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ON THE PROPOSITIONAL SYSTEM A
OF VUCKOVIC AND ITS EXTENSION. I

BOLEStAW SOBOCINSKI

In [4], pp. 56-62, Goodstein defines in recursive arithmetic a model
for the classical propositional calculus. And, in [3] he constructs in a
similar way models for a certain class of the finite many-valued proposi-
tional calculi. No recursive model for Heyting's intuitionistic propositional
calculus is known.

In [ 12] Vuckovic has constructed a formal system called the recursive
arithmetic of words which differs from the ordinary recursive arithmetic,
e.g., presented in .[4], in this respect that instead of the usual successor
function S in Vuckovic's system we have two or, even, arbitrary finite num-
ber of different successor functions: So, Sl9. . . . , Sn, for any n —0. And, in
[13] he defines in the field of his recursive system a model for a certain
system of the propositional calculus which he calls system A. In the man-
ner of Goodstein's [4] he associates with each propositional functor C, N, K
and A a recursive function belonging to his arithmetic of words. Thus, hav-
ing a propositional formula, say Γ, we obtain a recursive function γ replac-
ing in Γ all occurrences of functors C, N, K and A by those functions asso-
ciated with them. And, formula Γ can be considered as true, if the equation
γ = 0 is provable in the recursive arithmetic .of words. In [13] an axiom-
system with suitable rules of procedure for system A is established. But,
in connection with this, my paper, Prof. Vuckovic observed that it was
stated there erroneously that all axioms and rules given in [13] are verified
by his recursive model. In fact, this model verifies the rules of procedure
and all axioms except the last, given below, axiom A16. In his paper, forth-
coming in this Journal, Vuckovic will explain this error and present such
modification of his recursive model that it will verify all axioms which he
accepted. Contrary to the situation which we have in Goodstein's recursive
system for the classical propositional calculus, in Vuckovic's system there
are propositional formulas whose corresponding equations are verified by
his model published in [13] and by his, yet unpublished, modified model, and
which are not consequences of the axiom-system given in [13]. In con-
structing system A the author wished to obtain a recursive model for a
system as similar to Heyting's system as possible. But, due to the peculiar
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properties of recursive arithmetic of words, system A, and even its part
which is axiomatized in [13], neither contains nor is contained in Heyting's
system. Thus, e.g. the intuitionistic thesis CCpNpNp is not true in A, and
in the latter system the unintuitionistic thesis ApCpq is valid. On the other
hand, e.g. the thesis CNNpp is not true in both systems.

In this paper I shall investigate the propositional calculus defined by
the axiom-system and the rules of procedure given in [13] disregarding the
problems connected with its model in the recursive arithmetic of words.
First of all a simplification of the axiom-system given in [13] will be es-
tablished. And later, I shall present a quite natural extension of proposi-
tional system A of Vuckovic. It will be shown that this extension which I
call system cA contains all theses verified by both, above mentioned, re-
cursive models. Namely, I shall establish below such logical matrices for
functors C, N, K and A occuring in system A, that they will be the charac-
teristic matrices of system^/. A complete axiom-system of <A will be given
which together with the matrices will show that from the logical point of
view s y s t e m ^ is a weakly complete, partial three-valued propositional cal-
culus with one designated value. Moreover, it will be proved that the addi-
tion of any well-formed propositional formula which is not valid in <A to its
complete axiom-system generates at least the bi-valued propositional cal-
culus, i.e. that s y s t e m ^ possesses the 3-rd degree of completeness1.

As one could remark already, instead of the symbols used in [4] and
[13] I am using the well-known iukasiewicz's symbolism in this paper. The
following abbreviations will be employed here: A means the propositional
system of Vuckovic; <A—its extension discussed in this paper; H—the propo-
sitional system of Heyting; P—an arbitrary complete axiom system of posi-
tive logic; C—an arbitrary complete axiom system of the bi-valued impli-
cational propositional calculus; {C}— formula {or - system, - axiom, etc}-—a
pure implicational propositional formula, similarly: {C N}-, {C N K} - ,
a.s.o. Symbol hα means always: formula a is a consequence of the axiom-
system under consideration. The axiom-system of A given in [13] will be
called B1.

