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A RECONSTRUCTION OF FORMAL LOGIC*

GEORGE GOE

Introductory Notes and Summary. The purpose of this paper is to pro-
pose a reconstruction of classical so-called 1st order logic designed to
avoid some undesirable features of the traditional formulations of that cal-
culus. No final commitment to the classical viewpoint, as opposed to in-
tuitionism or other tendencies, is thereby intended.

In §1 the semantical motivation for departing from the usual type of
formalism in 1st order logic is made clear in a discussion of traditional
systems. In the new System L, described in subsequent sections, the ex-
pressions that may occur as lines in derivations have no free individual
variables, and the theorems are valid in every domain, including the empty
one. The semantical equivalents of the theorems of traditional formulations
of 1st order logic are derivable in the new system from an assumption
form, standing for a premise, or axiom in a theory, to the effect that the
universe is not empty.

In some fruitful exchanges of information and comments with Professor
Lambert of the University of West Virginia and with Professor Hailperin of
Lehigh University, which took place after an earlier version of this paper
had already been accepted by this Journal, the author learned of other sys-
tems with features like, or similar to those of the System L described
above. Accordingly, §3 of this article, which originally was devoted solely
to a comparison of the System L with the principles of quantification in
Quine's Mathematical Logic, has been revised to include reference to those
systems.

§1. Free Variables and Existence. The use, in formalized languages,
of expressions with free variables as lines in derivations has been often
criticized. The authors of Principia Mathematica themselves, in the intro-
duction to the second edition of their work [18 \ made a proposal for the
elimination of that feature from their system, being obviously unsatisfied
with their previous "primitive idea" of "ambiguous assertion." A different
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method for dispensing, in logic, with the use of free variables in the lines
of derivations was proposed by Fitch [5] and adopted, in substance, by Quine
in [l2]o Church observes that "it has been urged with some force that the
device of asserting propositional forms constitutes an unnecessary duplica-
tion of ways of expressing the same thing [what is expressed by means of
universal quantifiers], and ought to be eliminated from a formalized
language/* but he none the less considers the device a useful one ([4], p. 46).

In connection with Church's remark, it may be noted that, as a rule,
well-formed formulas with free variables (i.e. symbols which, by the rules
of the game, may be made the objects of substitution and/or be generalized
upon1) have not been construed in logic as just another way of expressing
universal propositions. Rather—and this is what this writer finds more
objectionable—they have played a sort of double role semantically, as usu-
ally indicated, though often rather obscurely, in the explanatory text ac-
companying their formal introduction.

The point is most simply explained at first by reference to logical sys-
tems, or their applications, in which no use is made of place markers (as
distinct from variables subject to quantification) for predicates and/or
statements. In such contexts, well-formed formulas with free variables
may be said to be construed as statements expressing universal proposi-
tions when the rule of substitution or that of universal generalization is
being applied to them. They are also clearly so construed, in those con-
texts, in their role as initial premises or final conclusion of an argument.
Yet, in their capacity as lines in a derivation by modus ponens, the same
expressions as a rule are construed not as statements, but rather as state-
ment forms, with their variables, wherever they are free therein, standing
for constants, i.e. they are construed as lines in an argument form. So
even in one and the same occurrence, a well-formed formula with free var-
iables may play this double semantical role. The process in its entirety,
from premises expressing universal propositions (whether by means of free
variables or by means of universal quantifiers) to a conclusion expressing
a universal proposition (again, either through the use of free variables or
by means of universal quantifiers) via such an argument form often is
characterized (with specific reference to cases in which one individual var-
iable is free in the formulas) as "reasoning about an unspecified object
satisfying certain conditions to conclude something about every object sat-
isfying those conditions/' or in some such way. Thus we have argument
forms used as parts of, rather than as patterns for, arguments, an
algorythm which—this writer feels—logic ought to justify rather than sanc-
tion primitively.2

Of course, when place markers for predicates or statements are used
in place of predicates or statements, the whole procedure as described
above is represented by an argument form. Yet essentially the situation is
the same in so far as such argument forms, if free variables are also used
therein, are construed as patterns for arguments which have argument
forms as parts.

The issue just raised concerns a habitual interpretation of well-formed
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formulas in traditional systems of logic rather than anything in the formal
systems themselves. It might seem therefore that, except for possible ob-
jections to the duplication of ways of expressing universal propositions, it
can be easily disposed of. Nothing prevents one, in fact, from always con-
struing well-formed formulas with free variables as synonymous with their
respective closures (understanding by this term the results of prefixing to
them, in any order, universal quantifiers binding each of their free vari-
ables), as Carnap, for instance, does explicitly, stressing his divergence
from the first edition of Princίpia on this point ([3], p 22), and Church at
least by implication (see quotation above). But it should be noted that if we
thus construe our well-formed formulas with free variables, the rule of
modus ponens assumes a different, less transparent role than it is usually
conceived to have, as when it is originally introduced in so-called propo-
sitional logic. For, if well-formed formulas with free variables are con-
strued as synonymous with their closures, to derive a well-formed formula
ψ from a well-formed formula φ with free variables and the well-formed
formula φ 3 ψ (to use a familiar metalinguistic device to refer to unspeci-
fied expressions of a specific form) amounts to deriving ψ, or a closure of
it if any variable is free in it, from a closure of 0 and a closure of φ D ψ9 &
procedure that cannot be truth-functionally analyzed as modus ponens usu-
ally is.

To see the import of what has been just noted, consider two open sen-
tences (i.e. expressions differing from statements oηly in exhibiting indi-
vidual variables in place of individual constants3) φ and χ with one free
variable, respectively a and β9 in each. If the open sentences φ and 0=)(3 β)χ
are construed as statement forms in which a, wherever it is free therein,
stands for a constant, the derivation of (3 β)χ from them constitutes a valid
argument form on purely truth-functional grounds: without exception, the
statement (3β)χ follows from any two statements respectively of the form
of the open sentences φ and 0^>(3j3)χ; only, should our universe of dis-
course be empty, then either there would not be any two such statements to
deduce it from, or, if constants without denotation are countenanced in our
language, one of the two statements would be false0 On the other hand, if
the open sentences φ and φ^(lβ)χ are construed as synonyms of their
closures, iβe0 as statements as they stand, then, if the universe is empty,
they are true (think of them as synonyms of ~(3 a)~φ and ~(3 a)~(φ =>(3 β)χ )
respectively), while (30)χ is false.

We are thus brought to the consideration of another objection that has
been made to traditional logical systems, notably by Russell himself ([16],
pβ 203, footnote). In traditional formulations of logic, by the device of ap-
plying modus ponens to theorems with free individual variables, expressions
such as ζ(3x)(Fxv~Fx)' and '(x)Fx D (3X)FX* (or, in other systems, state-
ments of the form of such expressions with an actual predicate in place of
*F9)9 which are not valid in the empty domain,4 are proved as theorems.
But if logic is to be independent of empirical knowledge, it ought to say
nothing about the existence of objects. To be sure, every axiomatic theory
of any interest outside pure logic postulates a non-empty domain, and logic
ought to investigate that part of the structure of those theories which they
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have in common (just as it investigates the common substructure of all
axiomatic theories using the predicate of identity, with the specific axioms
pertaining to it). At the same time, however, logic ought sharply to sepa-
rate from all others, as theorems of its own, those well-formed formulas
occurring as lines in derivations that are valid in every domain.5

What is most disturbing in traditional formulations of logic about the
controversial theorems referred to above is the surreptitious manner in
which they make their way into the system. The point is forcefully made by
Rosenbloom when he writes:

In some formulations where the notion of "variable" is used rather freely, T6
[in his system, the theorem that all statements of the form of *(x)Fx Z)(3x)Fx' are
true] is proved without this assumption [the assumption that there are individuals],
but the deduction, while formally correct, smacks of sleight of hand. One may
doubt that a formal system in which such a deduction is valid is a correct repre-
sentation of our admittedly vague ideas of valid inference.8

Habitually, the source of the controversial theorems is seen in such
axioms as ((x)Fx D Fy' and/or Ψx => (Ίy)Fy' (or, in formulations with an
infinity of axioms, in their substitution instances taken as axioms, or in ex-
pressions of their form with an actual predicate in place of ζF9). Yet, if
those axioms are construed as synonymous with their closures, then they
are valid also in the empty domain. Semantically, the controversial theo-
rems may be seen as obtained by construing those axioms, or theorems de-
rived from them by substitution, and other theorems with free individual
variables of tautological form needed for the derivation, as statement
forms, with the individual variables, wherever they are free therein, stand-
ing for constants, and, at the same time, assuming that there are statements
of their form with individual constants that have denotation. Yet, in most
systems, those same axioms are also needed for the proof of theorems that
are valid in every domain (e.g. their own closures), in a manner whereby
they ought rather to be construed as synonymous with their closures. If we
consistently construe all well-formed formulas with free variables as syno-
nyms of their closures, as we are urged to do by Carnap and Church, then
all axioms are valid in every domain and the source of the controversial
theorems becomes even more subtly concealed in the rule of modus ponens,
which then, as we have seen, no longer preserves the truth of statements,
nor hence the validity of statements or statement forms in the empty
domain.

§2. The Primitive Basis of the System L. We will now introduce a new
system of pure logic, the System L, which meets the demands implicit in
the criticism of traditional formulations of logic that we have voiced. Some
other systems already meet those demands, as we will see in §3.

