterized the finite Desarguesian geometries, including
those coordinatized over fields of characteristic 2 [9].

The aim of this paper is to characterize by group-theoretic axioms the
ordinary and isotropic Euclidean planes, the latter being not totally iso-
tropic but containing isotropic vectors. Planes coordinatized over fields of
characteristic φ 2 are considered here. Such a plane has associated with it
a quadratic form which is invariant under rigid motions, and this quadratic
form correspond^ to a symmetric matrix over the associated field.

Motivated by geometric considerations, certain existence and unique-
ness axioms are assumed for the elements of a group generated by involu-
tions. Group-theoretic definitions of incidence and orthogonality relations
and of motions as inner automorphisms enable us to construct a 2-dimen-
sional vector space over a field, such that the structure of its group of
linear transformations is determined by the group which has been described
axiomatically. Coordinatization of the plane over the field gives a matrix
representation of the transformation group and makes possible the deter-
mination of the required quadratic form.

II. FUNDAMENTAL PROPERTIES OF THE GROUP

We start with a group Q generated by a set of involutions called lines
and define points, translations and rotations as group elements satisfying
certain conditions. Incidence, parallelism and orthogonality relations are
similarly defined. Four existence axioms and two uniqueness axioms are
assumed for the elements of Qy and these are sufficient to ascertain the
existence of an invariant abelian subgroup of translations (THEOREM 1).

A. Definitions, axioms and fundamental relations. Let £ be a group gener-
ated by a set S of involutions called lines. Lets consist of full conjugacy
classes. The usual notation for a multiplicative group will be used, i.e., gh
denotes the product of g times h^g"1 the inverse of g, and 1 the identity
element of Q*

A point P is a product of two distinct commuting lines: P = gh = kg. P
is called the point of intersection of g and h.

Two distinct lines, g and h, are said to be orthogonal if gh = hg} denoted
by g -L h.

A point P and a line g are incident with each other if Pg = gP, denoted
by P \g.
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Points P and Q are collinear if there is a line g such that P\g and Q\g.
A set of lines is said to be concurrent if there is a point P which is in-

cident with every line in the set.
Two lines, g and/2, are called parallel, in symbols g\\h, if either g = h

or if g and h are incident with no common point.
Negation of any relation is denoted by "/" , e.g., the symbols " ^ " , " / " ,

"ϊ", "tf" denote the negation of the corresponding relations " = " , " j " ,

" ± " , " I I " .
If P\g and Q\g, we use the abbreviated symbol P,Q \g. The symbols

p\g>h, g\\h,k, etc., are defined similarly.
Other notation used in this paper includes

" - * - " - contradiction
" 3 " - there exist(s)
"=#>" - implies
"<#^>" - implies and is implied by
" *f " - such that.

The symbols " U " , " ε " , etc., have the usual set-theoretic connotation.
x(y) =xyx~1 is the transform of y toy x. It is an immediate consequence

of the above definitions and of the fact that S is invariant under all inner
automorphisms that transformation by any group element x carries lines
into lines, points into points, and preserves orthogonality, incidence and
parallelism. In particular, transformation by a l ine^ is called reflection
in g, and transformation by a point P is called reflection in P. Since g(P) =
P if and only if P\g and P(g) = g if and only if P\g, it is clear that reflection
in g fixes only points incident with g and reflection in P fixes only lines
through P. Also, reflection in g leaves a line h f g invariant (but not point-
wise) if and only if h±g.

The point M is called the midpoint of points P and Q if M(P) = Q.
We require that the elements of Q satisfy the following axioms:

Ax. There exist at least three non-collinear points.
A2 . Given two distinct points, P and Q, there is at most one line g such

thatP,Q\g.
A3. The product of three concurrent lines is a line.
A4. Given a point P and a line g, there is at most one line h such that

P\handh\\g.
A5. The product of three points is a point.
A6. Given two collinear points P and Q, there exists a midpoint, M, of

P and Q.

Using A2 we can now prove

Proposition 1. If two distinct lines have a common perpendicular, the lines
are parallel.

Proof. Let P = gh= hg and Q =gj =jg and h f j . If there exists a point
R such that R \hj, theng(R)<\h,j, sog(R) =R. Hence R\g,h =#> R = P =gh,
and R\g,j =#> R = Q =gj9 soh -j which i s a contradiction. Thereforeh\\j.
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From A3, the property of the three reflections, it follows that a
perpendicular can be erected at a given point on a line, i.e.,

Proposition 2. If P\g, 3 a line h such that P\ h and h± g.

Proof. Let P =jk =kj. Since P\g,j,k, by A3, h = gjk is a line. Then
(gh)2 = {jk)2 = l^>g±h. It is clear that P\hy since P commutes with g,j
and&.

The fourth axiom—the uniqueness of parallels—is the axiom which, in
effect, keeps the geometry 2-dimensional. Using A4 we prove

Proposition 3. If a line is perpendicular to one of two parallel lines, it is
perpendicular to the other also.

Proof. Let g\ \h and k J-#, Suppose k / h. Let P = gk = kg. Since g\ | h
by A4, kjrfh, say Q\k,h. Let j be the perpendicular to& through Q. Then^
is a common perpendicular to g and j, so g\\j. But^ is the unique parallel
to g through Q, hence j =h, and & -J- h, -»<- . Therefore & ± h.

Two further definitions are now made, and some properties concerning
them are derived.

A translation is a product of two points.
Four points P, Q, R, S form a parallelogram if PQ#S = I. This defini-

tion will be justified, but we observe first that the vector axiom or "small
theorem of Desargues" follows immediately from the definition, i.e.,

Proposition 4. If P, Q, R, S form a parallelogram and S, R, U, T form a
parallelogram, then P, Q, U, T form a parallelogram.

S

Q^-

Figure 1
Proof. PQRS = 1 ΣinάSRUT = i , so PQRSSRUT = PQUT = 1.
The definition of a parallelogram is justified by considering that the

"opposite sides/' if they exist, are parallel, i.e.:
Given PQRS = 1, suppose lines g, h,j, k exist such that P l ^ ' a n d Q\j,h

and R\hyk and S \kg.
Λ 7Q

/ /
V /

s k R

Figure 2
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Suppose j$ky say there exists a point T such that τ\j,k. Let U= TPQ.
Uj = TPQj =jTPQ =jU. Similarly, Uk = TPQk = TSRk = kTSR = kU, since
PQ = SR. By A5 U is a point, so ϋ\jjk =#> U= T. Therefore, T= TPQ im-
plies that P = Q and R = S, i.e., the parallelogram is degenerate. There-
fore, the joins of the points forming a non-degenerate parallelogram are
parallel.

B. The translation group and its properties.

It is now possible to prove

THEOREM 1. The set V of all translations is a normal abelian subgroup
of ς.

Proof. PP= 1 for any point P, so lεZJ. PQ-RS= P QRSεϋ since QRS
is a point. (PQ)"1 = QPεTJ. If P,Q,R are points, P(QR) =RQ, since
PQRP-1 QR = (PQR)2 = 1. This follows from the fact that PQR, being a
point, must be an involution. Therefore, a translation is transformed by a
point into its inverse. This implies that ZJ is abelian, since

PQ-RS' (PQf^RSp = PQRSQPSR = P Q(RS) Q^-PSR = {PSR)2 = 1

Finally ϋ is normal in Q: for any gzQ, gPQg'1 = g(P)g(Q) =RSεΐJ,
since the transform of a point is a point.