1. Axiom-system Bl. In [13], p. 71, the following axioms

Al ApCpq
A2 CpKpp
A3 CKpqKqp
A4 CCpqCKprKqr
A 5 CKCpqCqrCpr
A6 CqCpq
A7 CKpCpqq
A 8 CpApq
A9 CApqAqp
A10 CKCprCqrCApqr
All CNpCpq
A12 CKCNpqCNpNqNNp
A13 CKCNNpqCNNpNqNp
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A14 CNKpqANpNq
A15 CNNApqANNpNNq
A16 CNNKpqKNNpNNq

and the following rules of procedure:

Rl Rule of substitution ordinarily used in the propositional calculus and
adjusted to the primitive functors C, N, if and A.

Rll Rule of detachment: If \-a and \-Caβ, then \-β.
RIM Rule of adjunction: If \-a and \-β, then \-Kaβ.

are adopted as an axiom-system which I call Bl of A. In [13], p. 77 and
p. 83, Vuckovic mentions that he could not prove from Bl the following
theses

Wl NNApNp

and

W2 NNCNNpp

although they are verified by his recursive model. We shall see later that
these theses are independent of Bl.

It is obvious that the axioms A2-A13, A16 and the theses Wl and W2
are intuitionistic theses provable in H2. On the other hand, axioms Al,
A14 and A15 are clearly unintuitionistic formulas.

2. Simplification of Bl. It will be shown here that in B1 axiom A12 is
redundant and that B1 is equivalent to the other, more simple and convenient
axiom-system.

2.1 It is evident that Bl is formulated in the manner of [5] in which the
first axiom-system of H is published. And, it is well known that this axiom -
system is equivalent to several other systems, cf., e.g., [9], [6], and [7], in
which only two rules of procedure are accepted, viz. Rl and Rll. Since a
proof that the first axiom-system of H established by Heyting yields all
theses needed for a construction of the axiom-systems of H without rule
RHI depends upon theses A2-A7 which are also axioms of Bl, we can, ob-
viously, adopt instead of B1 the following axiom-system which I call B2:

a) It has the rules of procedure Rl and Rll
b) The axioms Al, All, A14, A15, A16 and instead of A2-A10, A12 and

A13, we have the following ones

P i.e. an arbitrary axiom-system of the positive logic.

Bl CKpqp
B2 CKpqq
B3 CpCqKpq
B4 CpApq
B5 CqApq
B6 CApqCCprCCqrr
B7 CCNpqCCNpNqNNp
B8 CCNNpqCCNNpNqNp
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It is evident that the equivalence of B1 and B2 can be proved in an ele-
mentary way.

2.2 Positive theses. For our further deductions we need several posi-
tive theses which I present here without a proof because B2 contains P:

PI CCpqCCqrCpr [P]
P2 CCpCqrCqCpr [P]
P3 Cpp [P]
P4 CCpqCCCprCCpsvCCqrCCqsv [P]
P5 CCpqCCCprsCCqrs [P]
P6 CCpqCCCrqsCCrps [P]
P7 CCqrCCpqCpr [P]
P8 CCsCpCqrCCCsrvCCsqCpv [P]
P9 CCpCqrCCCsrvCCsqCpv [P]

2.3 Redundancy of B7 in B2. It will be shown here that in B2 axiom B7
is superfluous. Besides, it will be proved that B2 yields the theses B9 and
BIO, given below, which we shall need in our further investigations. Proof:
Let us assume P, B8 and All. Therefore, in virtue of P we have P1-P6
from point 2.2. Then:

Zl CCCpqrCNpr [Pl,p/Np,q/Cpq;All]
Z2 CNNNpCCNNpNqNp [Zl ,p/NNp,r/CCNNpNqNp;B8]
Z3 CNNNpNp [P2,p/NNNp,q/CNNpNNp,r/Np;Z2,q/Np;P3,p/NNp]
B7 CCNpqCCNpNqNNp [P4,p/NNNp,q/Np,r/q,s/Nq,υ/NNp;Z3;B8,p/Np]
B9 CCNNpNpNp [P2,p/CNNpNp yq/CNNpNNp,r/Np ;B8;P2,p/NNp ]
Z4 CpCNpq [P2,p/Np,q/p,r/q;All]
Z5 CCCNpqrCpr [Pl,q/CNpq;Z4]
Z6 CCNpNNpNNp [P5,p/NNNp,q/Np,r/NNp,s/NNp;Z3;B9,p/Np]
Z7 CpNNp \Z5,q/NNp,r/NNp;Z6]
BIO CCNppNNp [P6,q/NNp,r/Np,s/NNp;Z7;Z6]

Thus, B7 is redundant in B2. Since P can be obtained in the field of B1
without the aid of B7, an analogous deduction to that given above shows that
in that system B7 is also superfluous.

