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BOOLEAN ALGEBROIDS

R. E. CLAY and S. K. SEHGAL

1. The concept of a ringoid used here was given in [l]. In the same
spirit we define in section 2, a Boolean algebroid and prove that:

Any Boolean algebroid is a disjoint union of Boolean algebras.

In section 3, we give lattice-like axioms for a Boolean algebroid and prove
the same results. That the two systems are equivalent is trivial.

2. We recall the

Definition 1. A collection R of elements is called a ringoid if opera-
tions of addition and multiplication are defined for certain pairs of elements
of R and the following axioms are satisfied for any a, b, c in R:

a) i) Given aeR, there exists OaeR such a + 0a = a and 0a +x = x
whenever for x e R, 0a + x is defined.

ii) Given aeR, there exists b eR such that a + b = b + a = 0a.
b) The following hold if either side is defined i.e. if one side is defined

the other is also defined and the two are equal:
i) a + (b+c) = (a +b) + c;

ii) a + b = b + a;
iii) a{bc) = (ab)c
iv) a(b+c) = άb +ac;
v) (b+c)a = ba + ca.

c) The conditions a), β) and γ) given below are satisfied. Define for
aeR,
L{a) ~{xe R:xa is defined} and R(a) = {x e R:ax is defined}.
a) For every aeR, L(a) f φ and R(a) £ φ .
β) For every aeR, there is an element b different from a of R such

that a + b is defined.
γ) If L(α) n L(δ) ^ φ and R(α) n R(6) ^ φ then a + b is defined.

It was proved in [l] that
δ) If for a,b e R, a + b is defined then L(a) - L(b) and R(a) = R(5).

It is easy to see that a ringoid can be written as a union of disjoint additive
abelian groups. We prove more, namely;
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Theorem 1. Let R be a ringoid as given by the axioms in definition 1. Then
R can be written as a disjoint union of additive abelian groups,

R = ^ m A«, where Γ* is a semi-group with zero. The multiplication

in R is given by

«•# " f ™w y

whenever uv -w in Γ*, and is bilinear and associative {whenever triple
products are defined).

Proof: Ίί a + b is defined then 0a = Ob = 0a+b. Conversely, if 0a = Ob, we
can write a = a + 0a = a + Ob - ct + (b-b), and therefore a + b is defined.
Hence a + b is defined if and only if 0a = Ob- This divides R into a union of

disjoint abelian groups, say, R = (J A«. By virtue of δ), we can define a

partial multiplication on the index set Γ, by setting ij = k if and only if for
xe A; and ye Ay, #;y is defined and is in A&. Then Γ forms a partial semi-
group; i.e. multiplication is sometimes defined, and (ij)k = i(jk) if either
side exists. Finally, adjoin 0 to Γ, to obtain Γ* and put uO = Ou = 0 for all
ue Γ and also uv - 0 for uy v e Γ, if uv is undefined in Γ. Then Γ* is a semi-
group with zero. This completes the proof.

Definition 2. A ringoid R is called a Boolean algebroid ifx-x is defined and
X'X = x for all xe R.

Theorem 2. Let A be a Boolean algebroid then A can be written as a union
of disjoint Boolean algebras.

Proof: It suffices to prove:
a) For x,y e A if x + y is defined then xy and yx are defined.

and
b) For x,y e A if xy is defined the x + y is defined.

Since (x+y) =(x+y){x+y) = x2 + xy + yx + y2, a) is clear.
Now to prove b), suppose xy is defined. Since x2 and y2 are defined
xeL{y) n L(x) and yeR( y) n R(x). Thus by y)x + y is defined. This com-
pletes the proof.

Corollary 1. xy = yx whenever either side is defined, for x,y e A.

Corollary 2. 2x = 0 for all xeA.

3. Consider the following axioms for a system (L,u,n). These char-
acterize a Boolean algebroid:

Preface LI, L2, and L5 by, ζ'If one side of the equation exists, then the
other side also exists, and"
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Let a,b,cεL.

LI a u b = b u a, a nb = b n a

L2 {a ub) u c = a u (b u c), {a nb) n c = a n(b ή c)

L3 a u a = a, a n a - a

L4 If the left hand side of the equation exists,
(a u b) n a = a, {a nb) u a = a

L5 a n (b u c) = (a n &) u (a n c)

Dl Z = {xε L I /or « ^ 3> ε L, z/ ΛΓ U y or ΛΓ Π y exists, then y u x = y = xuy
and y n x = x = x π 3; } .