We will use an infinity of axioms for L, syntactically determined by
metaaxioms. However, instead of borrowing predicates from ordinary
language or special theories, we give logic an object language of its own,
thus making the definition of Veil-formed formula*, perfectly precise, by
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using place markers for predicates.7 As such, we adopt the usual letters
'F', 'G9, Ή' with superscripts (that can be most of the time omitted in
practice as a way of abbreviation) indicating the intended number of argu-
ment places, and with or without numerical subscripts; we will refer to
these symbols as predicate symbols—by way of abbreviation, as/>ss, and to
one of them as a ps.

For the rest, we adopt a familiar vocabulary for L, with '~* and * ^>9

as primitive truth-functional connectives, and hence there is no need to
spell it out. But it is better to give our formation rules in full, since they
are less permissive than has become customary, being rather like those in
the original Hilbert-Ackermann formulation. In stating them, we will use
the familiar device of referring to unspecified object-language expressions
of a specific form by the appropriate sequence of Greek letters and object-
language symbols, Further, we agree to say of a variable a that it is free
in a linear sequence of object language symbols, or formula, if it occurs
therein, but the formula (a) does not occur therein, and to say that it is
bound in it if the formula (a) occurs therein. Our formation rules, recur-
sively defining Veil-formed formula' (we will use the usual abbreviations
'wf', 'wff, 'wffs') are as follows:

lo If λ is an n-place ps, and a\, a2,. . ., otn are variables (not necessar-
ily all distinct), then λoiιa2. . . otn is wf.

2. If Φ is wf and a is a variable free in it, then (ot)φ is wf.
3. If Φ is wf, then ~φ is wf.
4. If φ,ψ are wf, and if no variable is free in one of them and bound in

the other, then (φ^Dψ) is wf.

No formula is wf unless it is so by virtue of rules 1-4 above.

We will not bother to define such familiar terms as 'quantifier',
'scope', and the like. Note that by Us formation rules, a quantifier cannot
occur more than once with overlapping scopes, or vacuously in a wff.

We will use customary abbreviations of wffs, as by omitting parenthe-
ses, or by employing familiar defined symbols such as defined connectives
and ' 3 ' . For perspicuity, we will use brackets and braces instead of
parentheses, as needed.

Definitions. If some variable is free in a formula φ, then φ is said to
be open. A wff that is not open is referred to as a statement form, or as an
s/(more than one of them as sfs). A closure of a formula is the result of
prefixing to it, in any order, universal quantifiers binding each of its free
variables, and no other quantifiers. (Thus any closure of a wff is an sf, and
any sf is its own only closure.) The standard closure, or stcl of a formula
φ is that closure of 0 in which all variables occurring at the left of φ occur
there from left to right in alphabetical order (which order we may assume
given in any arbitrary way whereby there is no last variable). A sequence of
quantifiers (α?i)(α2) •(<*«) i n which the variables a1} a2,.. , an are all
distinct and occur from left to right in alphabetical order, is referred to as
a standard prefix. An sf (a)φ wherein φ is wf (i.e. is the scope of (a)) is
referred to as a universal sf.
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Only sfs will occur as lines in derivations in L. In pure logic, as the
subject is here understood, open wffs are significant only as fragments of
sfs (though for certain particular purposes, as the definition of Validity*
considered in §6, they may be regarded as subject to interpretations in
non-empty domains).

Convention. For any syntactical expression used to refer to a formula
ψ, as ζψ' or ζφ^>ψ9, the result of prefixing to it such an expression as
ζύ 9 ζa ex ot 9

- , --1 - ~ . . .-T2-, or the like in which other symbols used to refer to vari-
P βl P2 Pn

ables occur in place of the ones therein, will be used to refer to the formula
that is like ψ except for exhibiting each of the variables referred to in that
expression on top of an occurrence of ζ—9 wherever ψ instead exhibits the
variable referred to in that expression underneath that occurrence of '—\

The axioms of our system L are determined by the following meta-
axioms:

MAI. If(~Φ:3φ)^Φ is wf, then its stel is an axiom.
MA2. If φ D(~φi3ψ) is wf, then its stel is an axiom.
MA3. //(φ3ψ)D [(ψDX) 3(Φ=>X)] is wf then its stel is an axiom.

MA4. If(a)(φ Dψ) D(φ =>(β)f ψ) is wf, then its stel is an axiom.

MA5. If(θί)(φ^ψ) ^>({a)φz>βψ) is a wff in which a occurs in ψ and β is
Oί

not bound in ψ, then its stel is an axiom.
Observe that a formula such as is referred to in MA4 is not wf, and

hence is not an axiom, if, e.g., a is free in 0 or if β is bound in ψ. It is
clear that there would have been no advantage for us in adopting more
liberal formation rules. Especially if we had allowed quantifiers to occur
vacuously in wffs, the resulting duplication of ways of expressing a same
thing would not have been compensated, as it is in other systems, by a
greater simplicity of formulation at the syntactical level; on the contrary,
the syntactical determination of exactly the wanted axioms would have been
a great deal more elaborate.

Instances of axioms by MA4 are:

(x)((y)Fy => Gx) ^((y)Fy 3 (x)Gx)
(y)[(x)((lz)Fzy ^Gxy)-D{{lz)Fzy^(u)Guy)]

Instances of axioms by MA5 are:

( y) [ (x) (Fx .=> Gx) 3 ((x) Fx 3 Gy) ]
(3>) {z) [ {x) {Fx D Gzx) 3 (M Fx D Gzy)]
{y) [ {x) (Fxy 3 Fxy) 3 ((*) Fxy 3 Fyy) ]

Our only rule of immediate derivation is modus ponens (whereby,
clearly, from sfs only sfs can be derived). Besides proofs (the term being
defined as usual) the last lines of which are theorems of L, we explicitly
also recognize derivations from assumption forms, in which sfs that are
neither axioms, nor derivable from preceding sfs by modus ponens are ad-
mitted as lines under the name of assumption forms.
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K 0> Ψi > Ψ2 > > Ψn a r e sfs> w e w i l l say of φ that it is derivable from
ψl9 ψ2,.. o, ψn if it is the last line of a derivation in which all assumption
forms, if any, are among the sfs ψlf ψ2,..., ψn (Hence, if every ψt is a
theorem, φ is a theorem.)

Semantically, derivations from assumption forms are to be understood
as argument forms, i.e. patterns for arguments, in which the assumption
forms stand for in general non-logical premises, or axioms in a theory ,8

§3. Comparison of the System L with Some Other Systems. In his
Mathematical Logic [12], Quine dispenses with the use of free variables in
the formulas that function as lines in derivations, while retaining the rule
of modus ponens in its original form (rather than making it applicable to
the closures of a conditional and its antecedent). It is therefore somewhat
disappointing to discover that by his principles of quantification (Chapter 3),
statements with existential import are still provable as theorems, espec-
ially since the source of such theorems is still not brought into the system
in broad daylight. Of course, in that particular work, those principles are
introduced only to be used in class theory, where there is no question of the
domain being empty, and the theorems under discussion are then true
(though still not valid in every domain as determined by letting the inter-
pretation of the symbol ζε* as a 2-place predicate vary). But it maybe
argued that this should have been one more reason for not letting the prin-
ciples of quantification as such, which could find a more general application
elsewhere, suffice for proving statements with existential import; for
axioms asserting the existence of specific classes were to be introduced
later in the work anyway.9

At any rate, the system syntactically schematized in Chapter 2 of [l2],
which has been of some inspiration for our own system L, interests us here
only as it is there informally construed, i.e. as a system for quantification-
al logic in which primitive predicates other than 't' may be employed,
rather than as it is later restricted in its vocabulary for a special purpose.
Statements not valid in the empty domain are provable in that system be-
cause some of them are unperspicuously let into it as axioms in the com-
pany of others that are valid in every domain.

To fix our ideas and better to see the relationship between a system
determined by Quine's principles for quantification in [12] and our own sys-
tem L, let us assume the former to have the same vocabulary as ours
(thereby its closed formulas being statement forms rather than statements).

The axioms introduced by Quine's Principle *101 fall into four classes,
being differentiated by the presence or absence in their various parts of
free occurrences of the variable designated as a in the statement of the
principle. If we delete the vacuous occurrences of quantifiers in those
axioms they become respectively (using 'closure* and 'formula* in Quine's
sense):

1. The closures of formulas (φ ̂ >ψ) ̂  (φ^> ψ).
2. The closures of formulas (a)(φ^> ψ)^ (φ^ {a)ψ) wherein a is free

in ψ but not in 0.
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3o The closures of formulas (a){φ^ψ) D ( ( α ) p ( α ) ψ ) wherein a is
free both in φ and ψ.

4. The closures of formulas ( α ) ( p ψ ) =) ( ( α ) p ψ ) wherein a is free
in 0 but not in ψ.

Some of the formulas in group 4 are not valid in the empty domain; e.g.
ζ(x)(Fx D (3;y)F;y) D (U)FAT => (3:y)F;y)' is not.

The formulas in group 4 above are provable in Quine's theory of quant -
tification with the help of axioms by *103, some of which, e.g.
6{x){ly)Fy z> (3y)Fy9,10 are not valid in the empty domain, at least if we
construe all universal statements as true in the empty domain. It is of
course possible, though hardly elegant in a calculus intended to be open to
interpretations in any domain, to construe any formula with vacuous quan-
tification as semantically equivalent to the result of deleting its vacuous
quantifier occurrences,. With the latter construction, all axioms by *103
are valid in every domain, but then among those axioms by *101 which by
such construction are synonymous with the formulas in group 4 above some
are not valid in the empty domain.

