Notre Dame Journal of Formal Logic Volume V, Number 2, April 1964

BOOLEAN ALGEBROIDS

R. E. CLAY and S. K. SEHGAL

1. The concept of a ringoid used here was given in [1]. In the same spirit we define in section 2, a Boolean algebroid and prove that:

Any Boolean algebroid is a disjoint union of Boolean algebras.

In section 3, we give lattice-like axioms for a Boolean algebroid and prove the same results. That the two systems are equivalent is trivial.

2. We recall the

Definition 1. A collection \mathbf{R} of elements is called a ringoid if operations of addition and multiplication are defined for certain pairs of elements of \mathbf{R} and the following axioms are satisfied for any a, b, c in \mathbf{R} :

- a) i) Given $a \in \mathbf{R}$, there exists $0_a \in \mathbf{R}$ such $a + 0_a = a$ and $0_a + x = x$ whenever for $x \in \mathbf{R}$, $0_a + x$ is defined.
 - ii) Given $a \in \mathbf{R}$, there exists $b \in \mathbf{R}$ such that $a + b = b + a = 0_a$.
- b) The following hold if either side is defined i.e. if one side is defined the other is also defined and the two are equal:
 - i) a + (b+c) = (a + b) + c;
 - ii) a + b = b + a;
 - iii) a(bc) = (ab)c;
 - iv) a(b+c) = ab + ac;
 - $\mathbf{v}) (b+c)a = ba + ca.$
- c) The conditions α), β) and γ) given below are satisfied. Define for $a \in \mathbf{R}$,
 - $L(a) = \{x \in \mathbb{R} : xa \text{ is defined}\} \text{ and } \mathbb{R}(a) = \{x \in \mathbb{R} : ax \text{ is defined}\}.$
 - α) For every $a \in \mathbf{R}$, $\mathbf{L}(a) \neq \phi$ and $\mathbf{R}(a) \neq \phi$.
 - β) For every $a \in \mathbf{R}$, there is an element b different from a of \mathbf{R} such that a + b is defined.

γ) If $L(a) \cap L(b) \neq \phi$ and $R(a) \cap R(b) \neq \phi$ then a + b is defined. It was proved in [1] that

δ) If for $a, b \in \mathbb{R}$, a + b is defined then L(a) = L(b) and $\mathbb{R}(a) = \mathbb{R}(b)$.

It is easy to see that a ringoid can be written as a union of disjoint additive abelian groups. We prove more, namely;

Received February 2, 1964

Theorem 1. Let \mathbf{R} be a ringoid as given by the axioms in definition 1. Then \mathbf{R} can be written as a disjoint union of additive abelian groups,

 $\mathbf{R} = \bigcup_{\substack{0 \equiv u \in \Gamma^{*} \\ is given by}} \mathbf{A}_{u}, where \ \Gamma^{*} is a semi-group with zero. The multiplication$

$$\mathbf{A}_{u} \cdot \mathbf{A}_{v} \rightarrow \mathbf{A}_{w},$$

whenever uv = w in Γ^* , and is bilinear and associative (whenever triple products are defined).

Proof: If a + b is defined then $O_a = O_b = O_{a+b}$. Conversely, if $O_a = O_b$, we can write $a = a + O_a = a + O_b = a + (b-b)$, and therefore a + b is defined. Hence a + b is defined if and only if $O_a = O_b$. This divides **R** into a union of

disjoint abelian groups, say, $\mathbf{R} = \bigcup_{u \in \overline{\Gamma}} \mathbf{A}_u$. By virtue of δ), we can define a

partial multiplication on the index set Γ , by setting ij = k if and only if for $x \in A_i$ and $y \in A_j$, xy is defined and is in A_k . Then Γ forms a partial semigroup; i.e. multiplication is sometimes defined, and (ij)k = i(jk) if either side exists. Finally, adjoin 0 to Γ , to obtain Γ^* and put $u0 = \overline{0u} = 0$ for all $u \in \Gamma$ and also uv = 0 for u, $v \in \Gamma$, if uv is undefined in Γ . Then Γ^* is a semigroup with zero. This completes the proof.