In order to eliminate the possibility that a translation have order 2, it
must be shown that for any two distinct points P and Q, PQ f QP. First,
suppose there exists a line k such that P,Q\k. By Proposition 2 there exist
lines g and h such that P = gk = kg and Q = hk = kh. Then k is a common
perpendicular to g and &, so gΊI/z. Therefore, PQ = gkkh - ghf hg- QP\
otherwisegh would be the point of intersection ofg" and/2.

Next consider the general case. Given P and Q, two distinct points, let
P = g) = .7£" and assume Q|^, j ; otherwise the preceding argument suffices.
Furthermore let us suppose—this point will be taken up later—that there
are lines h and k passing through Q and perpendicular to j and g respec-
tively. Since g is a common perpendicular to j and k,j\\k. B\itj\\k and
h-Lj implies that h±k. Then PQP = g/Mg? = ghjgkj = ghgjkj =g(h)J(k). But
QJfgih), since Q\h,g{h) implies g(Q) IfcjgW. Hence J(Q) = Q, -~- . There-
fore g(h)J(k) T̂ Q, i.e. PQP 7̂  Q. This proves

Proposition 5. For any two distinct points P and Q, PQ i QP.

Corollary 1. There exists no translation of order 2.

Corollary 2. A non-trivial translation has no fixed points.

Proof. Let r = PQ be a translation and R an arbitrary point. If Ύ(R) =
R, then PQRQP = R, i.e., PQR = RPQ. But PQR = RQP since points are in-
volutions. Then RPQ = RQP which implies that PQ= QP -><- . Therefore
r has no fixed points.

Before completing the proof of Proposition 5, we proceed to

Proposition 6. For any translation r and any line h, T(h) \\h.
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Proof. If τ(h) = h, h\\h by definition. Consider the case where τ(h) f
h. Suppose 3 a point R such that R\h, τ{h). It follows that τ(R) \ τ(h), T2(h\
Let r = PQ. PQR is a point_S, so PQ= SR = r . Therefore τ(h) = Sβ(ft) =
S(h) since Λ U , and τ2(h) = SR(ShS) = S(RShSR) = S(ShS) = h, since Λ|τ(/z),
i.e., R\S(h) =^> RShSR = ShS. Therefore i^rtR)!/*, τ(&) implies that Λ =
rtR), —~— . Henceτ(^)IU.

If P and Q are collinear the assertion follows from the first part of the
proof of Proposition 5. For P and Q not collinear the proof is contingent
upon the existence of a perpendicular from a point to a line.

The existence of such a perpendicular is now established as a conse-
quence of A6 and of Propositions 5 and 6 for the collinear case. It in turn
establishes the validity of these propositions in the non-collinear case.

We first note that by A6 if two points P and Q are incident to the same
line g, there is a point M such that M^P) = Q. Since transformation by M
takes P into Qand Q into P and transformation preserves incidence, it fol-
lows that M(g) = g and hence M\g. Furthermore M f P; otherwise M,F) = Q
implies P = Q, which is impossible if P and Q are distinct points. Simi-
larly, M = Q.

Proposition 7. Given any point P and line g, there exists a unique line h
such that P\h and h ±g.

Proof. If P\g,h exists by Proposition 2. If Pjίg, let P = jk = kj. Not
both j and k are parallel to g, say, there exists a point Q such that Q \g,j.
Q\g=^> 3 Af such that Q U ' a n d ^ f ± ^ . P,Q\j =$> 3 a point M on j ) f M.P) =
Q. Let r = MQ. Then τ(Q) = P. Since M and Q are collinear /Hlτ(#).
This, together with the fact that h'Xg, implies that τ(h')±g. But Q\h% =#>
τ(Q) |τ(#), i.e. P\τ(W). Therefore τ(* f) is the desired line fc.

Uniqueness: lί P\g and Plft and gfc = %, then P = gh because of the
uniqueness of the join. Hence if h* is another line satisfying the assertion
of the theorem, P = gh* also? so h = h*. Ίί PJfg and h and h* are two perpen-
diculars from P to g, then #fe = hg, gh* = h*g and P| /*,&* =Φϊr(P) | M * also.
But^(P) 7^P, so h = h*.

Corollary. Given any point P and line g there exists a line h such that P \h

and h I Ig*.

Proof. For P\g, h = g. If P]fg9 3 j ?P\jaodj±g. Also Ih )' P\h
andh^-j. Then h\\g since j is a common perpendicular.

Proposition 8. For any two points P and Q, there is a translation τ taking
P into Q.

Proof. If P = Q, let T = 1. K P f Q and P and $ are collinear, let r =
MP, where Λf is the midpoint of P and Q. U P ^Q and P and Qare not
collinear, then P =gh and QJίg,h. Let j be the perpendicular from Qto &
say R = gj = jg.
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Q

P M R
g

h j
F igure 3

There exist points M and N such that M(P) = R and N(R) = Q. Then τ(P) =
Q for r = iVM.

Proposition 9. On every line there are at least three points.

Proof. For any line g 3 by Ax at least one point P such that PJfg.
There exists a line h such that P\h and h±g} i.e., gh= hg= R Hence Λl^ ,

Again by Ax 3 a point Q »f QJfh. Either Q|# or 3 a line k V Q\k and
k ig.

P

Q

£ R
g

k h
Figure 4

In the latter case gk -kg = S? R (otherwise k =h and Q\h, -><-). Hence
there are two distinct points on g* Applying Aβ we obtain a point M, the
midpoint, as a third distinct point on g.

III. CONSTRUCTION OF VECTORS, SCALAR MAPPINGS
AND THE TRANSFORMATION GROUP

In this section we define vectors as translations and scalars as vector
mappings. We then obtain a group Q of linear transformations on the set of
vectors (THEOREM 2). Q is a homomorphic image of Q and is expressed in
terms of an abelian subgroup of rotations defined in Q (THEOREM 3).

A. Vectors. The vector P§ is defined to be the translation RP for which
RPR = Q. We observe first that every vector Λ? may be produced from an
arbitrary fixed point P. For, R$ = TR where TRT = S. LetJΓRP be the
point ϋ and STU be the point Q. Then QU = ST = TR = UP = JPQ since ί/Ptf

= Q.
Furthermore, since no translation except the identity has any fixed
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points, we know that the midpoint is always unique. Thus the vector PQ is
well-defined and we are justified in interpreting the abelian group of trans-
lations as an additive group of vectors where the sum PQ + RS corresponds
to the product TRUP if PQ = UP and RS = TR. The usual notation for an
additive abelian group will be used.

Under this definition we obtain the usual vector sum PQ + QR = PR:
_ L e t PQ = UP, where UPU = Q, and QR = TQ, where TQT = R. Then PQ

+ QR= TQ UP = SP^where S ^JQU^ But SPS = (TQU)P(UQT) = (TQ)Q(QT)
= TQT = R so that PR = SP_=^PQ_+^QR. _^

Itjdso follows that -PQ = QP^since PQ = RP and RPR = Q =ΦRQR =
P, so QP= RQ = PR = (RP)"1 = -PQ.