A calculus in which only formulas valid in every domain are provable
as theorems (an inclusive calculus, as Quine refers to such in [14], refer-
ring to the customary 1st order calculi as exclusive) and in which variables
do not occur free in formulas appearing as lines in derivations, is obtained
from Quine's theory of quantification in [12] by modifying its *103 so as to
read (omitting the quasi-quotations):

If a is free in φ, and if 0 f is like φ except for containing free occur-
rences of a1 wherever φ contains free o c c u r r e n c e s of α, then
Hoι)φ^φ\

The resulting system was proposed by Quine in [14] as a simplification of
an inclusive system proposed earlier by Hailperin [ϊ], which was based on
the theory of quantification in the first edition of Mathematical Logic.

Both in the theory of quantification of [ 12] and in the inclusive system
of [14], the closures (in Quine's sense of the word) of formulas (a)(β) φ
z> (β)(a)φ are proved as theorems by a stratagem discovered by Berry [2],
which makes use of vacuous quantification. The procedure is somewhat
artificial, and in both systems it can be dispensed with if we slightly modify
them. To this end, in both systems, one should understand by 'closure'
what was meant by that term in the first edition of Mathematical Logic (i.e.
what we mean by 'standard closure' in our System L), and modify *101
(Principle (2) of [14]) to read:

*101\ Hα)(0=>iW=> (ia)φ^(β)£\ή
n

where ^ ψ is understood as like ψ except for exhibiting free occurrences

of β wherever ψ exhibits free occurrences of a. In both the systems under
consideration thus modified, one can prove * \-(a)(β)φ^ (β)(a)φf, or an-
other metatheorem to the same effect, substantially as (and indeed more
simply than) we will in the System L. (Cf. MT3 and MT7 in §4.)
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In the two systems just obtained by modifying those in [l2] and in [l4],
vacuous quantification is no longer needed for use in Berry's procedure,
and at least in the inclusive one nothing is gained by retaining that duplicate
way of expressing what can be expressed without it: the number of princi-
ples need not be increased if we further modify the inclusive system to
proscribe vacuous quantification. In fact, inspired by our previous analysis
of the axioms by *101 as falling into four groups when their vacuous quan-
tifier occurrences are dropped, we obtain another inclusive system from
that of [l2] if we (a) adopt the same formation rules that we formulated for
the System L, accordingly modifying our understanding of the principles
that we retain, as referring to the standard closures of wffs of the form
specified, (b) drop *102, which now is inconsistent with the definition of
'theorem', and (c) replace *101 with the following two principles:

*101α. If (a)(φ Z)ψ)Z) (φD (/3)|ψ) is wf, then its stcl is a theorem.

*101b. If (a)(φ D ψ) => ((a)φ D (a)ψ) is wf, then its stcl is a theorem.

Observe that in this new system *103 is automatically restricted as in [14]
by the new formation rules. Except for the different treatment of the
standard closures of tautologies, the resulting system still has one more
principle or metaaxiom than the System L, but its much greater simplicity
of development may make it didactically preferable to the latter. Both as it
stands, and as further modified by replacing *100 with the first three meta-
axioms of L—whereby all axioms, as distinct from metaaxioms, are made
independent—this system is hereby proposed as yet another inclusive sys-
tem, with distinct advantages of its own. The system L is obtained there-
from by replacing *101b with the more powerful MA5y and dropping *103.

Mention should be made here of other inclusive systems that have been
proposed, which allow variables to occur free in lines in derivations within
a syntax whereby from such formulas no closed formulas not valid in the
empty domain can be derived. In order to keep our subject within bounds,
we will not here discuss the merits of thus countenancing free variables in
an inclusive system.

The system by Hailperin [7] referred to above was itself a simplifica-
tion and improvement of an earlier system by Mostowski [ll]. In the latter,
formulas with free variables were admitted as lines in derivation and con-
strued so as to be valid in the empty domain. The proof of formulas not
valid in the empty domain was prevented by a suitable restriction on the
use of modus ponens. An awkward feature of Mostowski's system was the
provision whereby vacuous quantifier occurrences could be always elimin-
ated, on the semantical ground that the latter should be regarded as always
superfluous. Thereby the quantification of a false statement was construed
as false for the empty domain. This necessitated the sacrifice of the prin-
ciple of extensionality.11

In [δ], Hintikka used an inclusive system countenancing free variables
in the formulas appearing as lines in derivation, construing wffs with free
variables as valid in the empty domain. The system has no axioms, but six
rules of equivalence transformation, formulated in terms of mutual re-
placeability of wf parts.
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In [17], Schneider proposes an inclusive system with identity in which
all tautologies and all formulas patterned in accordance with one or the
other of two axiom schemata are axioms. Further, the system has six
rules of derivation. Formulas with free variables are admitted as lines in
derivation and construed as valid in the empty domain.

In the inclusive systems considered so far which countenance free var-
iables in the lines of derivations, wffs with free variables are theorems,
and are regarded as valid in every domain if and only if their closures are
theorems (and valid in every domain), though the authors differ somewhat
in the semantical analysis of such wffs. (In the system of [δ], a wff φ is a
theorem, or demonstrable, if it is transformable by the primitive rules in-
to φ v ~ 0.) By contrast Hintikka in [9] and Lambert in a paper [10] which
is forthcoming in the Notre Dame Journal of Formal Logic at the time when
this is written propose systems of first order logic with identity, counten-
ancing free variables in lines of derivation, but in which not all formulas
with free variables whose closures are theorems are themselves theorems.
Thus in both systems (Fx v ~Fx9 and 'x = x* are theorems, but
'Fx^> (ly)Fy' and Όy)y = # ' are not. The rationale for this distinction
among formulas whose closures are theorems is that the free variables in
them are construed as place markers for individual constants, or names,
which need not have denotation. (Hintikka actually uses different symbols
for such place markers and for bound variables.) The merits of such an
approach, and more specifically the completeness of these systems, can be
only determined in the context of a semantics for non-referential names
fully stipulating which statements containing non-referential names are to
be regarded as true and which as false. Though they discuss the use of
non-referential names in ordinary language at some length, both authors
fail to furnish their respective calculi with such a semantics. If 'Pegasus =
Pegasus' is to be regarded as true by being construed as synonymous with
some such statement as 'if there is such a thing as Pegasus, then it is
identical with Pegasus', one may just as well regard 'Pegasus eats daisies
^ (3x)x eats daisies' as true by analogously construing it as synonymous
with 'if there is such a thing as Pegasus, then if it eats daisies, there is
something that eats daisies'. And the same remark applies to statements
of the form of their paradigm non-theorem ζ(ly)y =x\ But more of this in
some later paper.

Hintikka's system in [9], which is clearly derived from that of [δ], has
no axioms, and only three rules of equivalence transformation for the part
that does not include identity. But this economy of the primitive apparatus
is to some extent only apparent. To begin with, Hintikka's first rule lumps
together all pairs of tautologically equivalent wffs with the same free var-
ables as consisting of two mutually replaceable wffs. For a fair compari-
son, as regards economy of the primitive apparatus, of a system containing
such a redundantly strong rule with the System L, one should first modify
the latter by replacing its first three metaaxioms with a single one assert-
ing the standard closures of all tautologies to be axioms. Even after this
change, the System L appears to have one more principle than that part of
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Hintikka's which does not include identity, for it has three metaaxioms and
one rule of derivation versus Hintikka's three rules. But Hintikka's rules,
unlike modus ponens, serve only for equivalence transformations, and are
hence, as such, not adequate for all derivations from premises. Implica-
tion, as distinct from equivalence, in a syntactical sense, is introduced by
Hintikka by definition as follows: ζΦ implies ψ* means fφ is equivalent to
φ ψ*. But thereby, in effect, an additional rule of derivation is adjoined to
those of equivalence transformation, authorizing the dropping of the left
hand conjunct of a conjunction.

§4. Some Fundamental Metatheorems of L. We will refer to sfs that
are axioms by virtue of MAI, MA2, MA3, MA49 or MA5 respectively as
MAI axioms, MA2 axioms, etc. Analogously, with reference to metatheo-
rems asserting sfs of a specific form to be theorems, we will speak of MT1
theorems, etc.

By definition, any sf is a truth-functional compound of one or more
universal sfs. Thus viewed, sfs may be tautologies, or some of them may
tautologically imply another. The prefixless among our MAI, MA2 and MA3
axioms are known to constitute with modus ponens a complete primitive
basis for the truth-functional calculus. Hence we record as our first meta-
theorem:

MT1.
a. Every tautological sf is a theorem.
b. If an sf is tautologically implied by sfs χlyχ2,..., χn, then it is de-

rivable from them.

Definition. If φ is an sf derivable from χ 1 , χ 2 , . . . , χn, by MTlb, we
will say that it is t-derivable from them.

We next record:

MT2. If(a1)(a2)...(an)(φDψ) D ((ft)(β3.. . ( β j φ => (r1)(y2) . ΛΎn) ~ ? .

Ύ
-*ψ) is an sf in which the formulas (a1)(a2).. ,{an), (β^iβz). . ,(βm) are
Oίn

standard prefixes, and in which no yf is otj for a j < i, then it is a theorem.
Note, that, for the hypothesis in MT2 to be satisfied, every variable free

in φ must be free in ψ, i.e. each β{ must be α/.for some j . Note further that
the hypothesis of MT2 may be satisfied if, as a special case, γ{ is a{ for
every i. The formulas said to be theorems by MΎ2 are MA4 axioms if
n = 1 and m = 0, and a look at MA4 and MA5 will make it clear that they are
theorems if n = 1 and m =1. Before proving MT2 for the general case let
us note the following corollaries that follow from it immediately:

Corl-MT2. If(aι)(a2). . . ( Q » ) ( P I / / ) is an sf such that {a1)(a2). ..{an)ψ

is the stcl of ψ and (j3i)(/32). (βm)Φ is the stcl of φ, then any sf

(A)(Aί)...(^)0D(r1)(r2)...(yjJiJ..> Ψ
Oil <*2 Q-n

in which no yi is α* for aj<i is derivable from it.
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Cor2-MT2. If {a1)(a2)... (an)(φ => ψ) is an sf such that (αi)(α2) (<*») Ψ

is the stcl of ψ, then any sf{γι){γ2).. - ( V β ) ^ ^ - - ^ Ψ in which no y, zs

Qfy /or aj<i is derivable from it and the stcl of φ.