Z^f For α^j; cεL ί/ẑ r̂  is an x εZ, 50 #mί <2UΛΓ exists.

D2 N = {#εL I /or αn^ 3; ε L, ήf ΛΓ U y or x n y exists, then yux=x=xuy

and ynχ=y=χny}.

L7* For any aεL, there is an x εN, 50 that a u x exists.

LSr For any aεL, there are x εl_, z εZ and nεH so that au x - n -XVJa

and anx=z=χna.

First we shall prove the uniqueness of zero, one, and complement.

Tl If x,y εZ, a εL, au x and a u y exist, then x = y.
Proof. a\j y =[L6^ {a u x) u y = [L2] a LJ (x u y). Therefore x u y
exists, x u y = [L6*] y = y u x = [L61] x.

L6 For any aεL, there is a unique 0a εZ so that a u 0a = a = 0a u a and
a n oa = Oa = Oa n a. [L6\ Dl, Tl]

T2 If x,y εN, aεL, an x and any exist, then x = y. [L2,L7r]

L7 For any aεL, there is a unique la εN so that ania=a = l a

n a and
aula =la =lava. [L7\D2, T2]

T3 Tfaub exists, then 0a = Ob-

Proof, au b = [L6] a u (0b u b) = [L2] {a u 0b) u b. Therefore au 0b

exists. By L6, a u 0a exists. Then by Tl, 0a = 0b.

T4 Ifanb exists, then la = lb. [L2, L7, T2]

T5 If an b exists, then 0a = 0anb.

Proof. Since anb exists, 0anb = [L6] 0anb n(anb) = [L2] (0anb n a)
nb = [L6] (a n 0anb) n b. Therefore a n θanb exists. By L6 and Tl,
Oa =0aήb.

T6 Ifaub exists, then la = la^b [L2, T2,L7]

T7 IfzεZ, then 0z =z.

Proof. By Dl, zεL, so z u 0z exists by L6. By the last sentence of
the proof of Tl, z =0z.
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T8 IfnεM, then ln = n. [D2, L7, T2]

T9 If z ε Z and a n b = z, then z - 0a>

Proof. Oa = [T5] <W = 0z = [Γ7] s.

Titf IfnεU and a u b = n, then n = la. [T6, T8]

Til For any aε L, there is x ε L so that a n x = 0a = x n a and au x = la =
xu a. [L8\T9,T10]

T12 If au x = la, an x = 0a, au y = la, and any = 0a, then x = y.

Proof, x = [L7] x n lx = [T4] x n la = x n (a u y) = [L5] (X n a)
u(χn y) = [L6] 0a u (x n y) = [T3] 0x u (x n y) = [T5] xny. Inter-
changing x and 3; we also have y = y n x. So by L2, x = y.

L8 For any aεL there is a unique α'εL so that a π ατ = Oa = a1 ̂  a and
a u a' = la = a1 u a. [Til, T12]

T13 If Oa = Ob, then an b exists.

Proof. 0a = [L6] a noa = a n 0h = [L6] a n (b n ob) = [Z^] (a nb) nob.
Therefore βΠδ exists.

TJ4 if i Λ = l b , then aub exists. [L7,L2]

T15 avjb exists if and only if a n b exists.

Proof. If a u b exists, then by T3, 0a = 0b; consequently a n b exists
by T13. For the 'if' part, use T4 and T14.

T16 If a ux and a u y exist, then x u y exists.

Proof. By T3, 0a = 0x and 0a = 0y. Therefore by T13 x ny exists and
consequently by T15, x u y exists.

T17 If a nx and any exist, then xny exists. [T4, T14, T15]

Theorem 3. Any Boolean algebroidis the disjoint union of Boolean algebras.

Proof. By T15 and T16 we have that a Boolean algebroid is the disjoint
union of systems having the operations u and n. By LI through L8, these
systems are Boolean algebras.

Remark. The proof has been arranged so that LI for u, L3, and L4 are not
used; and LI forn, and L5 are used only in the proof of the uniqueness of
the complement.
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