Proposition 10. Given point P not incident with line g, h the perpendicular
from P to g, meeting g in point M, then PM = -P τ M where Pf denotes g(P).

Proof. P)[g, P\h, gh =hg_^M,g{P) = P\ P f = gPg_^ghPhg = MPM.
Let PM = RP; RPR = M and P*M = QP1; QP<Q = M, so -P^M = P fQ. = QM. It
suffices to show that RP =P'Q.

h
P«

R

M

g

Q

p1

Figure 5

RPR = M =#> MRPRM = M=φ> {MRM)(MPM)(MRM) = M ==> (MRM)P'(MRM)
= M => MRM = Q. Hence RP= MR= QM = P f Q.

A vector α is said to be regular if there exists a line £* and points P and
Q incident with g such that PQ = α.

Two vectors PQ and RS are collinear if there exists a line ^and points
P τ , Q1, iT, S1 ong such that P'Q< = P$ and .R 7^ = R$.

We note that if a regular non-zero vector is produced from two distinct
points the lines along which the vector is produced are parallel. For:

Let PQ= ΉSwith P,Q\g a n d S ^ U . PQ = TP ==> τ\g and RS = UR = φ
U\h. Suppose 3 a point V such that v\g,k and g φ h. Let W = VTP = VUR.
Then V,T,P\g =>W\g and y,27,Λ|A =φ W\h. Hence W = V, so ΓP = I ,
-»<—, since PQ f 0. Thereforeg\\h.

On the other hand we note that if PQ = RS f 1 and PyQ \g and R \h and
g\\h, then S|A also. For: let P | j , jJL^ . Then j ±.h; let M =jh = hj. Simi-
larly, let Q|&, k±g, sok ±h; let N= kh= hk.
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P\ Q
g

j *

h M~R ϊ\f S

Figure 6

Then PQNM =jggkkhhj = 1, and by hypothesis RSQP = 1. Hence RSNM = 1
by Proposition 4, so S = RMN. Therefore S\h, since R,M,N\h.

Proposition 11. The collinearity relation is an equivalence relation on the
set of all regular vectors.

Proof, (a) α is collinear with α <#==> α is a regular vector, by the defi-
nition of regularity.

(b) Symmetry is c lear from the definition of collinearity.
(c) Transitivity: let α = PQ, b =RS, c = TU. α collinear with

b 4 3 a lineg- and points P\ Q', R', S τ on g such that PQ = PHJT and RS =
R'sK b collinear with c =#> 3 a line h and points R", S" T\_U\pnh such
that J R ^ = J R τ τ S τ ί a n d TU= TW. Thereforeg\\h since RW = RτTS ' \

R' S1 V P^ Q<_
g

R" T S" W
h ' '

Figure 7

Now we have g\\h a n d i ? ! l^ and Γ τ, U1 \h. Producing the vector VIP from
point R\ we have a point Vϊ' WV'= TU\ Let us say TU' = MT\ where
MVM = IP (so M\h) and RTV = WR\ where WR 'W = V. Hence WR1 = MT \
Then M,T'\h and R' \g =Φ W\g^ Therefore V\g also. We now have
P τ, Q% R', V\g and α = P'Q' = PQ and RTV = ΓΪP = TU = c. Therefore α is
collinear with c.

B. Scαlαrs.

A scalar is a vector mapping λ with the properties:
(1) λα is a vector.
(2) λ(α +b) = λα + λb.
(3) If λ ± 0, λ is one-to-one.
(4) If α is regular, then λα and α are collinear.
We define addition and multiplication of scalars as follows:
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(λ + μ)α = λα + μα

(λμ)α = λ(μα)

Under these definitions the set of all scalars is a ring with unit.
Further, assuming that there are at least three lines through a point,

then, given α^O, there exist regular vectors b and c such that c = α + b,
and no two of the vectors α,b,c are collinear.

Thus for λ ^ 0, λα = λc - λb φ 0, since λ is a one-to-one mapping.
Let λ ^ 0, μ f 0; then for α f 0 we have μα φ 0 and λ(μα) φ 0. Hence

λμ φ 0. Thus it follows that the ring of scalars has no proper divisors of
zero.

C. Linear transformations.

A group of linear transformations on the set of vectors is obtained as
follows:

For any xεQ, define the vector mapping

Since Icy = %$f then the mapping

φ: x—>Sc

is a homomorphism of Q. It is now shown that the image group Q is a
group of linear transformations on the set of all vectors.

THEOREM 2. For any xεg, the mapping x : P§—>X(P)X(Q) is a linear
transformation.

Proof.

(1) Let P ^ = TP, where TPT = Q and R§ = UR, where URU = S. Ίi a = P§ =
R^f then TP = UR. Then x(T)x(P)x(T) =x(Q)=¥x(P)x(QJ =x(T)x(P) and
x(ϋ)x(R)x(ϋ) = x(S) =φ x(R)x(s] = x(ϋ)x(R). But TP = UR =Φ x{T)x(P) =
3E(U)J(Λ). Therefore £(PQf = ̂ (HsJ, i.e., £ is well-defined.

(2) If α and b are any two vectors, let α = P§ and produce b from point Q,
i.e., b = QR, so α + b = PR. Then £(α + b) =$(PR) = X(P)X(R) = xφ)x(Q) +

x{Q)x(R) = ί ( P θ t +5?(QΛ) = J?(α) + 3?(b).

(3) It remains for us to showί(λα) = λx(a). It suffices to consider only
x = §, where g is a line, since the elementsj5 generate Q. Let P be any
point on g and produce α from P, say, α = PQ. Let h be the perpendicular
from Q to g , and R = gh = hg.

P/' R
g αx

Figure 8 *



A GROUP-THEORETIC CHARACTERIZATION 219

Then for αx = PR and α2 = RQ, α = αx + α 2 , and λα = λax + λ α 2 . But
0i > λ α i a r e collinear along ]ine g so g fixes ax and Aax. Also, a2 and λα2

are collinear along a line perpendicular to g9 so by Proposition 10, g
carries α2 and λα2 into -α2 and -λα2 respectively. Hence

g(p)=g(*i) + £(α2) = a x - a2

implies

λg(a) = λaί - λ a 2 ,

and

f(λα)=f(λα1)+|tλα2) = λα1 -λα2.

D. Rotations. It is desirable to express Q in a more convenient form. To
this end we define a rotation in Q.

If O is a point and g and h are lines incident with O, then the product
r = gh is called a rotation about O.

We note the following property of a rotation:
If r is a rotation about O and # is any line through O, then reflection in

g transforms r into its inverse. For:
Let r =jk. Then gjk = h, a line through O, so jfc = gh% g(r) -g(jk) =

g{gh)=hg={ghYι ={jkΓι = r " x .

Proposition 12. The rotations about a fixed point O form an abelian
group H.

Proof. Let rx = gh and r2 = jk, where g, h, j , k are all lines through O.
nr2 = £* j * =g-hjk =gfε#, s ince/ = * # is a line through O. n" 1 =
(gh)"1 =hgε#.. g g = l for any line g through O, Thus R is a group.