Proo/ o/ MΓ2. For n = 0, MT2 theorems are MT1 theorems. Hence to
prove MT2 by induction it suffices to establish that for any k ^ 0, if MT2 is
true for n = k, then it is true for n = k + 1. Let us therefore assume that
MT2, and hence its corollaries hold for n = k ^ 0, and let us consider an sf
as specified in MT2 and in which:

Case 1. an = ak+ί occurs in φ, i.e0 is βm. Then, if ζ is a variable
alphabetically subsequent to any in 0 or ψ:

(i) {aι)(aΛ)..Xak)γζ)[{a^1)(φ-Dψ)^ ((βJΦ^^ψ)]^

[(ak+1)(φoψ)z> (C)((ftJ0=>^*)]j

is an MA4 axiom;

(ii) (a1)(a2)...(ak)(ζ)[(ak+1)(φ^ψ)^ ^Φ^^ψ)]

is an MA5 axiom;

(iii) (α2)(α2)...(^)[(ζ)((βjφ=)-^-ψ)D ( ( β J φ D ( r , + 1 ) ^ ψ)]

is an MΛ4 axiom;

(iv) (a1)(a2)..Λak)\(ak¥l)(φ^ψ)^ (ζ)((βm)φ^—ψ)]

is a theorem by (i), (ii), and Cor2-MT2 for n = k;

(v) (flfi)(αa)...(α ik)(^+1)(0Dψ)D (α1)(αa)...(αA)(ζ)((j3j0D-^-ψ)

is a theorem by (iv) and Corl-MT2 for w = &.

(vi) (α1)(αa)...(αΛ)(ζ)((j3 l l l)0D-^)D (^)(α2).. .(^)((/3 J φ D ( r ^ ) 2 ^ 1 ψ)

is a theorem by (iii) and Corl-MT2 for n = k.

(vi i)(α 1 )(α a ). . .(α A )((βJψD(y i k + 1 )^ ψ) ^ ((β.Xft).. . (β jψ ^

(y1)(y2)...(y.)(r,+1)f
i^..A^±i ψ)

is a theorem by MT2 for w = k;

(viii) ( ^ ( ^ . . . ( ^ ( ^ ( p ψ) D ((β2)ω...(fc)P(y1)(y2)..ίWω
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is t-derivable from the theorems referred to in (v), (vi), (vii).

Case 2. an = α&+i does not occur in 0. Then:

(i) (βl)(αa). .Λσk)[(σk+1)(φ ^ ) D ( P (γk+1) ^ψj\

is an MA4 axiom;

(ii) (aι)(aJ..Λak)(ak+1)(φ^ψ)^ (ajiaj.. .((**)(*=> (γk+1) ^^ ψ)

is a theorem by (i) and Corl-MT2for n = k;

(iii) (aJM. . . ( α i p ( n + 1 ) ^ ψ ) =>(θi)Oa). .Λβm)Φ^(Ύi)(Ύ2). ..(Yk)

is a theorem by MT2 for n = k;

(iv) (αxXc^)... (c^)K+1)(0 D ψ ) 3 ((/3i)(j3a)... (is J 0 D (nXra)... (y*)(n+i)

is t-derivable from the sfs referred to in (ii) and (iii)o

The result of changing the order of occurrence of the quantifiers in the
prefix of an axiom is a theorem, i.e.:

MT3. If{ax){a2)... (α«)φ is an axiom, then every sf(β1)(β2). . .(βn)Φ is a
theorem.

Outline of proof. If the two formulas referred to in the metatheorem
are sfs, clearly, every βi is aj for some j , and conversely. Let (ζ1)(ζ2)
. . .(ζn) be a standard prefix whose variables are alphabetically subsequent

to all those of φ. Then, by virtue of Cor2-MT2, {ζ1)(ζ2)... (ζ^)^ 1 ~ . . β ~ -
P l P2 Pn

(φ D φ) clearly is derivable from appropriate MAI, MA2, and MA3 axioms,

and according to Corl-MT2 ( ζ j ί ζ j . . . ( ζ » ) ^ ^ - . . .η*-φ ̂  (ft)(j8a). Λβn)φ is
Pi P2 P»

derivable from it. If the hypothesis of the metatheorem is satisfied, the
antecedent of the latter conditional obviously is an axiom, and its conse-
quent then is a theorem derivable from it and its antecedent by modus
ponens0

Note that the axioms are MT3 theorems wherein α, = βi for every i.
MT3 theorems differing from MAI, MA2, MA3, MA4, or MA5 axioms at
most by the order of occurrence of the quantifiers in their prefixes will
hereafter be referred to as MT3-1, MT3-2, MT3-3, MT3-4, or MT3-5 the-
orems respectively.
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MT4. If

(δ^δa).. . (δi) ̂ a^aj... (an)(φ => ψ) => ((β1)(β2)... (βm)φ => (y j fo ) . . . (r»)

zs an sf in which all variables m(j31)(j32)... {βm) occur in ( α i ) ( α 2 ) . . . (an) in
the same order, and in which no y, is aj for a j<i, then it is a theorem.12

As in the case of MT2, the following corollaries may be conveniently
used without circularity in the proof of MT4 itself:

Corl-MT4. If (bx)(b2)... (δ i )(α 1 )(α 2 ) . . . (an)(φ => ψ) and

(δjίδ,)... (δύ((βi)(βj... (β m)Φ => (ri)(r2)... (y«) ~J f . . .^ψ)

are sfs such that all variables in(β1)(β2)... (βm) occur in (aι)(a2)... (α» ) in
the same order, and such that no y, is aj for a j < i, then the second is de-
rivable from the first.

Cor2-MT4. If(a1)(a2)... (an){φz>ψ) .andiβjiβj.. .(βm)Φ are sfs where-
in all variables in (βi)(βz) - - - (βm) occur in (aί)(a2)... (an) in the same order,

then any sf (γ^iy^... (yn)^ SJΓ . - ^ Ψ in which no yt is otj for aj<i is de-

rivable from them.

To see how Corl-MT4 follows from MT4f observe that for the case 1 =
0 it follows immediately from it, and that Cor1-MT4 for £=0 can be ap-
plied to the MT4 theorems themselves. Cor2-MT4 of course follows im-
mediately from Corl-MT4 for ί = 0.

Outline of the proof of MT4. The proof of MT4 for £= 0 is the same
as that of MT2, except that wherever in the latter reference is made to an
axiom, in the proof of MT4 for £ = 0 the reference instead is to the corre-
sponding MT3 theorem, and wherever in the proof of MT2 appeal is hypo-
thetically made to the authority of MT2 or its corollaries for n= k9 in the
proof of MT4 for 1= 0 the appeal instead is correspondingly to MT4 for
1=0 and n = k, Corl-MT4 for i = 0 and n = k, or to Cor2-MT4 for n = k.ls

With the proof of MT4 for £ = 0, also Corl-MT4 for £ = 0 and Cor2-MT4 are
established. For £> 0, n = m = 0, any MT4 theorem clearly is derivable
from the appropriate MT3-1, MT3-2, and MT3-3 theorems in virtue of
Cor2-MT4. Assuming therefore MT4 and Corl-MT4 to be established for
£ = 0 and for n =0 ^ £, and Cor2-MT4 hence also to be established, to com-
plete the proof of MT4 by induction it remains to show, on that basis, that,
for any k ^ 0, if MT4 holds for n = k, then it holds for n= k + 1. To this
end, let us assume MT4 to hold for n = k and consider any sf such as is
specified in MT4 and in which:

Case 1. an = ak+ι occurs in φ9 i.e. is βm. Then, if ζ is a variable for-
eign to 0 and ψ:



A RECONSTRUCTION OF FORMAL LOGIC 143

(i) (61)(6j...(β1)(βI)(e ϊ)...(β*)|(ζ)[(aSk+i)(ψDψ)D ((/3«)φ=>JL ψ)] =>

[(αfe+1)(^D^),D (θ((/3«)Φ=>^-ψ)]|

is an MT3-4 theorem;

(ii) (β1)(βa)...(δ|)(β1)(ca)...(αJk)(ζ)[(fl5H.1)(ψ 3 ψ ) = ( O 3 - ) * 3 - ^ - * ) ]

is an MT3-5 theorem;

(iii) (δχ)(δ2)... (βtXcJίo,)... (o») Γ(ζ)((|S.)ψ ^ - i - ψ ) D ((j3«)ψ3 ( y ^ x ) 2 ^ ) ]

is an MT3-4 theorem;

(iv) (δχ)(δ2)... (δ£)(αχ)(α2)... (ak)[(ak+ι)(Φ ?Ψ)=> (θ((/3«)*=> ^ ~ ψ)]

is a theorem by (i), (ii), and Cσr2-MT4;

(v) (βJCδ,)... (δiXoxXα,).. .(α*)(flk+i)(0 => Ψ) 3 (δχ)(δ2)... (6i)(ai)(a2)... (ak)

is a theorem by (iv) and Corl-MT4 for £ = 0;

(vi) (δx)(δ2)... (β£)(β l)(β a).. .(oA)(ζ)(θ«)ψ=> ^ - ψ) ^

(δχ)(δ2).. . (6 £ )( a i )(eJ. . .(β*)((/3.)0 D(yA+1) ^ ^ ψ)
ak+i '

is a theorem by (iii) and Corl-MT4 for ί = 0;

(vii) (δjίδ,).. . (6£) RαxKαa).. .(αA)((j3.)0 D(y i k + 1 ) 2 i ± L ψ) ^ ((Λ)O a ). . . (βm)Φ

is a theorem by MΓ4 for w = k;

(viii) (61)(6a)...(61)[(αι)(αa)...(^)(α5k+1)(0 D ψ) => ((β1)(β2).. .(jSjψD

(yi)(y.)...(n)(n.+i)?^...p^ψ)l

is t-derivable from the theorems referred to in (v), (vi), and the one that,
according to Corl-MT4 for & = 0, can be derived from that referred to in
(vii).