Definition 2. A ringoid **R** is called a Boolean algebroid if $x \cdot x$ is defined and $x \cdot x = x$ for all $x \in \mathbf{R}$.

Theorem 2. Let A be a Boolean algebroid then A can be written as a union of disjoint Boolean algebras.

Proof: It suffices to prove:

a) For $x, y \in A$ if x + y is defined then xy and yx are defined. and

b) For $x, y \in A$ if xy is defined the x + y is defined.

Since $(x+y) = (x+y)(x+y) = x^2 + xy + yx + y^2$, a) is clear. Now to prove b), suppose xy is defined. Since x^2 and y^2 are defined $x \in L(y) \cap L(x)$ and $y \in R(y) \cap R(x)$. Thus by $\gamma)x + y$ is defined. This completes the proof.

Corollary 1. xy = yx whenever either side is defined, for $x, y \in A$.

Corollary 2. 2x = 0 for all $x \in A$.

3. Consider the following axioms for a system (L, \cup, \cap) . These characterize a Boolean algebroid:

Preface L1, L2, and L5 by, "If one side of the equation exists, then the other side also exists, and"

Let $a,b,c \in L$.

- $L1 \quad a \cup b = b \cup a, \qquad a \cap b = b \cap a$
- L2 $(a \cup b) \cup c = a \cup (b \cup c)$, $(a \cap b) \cap c = a \cap (b \cap c)$
- $L3 \quad a \cup a = a, \qquad \qquad a \cap a = a$
- L4 If the left hand side of the equation exists, $(a \cup b) \cap a = a$, $(a \cap b) \cup a = a$
- $L5 \quad a \cap (b \cup c) = (a \cap b) \cup (a \cap c)$
- D1 $Z = \{x \in L \mid for any \ y \in L, if x \cup y \text{ or } x \cap y \text{ exists, then } y \cup x = y = x \cup y \\ and \ y \cap x = x = x \cap y \}.$
- L6' For any $a \in L$ there is an $x \in Z$, so that $a \cup x$ exists.
- D2 $\mathbf{N} = \{x \in \mathbf{L} \mid for any \ y \in \mathbf{L}, if \ x \cup y \ or \ x \cap y \ exists, then \ y \cup x = x = x \cup y \\ and \ y \cap x = y = x \cap y \}.$
- L7' For any $a \in L$, there is an $x \in N$, so that $a \cup x$ exists.
- L8' For any $a \in L$, there are $x \in L$, $z \in Z$ and $n \in N$ so that $a \cup x = n = x \cup a$ and $a \cap x = z = x \cap a$.

First we shall prove the uniqueness of zero, one, and complement.

T1 If $x, y \in \mathbb{Z}$, $a \in L$, $a \cup x$ and $a \cup y$ exist, then x = y.

Proof. $a \cup y = [L6']$ $(a \cup x) \cup y = [L2]$ $a \cup (x \cup y)$. Therefore $x \cup y$ exists. $x \cup y = [L6']$ $y = y \cup x = [L6']$ x.

- L6 For any $a \in L$, there is a unique $0_a \in \mathbb{Z}$ so that $a \cup 0_a = a = 0_a \cup a$ and $a \cap 0_a = 0_a = 0_a \cap a$. [L6', D1, T1]
- T2 If $x, y \in \mathbb{N}$, $a \in L$, $a \cap x$ and $a \cap y$ exist, then x = y. [L2, L7']
- L7 For any $a \in L$, there is a unique $1_a \in \mathbb{N}$ so that $a \cap 1_a = a = 1_a \cap a$ and $a \cup 1_a = 1_a = 1_a \cup a$. [L7', D2, T2]
- T3 If $a \cup b$ exists, then $0_a = 0_b$. Proof. $a \cup b = [L6] a \cup (0_b \cup b) = [L2] (a \cup 0_b) \cup b$. Therefore $a \cup 0_b$ exists. By L6, $a \cup 0_a$ exists. Then by T1, $0_a = 0_b$.
- T4 If $a \cap b$ exists, then $1_a = 1_b$. [L2, L7, T2]
- T5 If $a \cap b$ exists, then $0_a = 0_{a \cap b}$.