If / is any line through O, then r^1 =f(rx) and r^"1 =/(r2), so that
rΓ 1 ^" 1 =fghffjkf =7(n^2) = (nn)" 1 = V ^ Γ 1 - Therefore nr 2 = r 2 n ,
and </? is abelian.

THEOREM 3. If # is the group of rotations about a fixed point O and g is a
fixed line through O, then (jj = j? \Jg£{..

Proof. We show first that C Qker ψwhere 0 : ̂  — > ί , # ε £ . Let τε V
and let P(? = RP be an arbitrary vector, i.e., RPR = Q. Then

τ(R)τ(P)τ(R) = τ(Q)

implies

?(Pθ5 =7(P)7(QJ =7(R)7(P) =7(ΛP).

But T (βP) = ΛP since tΓ is abelian. Hence T ( P Q ] = PQ and T = t
Suppose ^ ε £ and O ̂ h, where Λ is a line in Q. Let j be the perpendic-

ular from O to Λ, P = jh = /tf. Let ft* I |Λ, O |ft*, and let Mbe the midpoint of
OandP.
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Ô  M_ p^

j

h* h

F igure 9

Choose T =MP. τ(P)=O and r(h) \\h ==> Ύ(h) = h*. Thus ft* = rhr "1

==> h* = τhr = h. Therefore the images of lines through O can be chosen
as generators of Q.

Finally, if k is an arbitrary line through O, r = gkz<R, and k = g-r εg%.
Hence Q = % u g%.

IV. CONSTRUCTION OF THE PLANE

In this section we construct over a field a 2-dimensional linear space
which is invariant under the group of linear transformations, Q (THEOREM
4 and COROLLARY).

A. Properties of rotations; scalar field. The following property is first
noted:

If r_is a rotation about a point O and P is any point of a line g through
O, t h e n r " 1 ^ ) =g{r{P)).

.sr{P)

O |f
g ί

JV\P)
Figure 10

Let r= hj. θ\g,h,j =φ>rg = hjg =k, a line through O, hence r =hj =kg.
Then we have r(P) = rPr'1 =kgPgk =kPk and r'ι(P) = r'1 Pr = gkPkg =
gikPk) =g(r(P)).

Addition of linear transformations is defined as follows: Given x$ε Q,
α a vector,

(x + y)o =x(a) +y(o).

Proposition 13. In the transformation group, Q, the sum of a rotation and
its inverse is a scalar mapping.

Proof. Let rε<#, the group of rotations about point 0, and let r be its
image in ^ . Let x be a regular vector, say x = OX, where O and X are
incident with some line g. (It suffices to consider only regular vectors,
since every vector is the sum of two regular vectors.)
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h
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Figure 11

Let h be the perpendicular from r(X) to g, and M = gh = hg. Then

(r+r-^OX^riOX) + r'1(θX)

= r(O)r(X) + r^iOr^iJQ

= Or(X) + Or^iX), since r{0) = r^iO) = O,

= OM + Mr{X) +OM + Mr^iX)

= 20M + Mr(X) + Mg(r(X)), by the preceding remark,

= 20M + Mr(X) - Mr(X), by Proposition 10.

= 2OM.

Hence, r + r" 1 maps a regular vector onto a collinear vector, and
since r and f ~1 are homomorphic mappings, so is r + r " 1 . Therefore r +
r" 1 is a scalar mapping, provided that the characteristic qfthe ring of
scalars is not 2. This is no restriction however, since if 2PQ - 0 for an
arbitrary vector PQ = RP, then (RP)2 = 1, contrary to Proposition 5.

The scalars of the form λ = r + r" 1 together with identity generate by
additions and multiplications an integral domain. We denote its quotient
field by 9.

B. Construction of the linear space. We define £ to be the linear space
generated by the vectors α, r1(a)t 92 (α), i\r2 (°0 o v e r t n e f i e l d 9> where α is
an arbitrary regular vector and rx and r2 are arbitrary rotations in $. We
know that

Hence

rf = λ, r, - J,

which implies that -C is invariant under fi and r 2 .
Let g be the line of OP = α, so

5" = 1



222 SISTER MARY JUSTIN MARKHAM R.S.M.

and

Ho) = α.

Also, by the remark made at the beginning of Section IV, A,

mi'1 =?rl.
Hence

g?Λa) =grig'1g(a) = rΓ^(α) = 9Γι(a) = λ,α - n{ά).

Similarly,

gttia) =gί^2g-1gW = (tt)~1gW = (r^hV'ia) =9^9^ (a) =9^ (λ2a

- r2(α)) = - r ^ Γ ^ α ) + λ a?Γ 1(α) =9,(9, - λ.Kα) + λ^λ, - ̂ )(α) = r > 2 ( α ) -

λir2(α) - λ29ι(a) + λ ^ α .

Therefore j£ is also invariant under g.
We now consider the dimension of -C over 3, denoted by dimj J£, where

dimension is defined as usual in the theory of vector spaces over a field.
Since g* = T, we can express -C as the direct sum

where g(x) = x if xε ̂  and £(y) = -y if y ε -C-i.

For any vector xε*C, ^(x) = x if and only if x = λα for some λε J, since
g fixes only points of g and hence g fixes only vectors collinear with α.
Therefore dimj -d = l

If ^(y) = -y, then -giy) = y. For P\g, let hbe the perpendicular to g at
P, i.e., P = gh = kg. It will be shown that t = -g. Thus^(y) = y. But^ also
has only a 1-dimensional fixed space, so that dim$ βC_1 ^ 1 . Therefore
dim9 X ̂  2.

It will be shown (Proposition 14) that if P is any point then P carries an
arbitrary vector x into -x. From this it follows that if P = gh = hg9 then

g(g + h)x =£2(x) +$(x) = x + P(x) = 0.

Therefore % = -g.

Proposition 14. P(x) = -x for any point P and vector x.

Proof. Producing x from P9 we have x = PQ. Let P = gh = hg9 and let
j be the perpendicular from Q to g. For R = gj = jg, x = PR + RQ.

h j

<Q

~g W IP Έ

Figure 12
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Consider the action of P on PR and RQ. Let Rl=JHfi)._T^enP^R) =PP(i?)
= Phg(R) =Ph(R) = PR*. By Proposition 1 0 , ^ ' = -R'P =RP, so P (PR) =
-PR.

Next let Qf = g(Q). On the basis of the argument used in the proof of
Theorem 3, & =J. Hence

P(RQ) = gh(RQ) =gj(RQ) =g(RQ) =RΪ(Q) =RQ' = -RQ

Thus P(x) = -PR - RQ = -x. This completes the proof that the dimen-
sion of -C over 9 is at most 2.

It is noted that if r(x) = λx, λε 9, for any regular vector x, then r = ±Ί,
for:

Let hbe a line along which x is produced;/z (x) = x. Then

^-'(x) =r(x) =λx=#>

hrh~ι(yC) = h(λx) =λ£(x) = λx = >

r'x(x) =λx =r(x)=>

r2(x) =x, i.e., r = ±ϊ.