Case 2. an = otk+i dc^s not occur in 0. The proof that on the hypothesis
that MT4 holds for n =k the sf is provable in this case parallels the corre-
sponding part in the proof of MT2 and that in the proof of MT4 for 1=0 in
the same way as it does for the case just considered.
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We have already had occasion to call attention to the fact that the stcl
of any wff ψ ̂  ψ is a theorem. More in general we have:

MT5. If φ is a tautological wff, then every closure of it is a theorem.

Outline of proof. From what is known in truth-functional theory, it can
be easily shown that in a system P with L's vocabulary and formation rules,
admitting open wffs as lines in derivations, using L's MAI, MA2, and MA3
axioms minus their prefixes as axioms, and modus ponens as sole rule of
derivation, there exists a proof of every tautological wff in which modus
ponens is used only on wffs Xi D X 2 and χ x such that every variable free in
Xi is free in χ 2 . Such a proof in P is transformed into a proof in L ab-
breviated by authority of MT3 and Cor2-MT4, if we replace the last wff
therein with any of its closures and each of the other wffs therein by an ap-
propriate closure of it.

It may be noted that MTly MT3-1, MT3-2, and MT3-3 theorems are
MT5 theorems.

MT6. If(a1)(a2)...(an)φ^(β1)(β2)...(βn)^^...^ Φ is an sf, then it

is a theorem.

Proof* Let δ ^ δ 2 , . . , δw be n distinct variables foreign to 0 and dis-

tinct from all the ft. Then (a1)(a2)... (an)(φ => φ) and (δi)(δ 2 ).. . (δ») — — . . .
Qι a2

— (φ => φ) are MT5 theorems, and the two sfs (α1)(α'2).. .(αw)0=} (δi)(δ2)...

( δ B ) ^ ^ . . Λ ί » and(6 1 )(6,) . . .(6.)^5l . . . .^-0D( / 5 1 )( |3 s l ) . . .(/3,) | i^ . . .
(Xι &2 ®n <Xi 0ί2 O-n # i 0ί2

n

-r~ φ are respectively derivable from them according toMT1-4. (ax)(a2)...

(<Xn)Φ^ (j3i)(j32) . .(β n ) ——...— φ is ί-derivable from the latter two con-
Q>ι €ί2 0ίn

ditionals.
MT7. If (a1)(a2)..Λctn)φ::)(βι)(β2)--Λβn)Φ is an sf, then it is a

theorem.
Outline of proof. We will prove MT7 for the case in which the prefix of

the consequent of the conditional specified is obtained by replacing a seg-
ment (α/)(α/+i). .•(#*) (l^j <k ^ n) of the prefix of its antecedent with
(<Xk)(otj)(α; +i) . . .(&k-i) (in other words, by moving one of the quantifiers any
number of places to the left, and leave all others in their original order). It
is clear how, in the general case, the antecedent and the consequent of the
conditional to be proved can be linked through a chain of conditionals each
of which is a theorem by MT7 for the special case just described. Let then,
in a conditional such as is specified in the metatheorem, (βι)(β2)... (βn)Φ be
((Xi)(a2)... ( α ; _i)(ffjk)(α, )(Qf; + i ) . . . ( ^ - i ) ( ^ + i ) ( ^ + 2 ) . . . (α?«)0,
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where i < j < & < nβ Then if γ is foreign to 0:

(i) (αi)(<*a). .(α;-i)(y)U/)(α, +1). • ( ^ - i ) [ ( ^ ) ( ( ^ + i ) ( ^ + 2 ) . . .(α»)0 D

(αΛ+i)(αrjfe+a).. Λ<xn)φ) => ((αA)(flfA+1).. .(α»)0 => (^+1X^+2).. .(α«)^- 0)]

is an MT3-5 theorem;

(ii) (αxXtfa)... (ak)((ak+i)(ak+2)... (an)φ => (α*+i)(α*+2)... (αw)0)

is an MΓ5 theorem;

(iii) ( Q Ί ) ( ^ 2 ) . . . (a/.i)(y)(cif;)(«;+i).. .(α*-i)((α*)(α*+i).. .(α»)φ=> (α A + 1 )(α Λ + a )

...<«->£•)
is a theorem by (i), (ii), and Cor2-MT4.

(iv) (α?i)(α2)... (an)φ => (αi)(α?2). ( « / - I ) ( ^ ) ( « ; )(Q? / + I). . . (α^-i)(^+ 1)(θf f e + 2)

..Λa9)φ

is a theorem by (iii) and Corl-MT4.

As an illustration, here is the proof of an MT7 theorem f or n =2, as
abbreviated by appeal to earlier metatheorems:

(z) (#) [ {y) (Fxy D Fxy) => ((y) FΛΓ^ => JF1**)] (1)

W(3;)(FΛry =5 Fxy) (2)

WWWy)^^ D ^ ^ ) (3)

(x)(y)Fxy z> W W ^ (4)

(1) is an MT3-5 theorem. (2) is an MT5 theorem. (3) is derivable from (l)
and (2) by Cor2-MT4. (4) is derivable from (3) according to Corl-MT4.

From Cor2-MT4, MT6, and MT7 clearly follows:

MT8. If φ ̂  ψ and φ are wffs in which every variable free in φ is free
in ψ9 then any closure of ψ is derivable from any two closures of φ^ψ and
φ respectively . ( C / . * 1 1 Ί , [12], p . 90)

MT9. If(oι)φ'D — φ is a wff in which β is not bound in φ, then every
closure of it is a theorem. (Cf. *103, [12], p. 88.)

Proof. If the hypothesis of the metatheorem is satisfied, any closure

of (a)(φ 15 φ) D \(a)φ D - φ) is an MT3-5 theorem, and any closure of

(a)(φ D 0) is an MT5 theorem. Any closure of \{a)φ^> - φj is derivable from

two sfs such as have been just mentioned by MT8.

MT10. If (a)φ D (3 a)φ is an open wff, then every closure of it is a the-
orem.
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Proof. The wff in question being open, let β be free in it. Then:

(i) the closures of ((α)0 =>-ψ) => [ ( - 0 =>(3α)0) => ((a)φ =>(3α)0)]are MT5
theorems;

(ii) the closures of (a)φ^> -φ are MΓP theorems;

(iii) the closures of (a)~φ =>- ~ 0 are MT2 theorems;

(iv) the closures of ((a) ~ 0 => - ~0) => (- 0 => (3 a) φ) are MΓ5 theorems;

(v) the closures of -φ => (3 α)0 are theorems by (iii), (iv) and MΓ8.

(vi) in virtue of MT8, the closures of {a)φ^(la)φ are each derivable
from three sfs as specified in (i), (ii) and (v), respectively, and hence
are theorems.

Observe that the last step made as an abbreviation by authority of MT8
in the object-language proof indicated above would not be authorized by that
metatheorem if β were not free in 0. Sfs (a)φ ^>(3a)φ are not theorems
in L.

The object-language proofs indicated in the proofs of the next three
metatheorems, which metatheorems we will have occasion to use later, may
serve as illustrations of the analogy between the proofs of familiar
theorems in L and in traditional systems.

MTU.

a If (αKxr X!2 -.. X,) => ((<*i)~ Xi' * M J X«) i s an s/> then u

is a theorem.

b. If((a^L)%ι'(a2)χ2'... (αjx*) D ( α ) ( ~ Xi' ~X2

# * ~X«) i s a n sf>

then it is a theorem.

We will prove MTlla and MTllbfor n=2. Their generalization pre-
sents no difficulty.

Proof MTlla for n = 2. Ii (a)(\x X2) => ((ax) — Xi (α2) — X2) is an sf

(observe that then a must occur both in χ x and χ2)> then:

(i) (α)[(Xi X2)
 D Xi] is an MT5 theorem;

(ii) (α)[(χ x χ2) D χ 2 ] is an MT5 theorem;

(iii) (αf)(χ1. χ2) D ( α j - 1 \x is a theorem by (i) and Cor2-MT4;

(iv) (α)(Xi χ2) D (α2) - ^ χ 2 is a theorem by (ii) and Cor2-MT4;
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(v) (α)(χi χ2) ^ ((«i)— Xi%(a2)— X2) is ί-derivable from the theorems

referred to in (iii) and (iv).

