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BOOLEAN ALGEBROIDS

R. E. CLAY and S. K. SEHGAL

1. The concept of a ringoid used here was given in [1]. In the same
spirit we define in section 2, a Boolean algebroid and prove that:

Any Boolean algebroid is a disjoint union of Boolean algebras.

In section 3, we give lattice-like axioms for a Boolean algebroid and prove
the same results. That the two systems are equivalent is trivial.
2. We recall the

Definition 1. A collection R of elements is called a vingoid if opeva-
tions of addition and multiplication are defined for certain paivs of elements
of R and the following axioms ave satisfied for any a, b, c in R:

a) i) Given a€eR, theve exists 0,€R such a + 0, =a and 0, +x = x

whenever for x €R, 0, + x is defined.
ii) Given a€R, there exists beR such thata +b =b +a = 0,.

b) The following hold if either side is defined i.e.if one side is defined

the other is also defined and the two are equal:
i) a +(b+c) =(a +b) +c;

ii)a+b=>b +a;

iii) a(bc) = (adb)c;

iv) a(lb+c) = ab + ac;

v) (b+c)a = ba +ca.

c) The conditions «a), 8) and y) given below are satisfied. Define for

aeR,

L(a) ={x € R:xa is defined} and R(a) = {x e R:ax is defined}.

o) For every aeR, L(a) #d and R(a) #¢.

B) For every a€R, theve is an element b different from a of R such
that a + b is defined.

y) If L(a) N L(d) # ¢ and R(a) " R(b) # ¢ then a + b is defined.

It was proved in [1] that
) If for a,beR, a + b is defined then L(a) = L(b) and R(a) = R(b).

It is easy to see that a ringoid can be written as a union of disjoint additive
abelian groups. We prove more, namely;
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Theovem 1. Let R be a vingoid as given by the axioms in definition 1. Then
R can be written as a disjoint union of additive abelian groups,

R = 0 Uer“ A,, where T'* is a semi-group with zevo. The wmultiplication
=u

in R is given by
A, - A, A,

whenever uv =w in I'*, and is bilinear and associative (whenever triple
products ave defined).

Proof: If a + b is defined then 0, = 05 = 0,4;,. Conversely, if 0, = 0, we
can write a=a +0, =a +0, =a + (b-b), and therefore a + b is defined.
Hence a + b is defined if and only if 0, = 0. This divides R into a union of

disjoint abelian groups, say, R = U A,. By virtue of 5), we can define a
uell

partial multiplication on the index set I, by setting 7j = % if and only if for
xeA; and ye Aj, xy is defined and is in A;. Then T forms a partial semi-
group; i.e. multiplication is sometimes defined, and (ij)% = i(jk) if either
side exists. Finally, adjoin 0 to T} to obtain T'* and put 0 = Ou = 0 for all
ueTand-alsouv = 0 for u, ve T, if uv is undefined in I. Then I'* is a semi-
group with zero. This completes the proof.

Definition 2. A ringoid R is called a Boolean algebroid if x-x is defined and
x-x =x for all xeR.

Theorvem 2. Let A be a Boolean algebroid then A can be written as a union
of disjoint Boolean algebras.

Proof: It suffices to prove:

a) For x,y € A if x +y is defined then xy and yx ave defined.
and

b) For x,ye A if xy is defined the x +y is defined.

Since (x+y) =(x+y) (x+) =x° +xy +yx +y%, a) is clear.

Now to prove b), suppose xy is defined. Since x* and y® are defined
xel(y) N L(x) and y eR(y) N R(x). Thus by ¥)x +y is defined. This com-
pletes the proof.

Covollary 1. xy = yx whenever either side is defined, for x,y € A.
Covollary 2. 2x = 0 for all x €A.

3. Consider the following axioms for a system (L,u,M). These char-
acterize a Boolean algebroid:

Preface L1, L2, and L5 by, “‘If one side of the equation exists, then the
other side also exists, and’’
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Let a,b,cel.

aub=>buUa, anNnb=bNa
(aud)uc=au(duec), (anb)ync=an(®Nec)
ava-=a, ana=a

If the left hand side of the equation exists,

(aub)Na=a, (and)Ua=a
anuc) =(and)u(anc)

Z ={xeLlfor any yeL, ifx Uy or x Ny exists, theny Ux =y =x Uy
and y V" x =x=x09y}.