If the basis for ^ is chosen so that at least one of the rotations rx, r2

is not equal to ± T, then <£ has dimension not less than 2. (If there exist no
non-trivial rotations, we have a special case which requires a slightly dif-
ferent construction.)

This completes the proof of

THEOREM 4. j£ is a 2-dimensional linear space over 9.

COROLLARY. £ is invariant under Q = fi U g fi.

Proof. oC n a s t n e basis α, r^α), where rγ f ± 1. £ is invariant under

r2, hence under any arbitrary rotation in #. J£ is also invariant under g, so

the invariance is extended to the entire group Q = £ U gβ.

V. CHARACTERIZATION OF THE PLANE
BY A QUADRATIC FORM

We can now coordinatize the linear space £ over the field 9. The
coordinatization enables us to represent the elements of Q by matrices, and
we then obtain a quadratic form invariant under Q (THEOREM 5). Thus we
can conclude that the geometric structure corresponds to the class of
equivalent quadratic forms so obtained,,

A. Coordinatization and matrix representation. ^ has the basis α = OP and
rx(α) = OQ, where O,P\g and rx is not a scalar on α, i.e., rx f ± T, and
n + rC1 = λ i - >

Let OX{aJ) = aa + βr^a) for a,βε9.
We define Π to be the set of all points X(a,β) together with the lines

joining them when these lines exist.
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Π contains the three fundamental points X(0,0) = O,X(l,0) = P and X(0,l)
= Q, and is invariant under rotations about O and reflections in lines
through O, if we define for h ε Q,

hX{a,β) = X{ha,hβ)

where OX(ha,hβ) is defined to be h(OX(a,β)) =h(aa) +h(βrι(a)).

We shall represent a vector OX(a,β) in ^ as a column vector, i.e., by

the 2 x 1-matrix L and derive a representation for a linear transforma—
LPJ rα α -|

tion as a 2 x 2-matrix x 2 , where transformation of a vector is indi-

cated by multiplication on the left.

Let [J] « 5?

and P Ί «-> 0^.

We know that

rx carries into

Suppose that

. Γol . , Γαl
rx c a r r i e s i n t o ,

s o t h a t Tι c a r r i e s i n t o .

T h e n s i n c e rx + rλ~
ι = λ x ==> r* = λ1r1 - ί , w e h a v e O = L - L =

LPJ L λ iJ LOJ

H e n c e [ i "λj ^9ί

We denote this matrix by A(rx) and note that its determinant, det AίrJ, is
equal to 1. Since r(α) would serve as a basis vector for ^ for any non-
trivial rotation f and the determinant is invariant under change of base,
then det A(r) = 1 for any rotation matrix, A(f).

We know that

£ carries [j] into [j]

and from the argument used to show the invariance of -C under g, g{Ϋι(ά)) -
-fi(α) + λxα.

Hence gcarries I I into I J + [QJ = I _ij
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Thus A(£) = [J λ_\]^g.

It has been seen that <£, which is generated by α and r ^ α ) , is invariant
under any arbitrary rotation f. In particular

r(α) = /cxa + κ2r1{ά)9 κ,ε J .

Hence A(r) = κ1l + κ2A(rι), i.e.,

Thus A(r)=ΓK l ~*2 ]**r,
[κ2 κ1 + λ1κ2]

where det A(r) = 1 =#> κ x

2 + λ1/c1/c2 + κ2

2 = 1.
Therefore we have a matrix representation for every element of Q.

B. The quadratic form. If ^ = is the matrix corresponding to the

quadratic form ax2 + 2βxy + γy2 = X ^ X where X corresponds to the vector

and X* to its transpose [#3>], and if A is a matrix corresponding

to an element of Q, then i£ is invariant under transformation by A if

(AX)'*g(AX) = X'A'βAX = X'£X,

i.e., we require that A ^ A = Si for an arbitrary transformation matrix A.
Thus we must find Si such that A*Si = SlA'1 for a rotation matrix A.

A^Γ*1 "* ] and A " 1 - \Kl + λl** "*]

so we must find ot,β,γ in 9 such that, for κlf κ2 satisfying κ2 + λ1κ1κ2 +

κ2

2 = 1,

Γ *i «2 Ί . Γo? βl Γ« β~] Γ ^ i + λ i ^ 2 κ2ΐ
|_-κ2 fCi + λ^aJ [/3 y j [ ^ ^ J L"^ ^ l j

which implies that

(1) a Kι + β κ2 = a κλ + aλλκ2 - β κ2

(2) βκχ+ γκ2 = aκ2 + βκλ

(3) -aκ2 + j8κi + jSλi/Ca = j3#cx + ^ λ x /c2 - γκ2

(4) -j3^f2 + y ^ + γλχK2 =βκ2+γκ1

We obtain from either (2) or (3) that a = y, and from either (l) or (4)
that 2/3 = ffλ1. Hence a = 2, β = λx is a solution and

~2 λ7

_λx 2_

is invariant under ^ .
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5 is also invariant under g; since

Γl 0] Γ2 λΆ Γl λ j = Γ2 λx1 .
Ui - l j IΛ 2 j LO - l j Lλi 2J

Therefore 5 is invariant under Q.

Given a non-zero vector X = L, in •£, we say that X is isotropic if

there exists a symmetric matrix j£ invariant under linear transformations
such that X*gχ = 0.

Hence, for A = [ £ £ ] ,

-( has isotropic vectors if and only if X'i£X = 2(Λ:2 + λxχy + y2) has nontrivial
zeros. Π in this case is called an isotropic or pseudo-Euclidean plane. If
jQ has no isotropic vectors, Π is a Euclidean plane.

The quadratic form determined here is, in fact, unique up to a constant
factor. For, suppose λx f 0. Then, for arbitrary β,

2β= aλt => a = 2βλ1"
1,

and since a = 0 if and only if β = 0, Si becomes

~2β\cι β Ί p K"
«= = βK1

β 2j3λ1"1J [ ^ 2 _

and X'SX = 2βλi~
1x* + 2βxy + 2βλ1~

1y*, which differs from the previously
obtained form only by the constant factor β λ ^ 1 .

On the other hand, if λx = 0, (1) implies that β = 0, so for arbitrary
a, 5 takes the form

- Γ Ή Ί •
LO aj LO l j

This time X*ί£X = a(x? + y2), which is again unique up to a constant factor.
Hence there is essentially only one invariant quadratic form defined on

the space j£ under this coordinatization, since the quadratic forms differing
only by a constant factor are all equivalent with respect to the structure of
the plane.

This proves
THEOREM 5. On £ there exists a quadratic form, dependent on the choice
of basis and unique up to a constant factor, which is invariant under trans-
formation of Jζ by elements of Q. <£ has isotropic vectors if and only if the
quadratic form represents zero nontrivially.

C. A minimal model. Under the hypothesis that fi consists only of the
trivial rotations it is impossible to generate a 2-dimensional space by ap-
plying a rotation r to any vector. In this case we can choose any point
0 =gh =hg as the origin and any points P and Q, both different from 0,
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such that P\g and Q\h, as the other two fundamental points. Then OP and
OQ are a basis, and since g and h are the only lines through 0, Q is the
Klein-Four group consisting of elements ί,g$,d.