Proof of MTllb for n = £. If ((αJxi (α2)χ2) D ( ^ ( " X I ' " * * ) is an sf

and 0 is foreign to it:

(i) (j3)((αi)χi=> ^-Xi) is an MT9 theorem;

(ii) (j3)((α2)χ2D — χ 2 ) is an MT9 theorem;
^ Qf2 '

(iii) (β)Γ((α 1 )χ 1 3-^χ 1 )3 |((α 2 )χ 2 3-^χ 2 )3[((α 1 )χ 1 (α2)X2)^

is an MT5 theorem;

(iv) (jS)[((α1)χ1 (αa)χa)z) (-£χ i.JLχ a)] => [((^i)Xi'(^2)x2)^ ( ^ X ^ ^ X . ) ]

is an MT3-4 theorem;

(v) The consequent of the last conditional, which is the sf to be proved, is
derivable from the theorems referred to in (i), (ii), (iii) and (iv) by
virtue of MT8.

Not all sfs {a)(φ ψ) D ((a)φ ψ) are theorems in L; if they were, we
could derive ((χ) (FΛ: V ~ Fx) (3;y) (Gy v ~ Gy)\ which is not valid in the
empty domain, from ζ(x)[{Fxv ~ Fx) ( 3 3 ; ) ^ v ~ ^3;)]', which is valid in
every domain and a theorem. However, the closures of open wffs
(a)(φ ψ) 3 ((a)φ ψ) are provable in L (as are those of all open wffs that
are theorems in traditional systems). Moreover the converse conditionals
{(a)φ ψ) ^(a)(φ-ψ) without free variables, as well as the closures of
open wffs of that form are theorems in L, i.e., we have:

MT12. If ((a)φ ψ)^> (a)(φ ψ) is wf, then every closure of it is a

theorem.

Proof. If ((a)φ- ψ) o (a)(φ ψ) is wf and β is foreign to it, then:

(i) the closures of (β) {{a)φ^ -φ) are MT9 theorems;

(ii) the closures of (β)\ί(a)φ^-φ) => \((a)φ . ψ)^>βφ ψ\] 1 are MT5 the-
( v a. f L> / \a /J \

orems;

(iii) the closures of (β)U(a)φ ψ) z> (~φ ψ)Ί are theorems by (i), (ii) and

MT8;
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(iv) the closures of ((a)φ ψ) 3 (a)(φ ψ) are theorems by (iii) and Corl-

MT4.

MT13. If (Φ^(cx)ψ) ^ (a)(φ^>ψ) is wf, then every closure of it is a
theorem.

Proof. Ίi the formula specified is wf, and β is foreign to it:

(i) the closures of (β)\((a)ψ => -ψ) => \(φ^(a)ψ) D (φ=> - ψ)\ > are MT5

theorems;

(ii) the closures of (β) ((a)ψ z) - ψ) are MT9 theorems;

(iii) the closures of (β)[(φ =>(α)ψ)=> ( ψ ^ - ψ ) ] = > [(φ =>(<*)Ψ)=> (α)(φ => ψ)]

are MT3-4 theorems;

(iv) in virtue of MΓS, every closure of (φ=> (α)ψθ => (a)(φ ^ ^ is derivable
from three sfs as specified in (i), (ii) and (iii) respectively.

Finally, in this section, we record the metatheorem of deduction, whose
proof is the same as in traditional systems.

MT14. If ψis an sf derivable from sfs φl9 φ2, , Φn, then φn

 D ψ is
an sf derivable from φu fo,..., φ w . x , and Φi =̂  (Φ2

 D ( . . . D (Φ« D Ψ))- )
is a theorem.

§5. Derivations From Existence Assumption Forms. Probably the
most commonly assumed non-logical premises are those to the effect that
there are objects. Such assumptions are made as a matter of course in
argumentation outside specific axiomatic theories, and explicitly in the
latter, at least when they are not fully formalized. In geometry, e.g., it is
assumed that there are points (if 'to be a point* is taken as one of the prim-
itive predicates), as when it is axiomatically asserted that there are at least
three points. In other cases, a non-empty domain D is postulated, as e.g.
in group theory or in Boolean algebra. When the latter is done, 'to be in D}

is really taken as a primitive predicate, often explicitly used in every
statement, or at least in the axioms, when the theory is not formalized; but
in formalized theories, by way of abbreviation, often the non-empty domain
D is taken as the universe of discourse, i.e. is assumed to constitute the
whole universe, and then its non-emptiness has traditionally be implicitly
assumed in the logic used rather than explicitly postulated.14

The system L has no theorems which become statements with existen-
tial import if the pss therein are given an interpretation as predicates, and
in its applications any premise to the effect that the universe is not empty,
or that there are objects of a specific kind must be explicitly stated. We
will therefore consider derivations from assumption forms standing for
such premises. The most general of such premises, to the effect that there
are objects of some kind or other in the universe, can be expressed by state-
ments of the form of sfs (9 a)(χv ~ χ), as the sf '(3#)(i^ v - Fx)\ We will
examine derivations from such assumption forms next.
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MT15. If (3 a)(χv ~χ)is an sf, then the closures of any wff (β)φ^(lβ) φ
are derivable from it.

Proof. If {β)φ => (3/3)0 is an open wff, then its closures are MT10 the-
orems. If (3αΉχv ~ X) and (β)φ^ (3 0)0 are sfs, let γ be foreign to both.
Then:

(i) (r)| 7 (0* ~ 0 ) D \ ~ (λv ~ χ)lis an MT5 theorem;

Ύ

(ii) (y) - (0° ~ 0)D(α) ~ (xv ~ χ) is a theorem by (i) and Corl-MT4;

(iii) (( β)φ (β) ~ φ)^> (r)^(φ ~ 0) is anMΓIi theorem;

(iv) ((β)φ (β) ~φ) => (a) ~ (x v ~ x) is ί-derivable from the theorems re-
ferred to in (ii) and (iii);

(v) (3α)(χv~χ)=> {(β)φ^ (3/3)0) is ^-derivable from the theorem re-
ferred to in (iv);

(vi) the antecedent of the conditional referred to in (v) is our assumption
form, and its consequent is the sf to be derived from it; hence the
latter is derivable from the former.

By virtue of MT15, obviously, if (β)φ is any theorem, then (3/3)0 is de-
rivable from any sf (3 α)(χv~χ). Thus, e.g., since every sf (/3)(χv~χ)is
an MT5 theorem, any sf (3 j3)(χ v~χ), as '(lx)(Gxv ~ Gx)', is derivable from
any other, as ((lx)(Fxv ~ Fx)\

MT16. If(β)(φ ^ψ) => ((0)0 ^ψ) is wf, then every closure of it is de-
rivable from any sf (3o)(χv~χ). 1 5

Proof. If the hypothesis is satisfied:

(i) the closures of ((β)φ*~ψ) ^ (β)(φ'~Ψ) are MT12 theorems;

(ii) the closures of (β)(φ ~ψ) D (lβ)(φ ~ψ) are derivable from any sf
(3α)(χv~χ) according to MT15;

(iii) the closures i(β)φ ~ψ) ^ (3/3)(0 ~ ψ) are each derivable from two
closures of conditionals as specified in (i) and (ii) respectively and
the appropriate MT3-3 theorem in virtue of MT8, and hence are de-
rivable from any sf (3α)(χ v ~χ);

(iv) the closures of (β)~~(0 D~~;//) D {{β)φ ̂ ψ) are each derivable from
the closure of a conditional as specified in (iii) and the appropriate
MT5 theorem in virtue of MT8, and hence from any sf (3α)(χv ~x);

(v) the closures of (β)(φ ^ψ) ^ (β)~~(φ^> ~~\p) are each derivable from
the appropriate MT5 theorem by Cor2-MT4;

(vi) the closures of (β){φ^)ψ)Z) ({β)φ^ ψ) are each derivable from two
closures of conditionals as specified in (iv) and (v) respectively and
the appropriate MT3-3 theorem in virtue of MT8 and hence are each
derivable from any sf (3 α)(χv ~χ).
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MT17. If (αi)(α a)...(α.)(0=>ψ)=>((β x)(j3 a)...(β«)φ=>(6 ι)(δ a)...(6 J | )

— - a . — ψ) is an sf, then it is derivable from any sf ( 3 α ) ( χ v ~ χ ) .

Corl-MT17. If (ax)(a2)... (an){φ => ψ), (βx)(β2)... (βm )Φ => (δjίδg)... (δA)
δi δ2 δi

. . . — ψ are sfs, then the second is derivable from the first and any
Ύi '2 ft

sf (3<*)(xv~x).
Cor2-MT17. If (ax)(a2)... (an)(φ =>ψ), (βi)(β2) . Λβm)Φ, and (δxKδ,)...

(δj|) — — - . . . — ψ are sfs9 then the last one is derivable from the first two
Ύx Y2 Ύt

and any sf (3α)(χv~χ). (C/.*111 in [12], p. 90.)

Outline of proof. In the sf specified, clearly the βi and the y, together
make up the a\i. Without loss of generality we may assume that the βi occur
in (βiKftO. . .(βm) in the same order as they do in (ax)(a2). . . (α»), that
further the order of occurrence of the δ, in (δx)(δ2). . . (δ*) is such that the

Yi occur in ^ ^ . . .~^(δ!)(δ2). . . (δ )̂ in the same order as they do in (ax)

(a2). . . (an), and finally that no δ, is αy for a j < z (since if the sf in question
does not satisfy these conditions, clearly it is t-derivable from one that does
and the appropriate MT6 and/or MT7 theorems). The proof then proceeds as
that of MT4 for I = 0, except that a third case must be added to the two con-
sidered there (following the pattern of the proof of MT2) in the second part
of the proof by induction. For now an = ctk+i may occur in 0 (i.e. be βm) and
not in ψ. In this case: (ax)(a2)... (ak)[(ak+ι)(Φ ^Ψ)^> ((βm)φ => ψ)] is de-
rivable from our assumption form (3 α)(χv~χ) according to MT16; in virtue
of Corl-MT17 for the case n= k, the desired sf clearly is derivable from
the assumption form and from the sf just said to be derivable from the
same.