For any a €L theve is an x €Z, so that aUx exists.

N ={xeL| for any yeL,if x Uy or x Ny exists, theny Ux =x =x Uy
and y "x =y =x09y}.

For any acL, there is an x €N, so that a U x exists.

For any ack, theve are xelL,zeZ and neN so thatau x =n =xUa
andaNx =2 =xMNa.

First we shall prove the uniqueness of zero, one, and complement.
IfxyelZ,ack,aux and a Uy exist, then x = y.

Proof. auy = [L6;] (aux)uy=[L2]l au(xUy). Thereforex U y
exists. x Uy =[L6'ly=yuUx =[L6'] x.

For any acl, theve is a unique 0, €Z so thata U 0, =a = 0, U a and
a0, =04 =0, N a. [L6', D1, TI]
Ifx,yeN, ael, an x and a N y exist, then x = y. [L2,L7"]
For any acl, theve is a unique 1, €N so thata N1, =a =1, Na and

aul, =1, =1,V a. [L7', D2, T2]
If a U b exists, then 0, = 0.

Proof. aUb =[L6]lau (0, Ubd) =[L2](a L 0,) Ub. Thereforea L 0,
exists. By L6, au 0, exists. Thenby T1, 0, = 0,.

If a0 b exists, then 1, = 1,. [L2, L7, T2]
If a ™ b exists, then 0, = 0, -

Proof. Since a M b exists, Ogrnp =[L6] Ogrpy N (@M d)=[L2](0,., M a)
Nb=[L6)(a0,n,) Nb. Therefore a M 0,., exists. By L6 and T1,
If a U b exists, then 1, = 1,,,. (L2, T2,L7]
If z€Z, then 0, = z.

Proof. By DI, zel, so z U 0, exists by L6. By the last sentence of
the proof of T1,z = 0.
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T8 IfneN, then 1, =n. [D2, L7, T2]
T9 IfzeZandanb =z, then z = 0,.

Proof. 0, =[T5] 0,np = 0. =[T7] z.
Ti10IfneNand a Ub =n, thenn = 1,. [T6, T8]

T11 For any atl, theve isxeL sothatanx =0, =x Na andaUx =1, =
XU a. [L8', T9, T10]

TI2Ifaux =1,anx =04,a 9y =1,,and a Ny = 04, then x = y.

Proof. x =[L7) x N1, =[T4) x N 1, =x N (a VU y) =[L5] (x N a)
Uny) =[L6] 0, uxny) =[T3] 0, U(xNy) =[T5]x N y. Inter-
changing x and y we also have y =y N x. Soby LI, x =y.

L8 For any acl there is a unique a' el so thataMa' =0qg =a'M a and
avua =1, =aU a. [T11,T12]

T13 If 04 = Oy, then a M b exists.

Proof. 0, =[L6lan o0, =an0,=[L6lan(bM0,)=[L2](a "b) M0,.
Therefore a M b exists.

TI4If 1, = 1, then a U b exists. [L7,L2]
T15 a U b exists if and only if a M b exists.

Proof. If ¢ U b exists, then by T3, 0, = 0,; consequently a M b exists
by T13. For the ‘if’ part, use 74 and T14.

TI6 If a Ux and a U y exist, then x U y exists.

Proof. By T3, 0, = 0x and 0, = 0y. Therefore by T13 x Ny exists and
consequently by T15, x U y exists.

T17 If a " x and a Ny exist, then x N y exists. [T4, T14, T15]

Theorem 3. Any Boolean algebroidis the disjoint union of Boolean algebvas.

Proof. By 715 and TI16 we have that a Boolean algebroid is the disjoint
union of systems having the operations U and M. By LI through LS8, these
systems are Boolean algebras.

Remark. The proof has been arranged so that LI for v, L3, and L4 are not
used; and LI forn, and L5 are used only in the proof of the uniqueness of
the complement.

REFERENCE
[1] s. K. Sehgal: Jacobson Theory of Ringoids, Notre Dame Journal of

Formal Logic, Vol. IV (1963), pp 206-215.

University of Notre Dame
Notre Dame, Indiana