Coordinatization, matrix representation and determination of a
quadratic form can be carried out as in the general case. The matrix

^ = \o l\' c o r r e β P° n € * m g t o g> i s i n f a c t a symmetric matrix invariant

under transformation by elements of Q. This time, however, Si is not
unique; the entry -1 may be replaced by any other element of 9.

The vectors from 0 to points on g,h respectively form non-zero vector
spaces V(g), V(h) over the field 3 of characteristic f 2. The space V of all
vectors is the direct sum of V(g) and V(h), and g and ίί transform V such
that

^(α + b) = α - b

h (α + b) = -α + b

for oεV(g) and bεV{h). Conversely, if <A and £ are two non-trivial 2-divis-
ible abelian groups, then the group Q generated by g,h,c4,£ with defining
relations:

g2 =h2 =1
gh =hg
ab = ba
ga = ag
ha = a"ιh
hb =bh
gb = b"ιg

for azσi, bε£, and preserving the group relations among elements of <A, and
similarly preserving relations among elements of <β, is a group with normal
subgroup V = cA x <β. Q/ZJ is the Klein-Four group.

Q has generator system g£ U hc4 invariant under inner automorphisms
and consisting of involutions. If these generators are used as "lines", Q
satisfies Ax - A6. "Points" are obtained as the setghZJ. ϋ is the transla-
tion subgroup and there are only two lines through each point.

VI. INDEPENDENCE OF THE AXIOMS

It has been shown that a group Q generated by a set of involutions £,
which is invariant under inner automorphisms on Q, determines a Euclidean
or "pseudo-Euclidean" plane under the definitions of Section Π and the
hypotheses of the following axioms:

Ax. There exist at least three non-collinear points.
A2. Given two distinct points, P and Q, there is at most one line g such

t h a t P , Q | ^
A3. The product of three concurrent lines is a line.



228 SISTER MARY JUSTIN MARKHAM R.S.M.

A4. Given a point P and a line g, there is at most one line h such that
pUand h\\g.

A5. The product of three points is a point.
A6. Given two collinear points P and Q there exists a midpoint, M, of

Pand Q.

In this chapter the independence of these six axioms will be shown.
Hence they are necessary as well as sufficient (THEOREM 6).

(1) Independence of Ax. Let a, b,c be the involutoric elements of<S3,the
symmetric group on three elements. Let Cz be the cyclic group of two ele-
ments generated by g, with g2 = e. Define Q to be the direct product Q =
C2 X S39 generated by the lines (e,a), {e,b), (e,c) and (g,ϊ) where 1 is the
identity element oi£3. The points of Q are (g,a), (g,b) and (g,c).

. • (g,l)

{e,a) (e,b) (e,c)

Figure 13

Q satisfies the required definitions and A2 - A6.
Line (g,l) is conjugate only to itself, hence is fixed under every line

reflection. Every other line contains only one point, but (g,l), which is
orthogonal to every other line, is incident with every point. Hence there
are not three non-collinear points. Therefore, Ax is independent of the
other five axioms.

(2) Independence of A2. Hjelmslev [7, first part] gives the following axiom
system:

I. There exist points and there exist point sets called lines. There exist
transformations called motions. Every motion is a correspondence which
associates to every line and its points a line and its points, reversibly.
Every motion has an inverse] the set of all motions is a group. Two figures
which correspond under a motion are congruent.

II. Besides the identity motion there is a unique motion leaving a line point-
wise fix ed\ this is the reflection in that line. Every line is the axis of such
a reflection. Every point not on the axis is not fixed.

III. For two lines a f b, b ± a if b is fixed under reflection in a. Through
every point there is a unique line b such that b is perpendicular to a given
line a; a and b have a unique common point.
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IV. If A,B\g they have a reflection axis m such that A corresponds to B re-
υersibly under reflection in m while g is fixed) g ± m\ m meets g in point
M, which is the midpoint of A and B.

V. Two congruent sequences of points, ABC and AB1 Cf , in one or
two lines, with common point A, can always correspond under a reflection.

As one example of this system Hjelmslev gives the following:
Adjoin to the real numbers R an element ε such that ε2 = 0.
The affine plane obtained in the usual way with coordinates of the form

a + b ε9 for a, bεR, satisfies I - V.
It will be shown that this extended system satisfies all our axioms ex-

cept A 2 .
Since there is a 1-1 correspondence between points and lines and their

associated reflections, the same notation is used for both.
By Hjelmslev's axiom I the set of lines consists of full conjugacy

classes. By axiom Ilia point is a product of two commuting lines. A6 fol-
lows immediately from axiom IV. A3 is a theorem in Hjelmselv's paper,
as is A5 in the case of three collinear points.

The other desired properties, i.e., Al9 A4 and A5 in the general case,
are obtained by considering the example of the plane defined over the ex-
tended real number system.

Let R* = R U {ε}, where ε2 = 0 and operations involving ε and elements
of R are performed as usual in a commutative ring. Thus R* is a com-
mutative ring with unit, and every element a + bε, a f 0, has an inverse in
R*: (α+ bε)'1 = a'1- a~2bε.

As usual we define:
Point: P = (x,y), x,yεR *.
Line: g =[u,v,w], u, v, w ε R* and u2 + t? f 0\ the latter condition is
equivalent to saying that either u or υ is invertible.
Also, for mf 0, [mu,mv,mw] = [u9v,w].
Incidence: P\g if ux + vy + w = 0,
Orthogonality: Two lines g and g' are orthogonal if uu' + vv1 = 0.
Parallelism: Two lines are parallel if they have the same slope, where
slope has the usual definition.

If we represent points by the column matrix

the group of orthogonal transformations consists of all matrices

v2 -u2

 e 2uυ

v +u2 v +u

_ 2uv e v2 - u2 ^

v2 +u2 v2 +u2

0 0 1

with u,v,a9b,e ε R*, u2 + υ2 f 0, e = ± 1 .
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The generators of this group are the line reflections. Reflection in an
arbitrary line [u,v,w ] is represented by

v2 - u2 _ 2uv _ 2uw
v2 +u2 v2 +u2 v2 +u2

2uv _ b2 - u2 2vw
v2 +u2 V +u2 v2 +u2

_ ° ° 1 —
Reflection in an arbitrary point (a,b) is represented by

- I 0 2a

0 -1 2b

_ 0 0 1 _

and is the product of two commuting line reflections, namely, [l> 1, -(a + b)]
and [l, -1, b - a].

Since points are defined over R*,which contains R, Ax is valid.
The definition of parallelism implies that two parallel lines have no

common points, and parallelism is transitive. Hence A4 is valid.
We now verify A5 for three non-collinear points. Let A, B, C be three

non-collinear points. Suppose there is a line ^such that A,B\g; then Cjfg.
By axiom III there are lines a and b which are perpendicular to g at points
A and B respectively, i.e., A = ag = ga and B = bg=gb. Let c be the
perpendicular from C to g and h the perpendicular to c at C.

—1 1 . c—k

ad be

A P B g

Figure 14

By a theorem in Hjelmslev's paper,

a, b, c ± g =^> abc = d,

where d is also a line perpendicular to g.