It is now fairly clear, and in the next section we will establish rigor-
ously, that, used in conjunction with a general assumption having only the
import that the universe of discourse is not empty, L has the force of tra-
ditional systems of 1st order logic. But L has that force also with more
specific assumptions, such as that there are objects of such-and-such a
specific kind or that there are at least so-and-so many objects of such-and-
such a kind, or that there is a unique object of such-and-such a kind, etc.
We have in fact:

MT18. If (30)(χv~χ) is an sf, then it is derivable from any sf (3 a)φ.

Proof. If (3 0)(χv~χ) is an sf, and if γ is foreign to φ and x :

(i) (y)Π- ~ ( χ v ~ χ ) =) ̂  ~ φ ] is an MT5 theorem;

(ii) (r) £ ~ ( χ v ~ χ ) => (α)~0 is a theorem by (i) and Corl-MT4;
p

(in) (β)~(χv~χ) 3 (a)~φ is t-derivable from the last theorem and the
appropriate MT6 theorem;
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(iv) (3α)03 (3β)(χv~χ) is ί-derivable from the theorem referred to in
(iii), and hence is a theorem;

(v) by (iv) clearly (3 β)(χv ~χ) is derivable from (3α)0.

§6. The Completeness of L. For the sfs of L, we adopt the traditional
concept of validity in a non-empty domain: an interpretation of a k -place
ps λ in a domain Dis a class of ordered pairs «λ,θ>, t>, where t is the
truth-value truth, and 0, in the ordered pairs <λ,0>, is an ordered
k -tuple of objects in D (thereby there being only one interpretation, the
null-class, of any ps in the empty domain); under an interpretation in a non-
empty domain D of each of its pss, a wff is in accordance with familiar
rules associated with exactly one of the two truth value t and/1 6 (becomes
a true or a false statement) for every assignment of a value in D to each of
its free variables; an sf is valid in a non-empty domain D if and only if it
becomes a true statement under every interpretation of its pss m D.

Definition. An sf valid in every non-empty domain is said to be
existentially valid.

MT19. If ψ is an existentially valid sf, then it is derivable from any
s/(3α)φ.

Proof. Consider a system S, with the same vocabulary and formation
rules as L, but admitting open wffs as lines in derivations, its rules of
immediate derivation being modus ponens and universal generalization, and
its axioms being:

(1) all wffs (~0D0) => 0;

(2) all wffs p(-pψ);

(3) all wffs ( 0 D < / / ) D [ ( ψ D χ ) = > ( 0 D χ ) ] ;

(4) all wffs (α)0 =>- 0 in which β is not bound in 0;

(5) all wffs (a)(φ => ψ) => (0 => (a) ψ).

Such a system is known to be complete in the traditional sense: every wff
whose closures are existentially valid is a theorem in it. To prove our
MT19f it suffices therefore to show that to every proof in S of an sf ψ,
there corresponds in L a derivation of ψ from any assumption form (3α) 0.
Let Xι, χ 2 , . . . , χn, in this order, be the wffs which, written in column form,
constitute a proof of an sf ψ in S, and consider a sequence of sfs
(3j8)(χv~χ), Xiτ, X2

T, •-., Xn where, for each if χ.f is a closure of χ{ and
hence χw

τ = χn = ψ. I say that in the latter sequence, every x? is either a
theorem of L or derivable in L from preceding sfs, i.e. that each χΛ, and
hence in particular χw

τ= ψ, is derivable in L from (3 /3)(χv~χ), and hence,
in virtue of MT18, from any sf (3α)0. In fact, by hypothesis, for every i,
χ{ is one of the following:

(a) an axiom of S in group (1), (2), or (3);

(b) an axiom of S in group (4);



152 GEORGE GOE

(c) an axiom of S in group (5);

(d) a wff derivable from some χ ; , x ,̂ where j ,k<i by modus ponens\

(e) a wff derivable from some χ ; where j < i by universal generali-
zation.

In case (a), χf.
f is anMT3-1, MT3-2, or MT3-3 theorem; in case (b), χ/ is

2LUMT9 theorem; in case (c), χy

f is an MT3-4 theorem; in case (d), χΛ is
derivable in L from xf,x£ and (3β)(χv ~χ) by Cor2-MT17; in case (e), χ.f

is derivable from χ .f and the appropriate MT7 theorem by modus ponens.
Thus it is clear that if we adjoin any existentially valid sf (la)φ, e.g.,

ζ(lx)(Fxv ~Fx)\ to the axioms of L as an additional axiom, the resulting
system is equivalent to traditional systems of lst-order logic, in the sense
that its theorems are exactly the closures of the theorems of those systems
(except for differences in vocabulary or conditions of well-formedness)„
Such a system may be referred to as a system of existence logic.

Let us now give more precision to the concept of validity in an empty
domain, and hence of validity in any given domain (empty or not). In
accordance with the logician's understanding of the universal quantifier,
'valid in the empty domain* may be sharply defined as follows, with refer-
ence to the familiar truth-functional interpretation of ' ~ ' and ' ^ \

Definition. An sf is said to be valid in the empty domain if and only if
under the truth-functional interpretation of '~' and ' => >, it acquires the
truth-value t when all the universal sfs that are its elementary truth-
functional components are assigned the truth-value t.

It should be noted, however, that it is quite possible, and desirable, to
define 'valid in a domain D* for sfs in a general way which is consistent
with the above definition of 'valid in the empty domain/ In fact, the rules
referred to in the first paragraph of this section, may be formulated so that
by them every universal sf becomes a true statement under the interpreta-
tion of its pss in the empty domain. To see this, it suffices to note that
when, e.g., it is said that (a)λa, where λ is a i-place ps, is true under a
given interpretation of λ in a domain D if and only if λa is under that inter-
pretation associated with t for every assignment of a value in D to a, (a)λa
becomes a true statement under the interpretation of λ in the empty domain,
for in that domain there are no assignments of values to a (no objects it
may be assigned to name).

Definition. An sf is said to be valid if and only if it is valid in every
domain {i.e. it is both existentially valid and valid in the empty domain).

As a conclusion to this article, we will next show that the system L is
complete, meaning thereby that the following metatheorem holds in it:

MT20. Every valid sf is a theorem.

To prove MT20, we will prove:

A. If every valid universal sf is a theorem, then every valid sf is a
theorem.

B. Every valid universal sf is a theorem.
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Proof of A 0 As can be determined by inspection, every axiom is valid,
and modus ponens preserves validity. Hence if two sfs are derivable from
each other, then both or neither are valid. As is well known from standard
truth-functional theory, for every sf there is a tautologically equivalent
normal alternation, Le0 a tautologically equivalent sf which may be abbrev-
iated as an alternation of one or more conjunctions of one or more
universal sfs and negations of such. Thus, since tautologically equivalent
sfs are derivable from each other according to MT1, if every valid normal
alternation is a theorem, every valid sf is a theorem. To be valid in the
empty domain, and hence to be valid, a normal alternation, as written in the
abbreviated form whence it gets its name, clearly must have at least one
alternant in which no conjunct is a negation. Let 0 be any normal alterna-
tion satisfying the latter condition, (#i)χi° (# 2)χ 2 . . . (α«)x« one of the
alternants in one of its characteristic abbreviations, and ψ the alternation
of the other alternants in that abbreviation., Then, if β is foreign to ψ, and
to each of the χ,-:

(i) ~ψ ^(θfi)χi (α 2)χ 2° . ' (oιn)χn and 0 are each ί-derivable from
the other;

(ii) ^I//D(JS)(— χx — χ2 ° . „ . ° — χw) and the conditional referred to in

(i) are each t-derivable from the other and the appropriate MTU
theorems;

(iii) (β) Γ~ ψ D ( — Xx — χ2 o. o — χ w ί | and the conditional referred to in

(ii) are each derivable from the other in virtue of MT4 and MT13.

Thus, for every valid normal alternation there is a valid universal sf from
which it is derivable. Hence, if all valid universal sfs are provable, so are
all valid normal alternations and hence all valid sfs.

Proof of B9 Since every valid sf is existentially valid, to establish B it
suffices to show that all existentially valid universal sfs (all of which are
valid, since all universal sfs are valid in the empty domain) are theorems,,
Let (a)φ be any existentially valid universal sf, and (3 β)(χv ~ x) an sf such
that a is foreign to χ and β to 0. Then:

(i) (3 β)(x v ~ x) D (a) 0 is a theorem by MT19 and MT14;

(ii) (a) [(3 β)(χv ~x) D 0] is derivable from the theorem referred to in (i)
and the appropriate MT13 theorem;

(iii) (a) [~0 3 (β)~(χv~χ)] is derivable from the theorem referred to in
(ii) and the appropriate MT5 theorem in virtue of MT8;

(iv) (αθ(β)[~ 0=>~(χv~χ)] is derivable from the theorem referred to in
(iii) and the appropriate MT13 theorem in virtue of MT8;

(v) (a)(β) [(x v ~χ) => 0] is derivable from the theorem referred to in (iv)
and the appropriate MT5 theorem in virtue of MT8.
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(vi) (<M(j8)[(χv~χ) =>*]=> | [(χv~χ)=>φ]> is an MT9 theorem;

(vii) (αf)(j3)[(χv~χ)=>φ]=)(Qf)^[(χv-χ)30] is a theorem by (vi) and
p

Cor2-MT4\

(viii) (α)Γτ (λv ~ x)=> φ\ is a theorem by (v) and (vii);

(ix) {a)% (χv~ χ) is an MΓ5 theorem;
p

(x) (α)0 is a theorem by (viii), (ix) and MT8.