Proof. Since $a \cap b$ exists, $0_{a \cap b} = [L6] \ 0_{a \cap b} \cap (a \cap b) = [L2] \ (0_{a \cap b} \cap a) \cap b = [L6] \ (a \cap 0_{a \cap b}) \cap b$. Therefore $a \cap 0_{a \cap b}$ exists. By L6 and T1, $0_a = 0_{a \cap b}$.

[L2, T2, L7]

T6 If $a \cup b$ exists, then $1_a = 1_{a \cup b}$.

T7 If
$$z \in \mathbf{Z}$$
, then $0_z = z$.

Proof. By D1, $z \in L$, so $z \cup O_z$ exists by L6. By the last sentence of the proof of T1, $z = O_z$.

- T8 If $n \in \mathbb{N}$, then $1_n = n$. [D2, L7, T2]
- T9 If $z \in \mathbb{Z}$ and $a \cap b = z$, then $z = 0_a$. Proof. $0_a = [T5] \ 0_{a \cap b} = 0_z = [T7] \ z$.
- T10 If $n \in \mathbb{N}$ and $a \cup b = n$, then $n = 1_a$.
- T11 For any $a \in L$, there is $x \in L$ so that $a \cap x = 0_a = x \cap a$ and $a \cup x = 1_a = x \cup a$. [L8', T9, T10]
- T12 If $a \cup x = 1_a$, $a \cap x = 0_a$, $a \cup y = 1_a$, and $a \cap y = 0_a$, then x = y.

Proof. $x = [L7] x \cap I_x = [T4] x \cap I_a = x \cap (a \cup y) = [L5] (x \cap a)$ $\cup (x \cap y) = [L6] 0_a \cup (x \cap y) = [T3] 0_x \cup (x \cap y) = [T5] x \cap y$. Interchanging x and y we also have $y = y \cap x$. So by L1, x = y.

- L8 For any $a \in L$ there is a unique $a' \in L$ so that $a \cap a' = 0_a = a' \cap a$ and $a \cup a' = 1_a = a' \cup a$. [T11, T12]
- T13 If $0_a = 0_b$, then $a \cap b$ exists.

Proof. $0_a = [L6] a \cap 0_a = a \cap 0_b = [L6] a \cap (b \cap 0_b) = [L2] (a \cap b) \cap 0_b$. Therefore $a \cap b$ exists.

T14 If $I_a = I_b$, then $a \cup b$ exists.

T15 $a \cup b$ exists if and only if $a \cap b$ exists.

Proof. If $a \cup b$ exists, then by T3, $0_a = 0_b$; consequently $a \cap b$ exists by T13. For the 'if' part, use T4 and T14.

T16 If $a \cup x$ and $a \cup y$ exist, then $x \cup y$ exists.

Proof. By T3, $0_a = 0_x$ and $0_a = 0_y$. Therefore by T13 $x \cap y$ exists and consequently by T15, $x \cup y$ exists.

T17 If $a \cap x$ and $a \cap y$ exist, then $x \cap y$ exists. [T4, T14, T15]

Theorem 3. Any Boolean algebroid is the disjoint union of Boolean algebras.

Proof. By *T15* and *T16* we have that a Boolean algebroid is the disjoint union of systems having the operations \cup and \cap . By *L1* through *L8*, these systems are Boolean algebras.

Remark. The proof has been arranged so that L1 for \cup , L3, and L4 are not used; and L1 for \cap , and L5 are used only in the proof of the uniqueness of the complement.

REFERENCE

 S. K. Sehgal: Jacobson Theory of Ringoids, Notre Dame Journal of Formal Logic, Vol. IV (1963), pp 206-215.

University of Notre Dame Notre Dame, Indiana [T6, T8]

[L7, L2]