Hence

ABC = aggbch = dh,

so we need only show that dh = hd, i.e., that h ± d.
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Let dg = gd = P. We know that h\\g, for if they had a common point
there would be two perpendiculars from that point to the line c, contrary to
axiom III.

Since h\\g and parallels are unique, d]/(h. Let Q\d,h. If hX d let j be
the perpendicular to dthrough Q. Then

Q\k,j and g\\h = > j]/[g,

so there is a point S\g9j, which implies that the perpendicular from S to d
is not unique, contrary to axiom III. Therefore ABC = dh = hd, i.e., ABC is
a point.

If there is no line joining any two of the points A, B and C there are
still enough lines over R* to verify A5. Let A = (α,αf), B = (δ,δf), C = (c,cf),
and consider the lines y = a} and x = b. Let F = (δ,ατ), so -F and B are both
on line x = b.

C

? °. B

A J_

π • '
J

< 5 >

Figure 15

Then by the preceding argument, F^C = G is a point. Hence £C =.FG, and
since both A and i7" lie on line y = aτ, we have

A^C = AFG = D is a point

Therefore A5 is valid in all cases.
However, two points in this plane do not necessarily have a unique join,

e.g., points (0,0) and (ε,0) are both incident with the lines [θ,l,θ] and [ε,l9θ].
Thus A2 is independent of the other five axioms.

(3) Independence of A3. The near-field, NF(9), of nine elements is con-
structed by adjoining to GF(3), the finite field of three elements, an element
t which satisfies the equation x2 = 2 over GF(3). NF(9) is an additive
abelian group, with a multiplication satisfying the following properties:
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i. (ab)c = a(bc)
ii. (a + b)c = ac + be

iii. ab = -ba9 for all α,δ £GF(3) where a f ±b.
iv. For every aε NF(9) 3β" 1 εNF(9) ϊ aa~ι = a'ιa = 1.

The projective plane over NF(9) is defined as usual:

Point: P = (xo,Xι,x2) = (mxo,mxl9mx2) for all m f 0.
Line: g = [uo,Uι,u2 ] - [muo,mul9mu2 ] for allm f 0.
Incidence: P\g if and only if xouo+ xxux +x2u2 = 0,

The embedded affine plane is obtained by deleting one line, say x2 = 0,
so that points may be represented in the form {xQ,xl9ϊ).

Reflection in the line x = a has the representation

-1 0 2a

(i) 0 1 0

_ 0 0 1 _

and similarly reflection in line y = b has the representation

1 0 0

(ii) 0 - 1 2b

_0 0 1

These lines (i) and (ii) comprise two orthogonal pencils, because of the
commutativity of the matrices.

A line y = mx + a has the reflection matrix

0 m~γ -m~ιa

(iii) m 0 a

_0 0 1

All line reflections are involutions and leave their respective reflection
axes pointwise fixed.

If Q is the group generated by all line reflections (i) - (iii), it is easily
verified that the set of generators consists of full conjugacy classes.

Every matrix (i) commutes with every matrix (ii), and the product is
the matrix

-1 0 2a

(iv) 0 -1 2b

_ 0 0 1

which is the reflection in point (a,b,l). Conversely, every point reflection
is the product of two such line reflections.

Reflection in a point P i s an involution and leaves P linewise fixed.
The product of two commuting lines is always a point in the case of

matrices of type (iii) also:
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In order for the reflections in the lines y = mx + a and y = kx + b to
commute, we must have

wΓ1 k =k"1m

m~ιb-m~ιa = k'1a-kΓ1 b

-mk~1b+a = -km~1a+b

from which we obtain k = - m. Hence the product is the matrix.

-1 0 ± m{b - a)

(iv) 0 -1 (a + b)

_ 0 0 1

which is the reflection in the point (*m(a-b),2a+ 2b,1).
It is clear that A1? A2 and A4 are all valid in Q.
Also the product of three matrices of type (iv) is again a matrix of the

same type, since this involves only the commutativity of addition. Hence A5

is also valid.

Given 2 points P = (a,b,ϊ) and Q= (c,d,l), let M = (-a-c,-b-d,l). Then
MPM = Q, if we let these same letters represent the point reflections also.
Thus A6 holds in Q.

Finally we show that A3 does not hold in Q. The lines y = mx, y - kx
and y = rx are all incident with the point {0,0,1). But the product of the
corresponding matrices is

0 m'^r"1 0

mk~ιr, 0 0

0 0 1

which is not a line reflection unless

(mk'1r)~1 =m~1kr~1

i.e.,

r'ιkm~ι =m~1kr~1

But multiplication in NF(9) is not in general commutative, e.g.;

Let r = t, where t2 = 2,

k =t + 1,

m = 1.

Therefore A3 is independent of the other five axioms.

(4) Independence of A4. Let E2 be the real Euclidean plane and let &2 be
the group of rigid motions on E2.

(T2 is generated by the set of all line reflections, and this set is invar-
iant under inner automorphisms of &2. Every point reflection is a product
of two commuting line reflections, and conversely. &2 satisfies Ax - A6 .
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Consider the direct product

#2 x <?2 = {(σ,τ) Iσ,τ ε &2 }.

Let Q be the subgroup of (T2x(y2 which is generated by all elements of the
form (g,gf) such that g and^ τ are reflections in parallel lines in E2. This
set of generators is invariant under inner automorphisms, since—identify-
ing points and lines of E2 with their reflections in &2—

(g,g<) (M*> (ggV1 = (ghg-1 ,g'ίϊg< -1)

and

g\\g', h\\h< =>g(h)\\7'(h').

Let E = E2 + E2 and let R represent the real numbers.

Point of E: P = (Pl9P2)9 where Pl9P2 are points of E2, i.e.,itPι= (al9a2)

a n d P 2 = (a39a4)9 then P= (al9a2ya3fa4ί), fl, εR, i = 1,2,3,4.

For P in E and (σ,τ) in Q, we define

(σ,τ)(P) = (σ,τ)(Pl9P2) = (σ(Px), τ(P 2 )).

liwe of E: Z, is the point set

L = {P\P = (a1 + ku1,a2+ku2,a3+kuι,a4+ku2)}ktR ,

for fixedαz in R, and u = {^i,^} a 2-dimensional vector over R.

In E2 the lines in the direction of the vector u produced from points
(al9a2) and (#3,a4) respectively are parallel; their reflections are ^ a n d # f

which are parallel in &2. Hence (g,g')ε Q is the line reflection in L. Con-
versely, every generator (g)g1) of Q is a reflection in some line of E.

Orthogonality in E: If Lx is a line in the direction of u = {̂ 1,̂ 2}, and L2 is
a line in the direction of v = {vl9v2 }, then we say Lx ± L2 in E if and only if
u i v in E2, i.e., if and only if ux vγ + u2υ2 = 0.

It is clear that a line reflection (g",iff) in L is an involution leaving
points of L (and only these) fixed and also leaving fixed only those lines
which are orthogonal to L.