NOTES

1. I use 'generalized upon' as defined in [4], p. 172.

2. This technique, of course, has been taken over by logic from mathematics, to the
development of which it has been essential, and where it has been used at least since
classical antiquity (notably in geometry). But it is not as simple, or "natural" as it
may seem to those today who have been conditioned to it since childhood; it took
mankind a long time to " s e e " it, or at least to gain self-assurance in its use (vide
Egyptian and Babylonian mathematics).

In mathematics, so-called variables are used in several ways. The procedure
described above corresponds to that employed in the proofs of identities in algebra,
as when t(x+y)(x-y) =x2—y2f is proved by deriving it from '(x+y)(x-y) =x2 + xy -xy +y2'
and other algebraic propositions. What is meant by '(x+y)(x-y)=x2-y2f as a state-
ment of course is that (x)(y)[(x+y)(x-y) =x2-y2]. But historically, the name 'variable'
was introduced in mathematics in connection with equations, rather than identities,
in two or more variables, because of the association these equations had with laws
governing physical changes. In solving or otherwise transforming equations, we may
be doing one of two different things. If the equation is directly applied to a particular
physical problem, then no variables at all are involved, only so-called unknowns.
Thus if we know that a certain stick A of 6 inches measures as much as another
stick B of 4 inches plus 3 times a stick C of unknown length, to find the length of the
latter in inches we may write down the equation '3x + 4 = 6' and solve it for x obtain-
ing '* =f\ Throughout this operation, (x' has a definite denotation, it means 'the
number expressing the length of stick C in inches'. The equation as originally
written and the final expression giving the solution are statements, and, in solving
the equation, the latter is deduced from the former. But when the solution of the
same equation is carried out as a problem in " p u r e " mathematics ζ3x + 4 = 6' and
'* = f' are not statements, for what can they possibly mean? What is really being
proved is '(x)(3x + 4 = 6 =χ-\γ. Or when the equation (4x2 -9x + 2=0' is being solved,
what is being proved in pure mathematics is the statement *(#)[4#2 -9x + 2 = 0 = (x =
2v*x = £)]'. And when '3x + 9y =6\ is being solved for x, what is being proved in pure
mathematics is i(x)(y)(3x + 9y = 6=x = 2- 3y)'. In all these cases, the transformation
of the equation amounts to an argument form, in which the variables stand for the
names or definite descriptions of numbers (the fact that in the first example the
variable turns out to have only one possible value is incidental); then, by what
logicians refer to as the theorem of deduction, a biconditional between the first and
the last line in the derivation is established as being derivable from general
propositions of arithmetic as applied to unspecific numbers; finally on the basis of
the existence of the latter argument form, it is regarded as legitimate to generalize
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upon the variables so as to get a statement. Altogether, this is anything but a
logically simple procedure, which logic ought to, and can justify in terms of forms
of arguments in which every line is a statement deduced from preceding ones. The
logical analysis of the process given above need not of course precisely correspond
to the actual train of thought of the person carrying it out.

3. An open sentence of course is not a sentence as the term is often used in logic in
place of 'statement'. As to the reasons for preferring Open sentence' to the older
term 'matrix', which goes back to Principia Mathematica, see [13], p. 90.

4. For the purpose of the above informal discussion, with no definite system to refer
to, we may say that, roughly speaking, an expression that is construed either as a
statement or as a statement form is valid in a given domain if all statements of its
form are true on the assumption that the universe coincides with that domain. The
concept will be sharpened with reference to the expressions of a particular system
in §6.

5. Cf [3], p. 140. The modifications to one of the systems in [16] which Carnap there
suggests in order to meet the above objections do not appear to yield a complete
system, i.e. one in which all well-formed formulas valid in every empty or non-
empty domain are theorems, as far as can be judged from the sketchy description of
it that he gives. Moreover, the author envisages no other method of proving state-
ments with existential import in a theory using such new logical system than by the
use of constants (or names as the author calls them, since he uses 'constant' in a
different sense). But it must be possible in a theory to postulate that there are
objects in the universe of discourse, and draw consequences therefrom, without
being able to name any.

6. [15], p. 79-80. Contrary to what might appear from the above quotation, Rosenbloom's
system in the context of which those remarks occur cannot be used or adapted for
the purpose of our reconstruction as we have outlined it in our introductory
remarks. Besides the fact that it is an axiomatic system about propositions,
individuals and properties rather than a logistic system, the assumption that there
are individuals (which in a reformulation of the system in logistic terms would cor-
respond to the introduction of constants, implicitly assumed to have denotation, in
the vocabulary) cannot be dropped therefrom without making it impossible to prove
the truth also of some statements or "propositions" valid in every domain
(including the empty one).

7. In this paper, we will not discuss the controversial question of whether it is ever
necessary or legitimate to construe the symbols occupying the place of predicates in
statement forms as variables subject to quantification.

8. Though it finds its applications in particular theories, the concept of derivation from
assumption forms definitely belongs to pure logic, where 'derivation from assump-
tion form, must be defined syntactically. In the application of the concept to particular
theories, the possible derivations from a number of fixed assumptions (the axioms
of the theory) are studied systematically. Also, in a particular theory, our pss may
be interpreted as definite predicates, (or at least one or more such interpretations
of them may be kept in mind as the important), and/or be replaced by special
symbols (such as '<')• But the dividing line between pure and applied logic is not a
sharp one, as when logic investigates such very general theories as the so-called
logic of identity, or, even more clearly so (since identity may be regarded as a
logical concept), when it investigates what we will later call Hhe logic of existence.9

Though truth-functional and quantificational logic in Principίa Mathematica
form what is there referred to as the theory of deduction, the tendency among
logicians whose lines of thought have remained close to those in that work has often
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been to stress the use of variables, subject to substitution and quantification, rather
than that of place markers, and consequently to neglect the consideration of deriva-
tions from assumption forms in pure logic. This has occasionally created the
impression that the axiomatic-logistic approach in logic, as opposed to the so-called
natural deduction approach, does not furnish a theory of deduction at all. (See, e.g.,
[1], p. 74). Actually, the import of both methods is the same. Both methods serve
to establish a theory of validity for both statements and arguments. An axiomatic-
logistic system can indeed be easily reworded so as to appear to stress deduction
the way natural deduction systems do: what are usually introduced as axioms may
instead be introduced only in the context of a rule of derivation saying that such-
and-such well-formed formulas may at any point be introduced as lines in deriva-
tions from premises. The natural deduction approach serves certain didactical
purposes since it rapidly codifies procedures well established in mathematics, and
is useful for certain particular investigations related to intuitionism, but as a
general method in pure logic, the axiomatic-logistic approach seems to this writer
to be the more basic one.

9. In [14] Quine presents his reasons for disregarding the empty domain in 1st order
calculi.

10. As the author later specifies the atomic formulas for his system, in place of 'F'
such an axiom would exhibit such a predicate as, say '(z)zε\ However, in the system
of [12] as a whole, such axioms are non-independent. As will appear from our §5,
the formulas in group 4 above, or the axioms by *103 themselves if vacuous
quantification is admitted, which are not valid in the empty domain, are derivable
from any existential assumption in a system whose theorems are valid in every
domain. Of course, already as determined in Chapter 2, Quine's system contains
non-independent axioms on account of *100.

11. Cf. the comments on [11] in [7] and [14].

12. The MT4 theorems in which n=ltm=0 are of course the MT3-4 theorems. The
well-formed by our rules among the formulas that we classified under 3 in our
discussion of Quine's *101 are MT4 theorems in which n=m-l.

13. If we did not mind having non-independent axioms, we could have adopted all MT3
theorems as axioms and saved ourselves the separate proof of MT2 and MT3. Cf.
[6].

14. Sometimes existence assumptions are introduced implicitly by the use of individual
constants which, by the logic used, are implicitly assumed to have denotation. This
is not the place to discuss the logical status of individual constants or proper names
in every day discourse or natural science. But it can be said that at least in abstract
axiomatic theories, or in such that deal only with abstract entities, as sets or
numbers, since any reference to naming by pointing is there out of the question, the
only objects ever named are those that can be identified by the fact that they
uniquely satisfy certain conditions, as is asserted axiomatically or proved of them,
and hence the constants can be dispensed with in the primitive vocabulary (though
they may be conveniently used in abbreviations as definite descriptions). Thus in
some formulations of Boolean algebra, for instance, Ό' is primitively introduced as
a constant to name an individual in the domain which is then axiomatically asserted
to satisfy such-and-such conditions, and later proved to be the only individual in the
domain satisfying those conditions; clearly, it is more proper axiomatically to
assert that there exists an object in the domain satisfying such-and-such conditions
(one axiom may have to be used in place of several used before); then, after having
proved the uniqueness of that object, a special symbol, as Ό', may be used as a
definite description to abbreviate statements which contain a clause asserting its
existence and uniqueness.
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15. Thereby, the well-formed by our rules among the formulas that we classified under
4 in our discussion of *101 in §3 are derivable in L from any sf (3α)(Xv ~X).

16. See, e.g. the rules b^-f in [4], p. 175 and their reinterpretation by the author ibid,
p. 227-28. For the purposes of our calculus those rules have of course to be
reworded, as by translating 'functional variable* with *ps,' etc.
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