If P = (Pl9P2) is a point in E, the reflection in P i s defined by {Pl9P2)
where the P, denote points in E2 and hence also their reflections in &2. In
&2, Pi - gh -hg and P2 = g'hf =hrg* where g9g'9h9h* are reflections in lines
parallel to the coordinate axes and ̂ | l^1 and h I \h*. Hence

{P19P2) = (g,g%h9h<) = igh&h*) = {hg,h'g') = (h,h')(g,gi)

where(g,g') and (h,h') are generators of Q. Conversely, every such pair of
commuting generators determines a point reflection in Q.

It is clear that (PUP2) is an involution leaving P line-wise fixed.
We see from the definition of point and line reflection in Q that P\ L if

and only if (Pl9P2) commutes with (^,^f)
Axioms Ai and A2 in Q follow immediately from the corresponding

properties in &2.
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If P\Lι,L2,L3 then P= (PlfP2) commutes with the corresponding line
reflections {g,g% (h,h1) and (j,j') in Q. So P x commutes with g,hj in <J2

and the product ghj is a line k in &2, such that Px commutes with&; sim-
ilarly for P2 and k' =g1h1j1. Therefore (PltP2) commutes with (k,k') =
{ghjyg'h'j τ), which verifies A3 in Q.

(A, p

2)(Qi,Q 2)(^i,# 2) = ( 5 i Λ ) is a point in Q since P Q ^ is a point
in #2 for i= 1,2. Hence A5 holds in Q.

Given (P^Pa) and (Ql9Q2) there exist M, ε&2 such that MiPiMf1 = Q{.
Hence

(Af^MaJίPi^XM^Ma) =(Qi,Q2)

so A6 is also valid in Q.
Finally, A4 does not hold in Q\
Let P= {1,1,0,0), and L = { QIQ = (k,O,k,O)}k£R , i.e., L is the line

through (0,0,0,0) in the direction of vector {1,0}.
Consider the lines Lx and L2, both through point P, in the directions

{0,1} and {1,0} respectively, i.e.,

£ i= {QlQ = (!,!+& A6)}* ε R

and

L2= {Q\Q = U+k,l,k,O)}k£R.

Then P| Lx ,L2, and Li and L2 are both parallel to L, for

LilίL =̂ > (k,O,k,O) = (l,l+m,O,m), for some k,mzR, ==> 1 = 0,

and

L2}fL =̂ > (k,O,k,O) = (l+m,l,m,O), for some k,mεR, =^> 1 = 0.

Therefore A4 is independent of the other five axioms.

(5) Independence of A5. The real elliptic plane can be considered as the
surface of the unit-sphere in Euclidean 3-space, E3. Lines are great
circles, i.e., a line is the intersection of a plane through the origin with the
unit-sphere. Similarly, every point is the intersection of a line through the
origin with the unit-sphere, and every line through the origin is the inter-
section of two orthogonal planes through the origin.

Hence we represent a line by the plane

ax + by + cz = 0

and a point by the intersection of two such planes which are orthogonal.
In the following discussion, points are denoted by P,Q,..., lines by

g,h,... and planes by π,p,. . . The same notation is used for the corre-
sponding reflections in lines and planes.

In E3 every reflection in a plane is an involution and leaves the plane
line-wise fixed. Similarly, every reflection in a line is an involution and
fixes the line plane-wise.

Let Q be the group generated by the reflections in planes through the
origin. As noted by Thomsen [13] the following relations hold:
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(i) (τrp)2 = 1 if and only if TΓ ± p.

(ii) pτp = σ is a plane if and only if p is the angle-bisecting plane of TΓ
and σ where TΓ and σ intersect.

(iii) (τrpσ)2= 1 if and only if either πpσ is a plane—in this case τr,p,σ all
pass through the same line—or πpσ is a point—in this case τr,p,σ are pair-
wise orthogonal.

From (i) and (ii) we obtain that Q is generated by full conjugacy classes
and that points satisfy the required definition.

Since the poles on the unit-sphere occur as the intersection of the same
two orthogonal planes through the origin, we identify poles in Q.

That Ax holds is immediate. Since poles are identified with each other
in Q, A2 is also valid. To verify A3 we must have: the product of three
planes through the same line is a plane. This follows from relation (iii)
above. A4 holds since there are no parallels. To verify A6 we consider
that two lines through the origin determine a plane and have an angle bisec-
tor in that plane. That angle-bisector, considered as a point, is the mid-
point of the two given lines considered as points. The three lines are co-
planar; hence as points they are collinear.

However, A5 does not hold in Q, since the real elliptic plane contains
polar triangles. The three sides of a polar triangle correspond to three
pairwise perpendicular planes through the origin. By relation (iii) their
product is a point in E3, hence not a point in Q. Therefore A5 is independent
of the other five axioms.

(6) Independence of A6. Consider the Cartesian plane consisting of the

lattice points

P - [x,y) where x, y are integers, or x = —, and y = —, where a, b are

integers and a,b = 1 (mod 2),.

and lines

x = a for any integer a
y = a for any integer a
y = ±x+a for any integer a .

Let Q be the group of transformations generated by

Ί 0 2a 1 0 0 0 1 -a 0 -1 a

0 1 0 , 0 -1 2a , 1 0 a , -1 0 a ,

_0 0 1 _ 0 0 1 _ _0 0 1 _ _0 0 1_

for an arbitrary integer a. These are the reflections in the above lines,
respectively.

Reflection in point P= (a,b) is represented by

~-I 0 2a~

0 -1 2b .

_0 0 1
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If a and b are integral, this reflection is the product of the reflections in

lines x =a and y = b, and this product is commutative. If (a,b) = ( - » - )

where c,d = 1 (mod 2), then the reflection is the product of the reflections
. _. x , , . d-c d+c
in lines y = x + / and y = -x + g, where / = —— and g = ——.

It is easily verified that Q is generated by full conjugacy classes and
that axioms AL - A5 are satisfied.

However, A6 does not hold, e.g., the points (0,0) and (0,1) have no mid-
point.

Therefore A6 is independent of Ax - A5.
This completes the proof of

THEOREM 6. The axioms Ai - A6 are independent of each other and there-
fore are necessary for this characterization of the ordinary and isotropic
Euclidean planes.

One final property of this set of axioms will be noted here.

Proposition 15. If Q is a finite group generated by an invariant set of in-
volutions, axioms Ax - A5 suffice, since A6 is a consequence of the first
five axioms.

Proof. Given Pl9P2 \g, we wish to find a point M such that M(PX) = P 2 .
Let P j , . . . ,Pn be the points on g.

Pi (Pi) =Pi.
P 2 (Pi) = P*t Pi.
Ps (Pi) = P 4

If P4 = P2 then P3 is the required point M. If not, then continuing in the
same fashion we have

Pi-i(Pi) =Pi> for K i =sw.

If any Pi = P2, then Pi-i is M as required.
If not, then since g contains only n points, a repetition must occur, i.eβ,

^ikCPi) =Pj, for 3 ^j<k.

Then

Pk(Pi)=Pj-i(Pi)=$>
Pj-iPk(Pi) = Pi =#>'
Pj-iPk = 19

since only the identity translation has fixed points. Therefore Pk - Pj-i,
i.e., no repetition is possible, so reflecting Px in points of g always gives
rise to new points; hence we must have

Pn(P1)=P2,

so Pn is the midpoint of Px and P2.
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