2.4 Axiom-system B3. It will be proved that in B2 (and also in B1) ax-
iom B8 can be substituted by a shorter thesis, viz. B9 which is a conse-
quence of B2, cf. point 2.3. Proof: Assume P, A11 and B9. Due to P we
have PI, P7, P8 and P9. Then:

Zl CCpNqCqCpr [Pl,p/CNqCqr,q/CCpNqCpCqr;P7,q/Nq,r/Cqr;P8,s/CpNq]
Z2 CCqCNNpNpCqNp [P7,p/q,q/CNNpNp,r/Np;B9]
Z3 CCNNpNqCqNp [P9,p/CNNpNq,q/CqCNNpNp,r/CqNp;Zl,p/NNp,r/Np;Z2]
B8 CCNNpqCCNNpNqNp [P7,p/CNNpNq,r/Np,s/NNp,v/Np;Z3;B9]

Thus, {P;A11;B9} -^ {B8}. Therefore this proof together with the de-
ductions given in 2.3 allows us to accept instead of B2 a simpler axiom-
system, viz. B3 = {P\A1)A1V,A14]A15'^L16;B1-B6',B9}» We have to notice
that in B1 we can also substitute axiom A13 by B9 obtaining in this way
B1 = {A1-A11\B9\A14-A16}.



ON THE PROPOSITIONAL SYSTEM A 145

2.5 Axiom-system B4. Since, as it will be shown, B3 contains the com-
plete bi-valued {C}-calculus,we will be able to greatly simplify the axiom-
system B3. Namely, we can substitute in B3 the assumptions P, Al and B9
by C, i.e. an arbitrary axiom-system of the complete, bi-valued {C}-calcu-
lus and the thesis BIO which is proved already in 2.3. Proof:

2.5.1 Let us assume P, Al and B6. Due to P we have P3 given in 2.2.
Hence,

Zl CCCpqpp [B6,q/Cpq,r/p;Al;P3]

Since P together with the law of Pierce, i.eo Zl, constitutes a complete
axiom-system of the bi-valued {C}-calculus, we have proved that B3 con-
tains the latter system.

2.5.2 Now, let us assume C, B4, B5 and BIO. Obviously, in virtue of C
we have the following {C}-theses

Tl CCCpqqCCprCCqrr [C]
T2 CCpCpqCpq [C]

and

T3 CCCpqrCCrpp [C]

Hence,

Al ApCpq [Tl,q/Cpq,r/ApCpq;T2;B4,q/Cpq;B5,q/Cpq]

and

B9 CCNNpNpNp [T3,p/Np,q/p,r/NNp;Blθ]

Thus, C, B4, B5 and BIO imply Al and B9. And, therefore, since, ob-
viously, C yields the positive logic, the proof is complete.

2.5.3 Hence, in virtue of deductions given in two previous points, instead
of B3 we obtain a more simple axiom-system, viz. B4 = {C All Bl-Bβ BlO;
A14;A15'^A16}.

3. The axiom-system B4 together with the rules of procedure Rl and
Rll determines a quite powerful propositional system. Consider, e.g., its
subsystem constructed from the axioms C, B1-B6, BIO and All. In the so
defined system, say D, we can, obviously, prove the theses

Ql CApqCCpqq

and

Q2 CCCpqqApq

which allows us, clearly, to introduce into the system functor A by a defini-
tion

Df.l Apq = CCpqq

and to drop the axioms B4, B5 and B6 at once. Moreover, in D we can de-
fine a new kind of negation, viz. Nu as follows
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Df.2 Nφ = CpNp

and later easily prove the following formulas

Q3 CCNφpp

Q4 CpCNφq
Q5 CNiCpNiqKpq
Q6 CKpqNtCpN^

Hence, in virtue of C, Q3 and Q4,

(i) we know that there is a subsystem of D which is isomorphic to the com-
plete system of bi-valued propositional calculus,

and, due to (i), Q5 and Q6,

(ii) we are allowed to introduce a definition

Df.3 Kpq =N1CpN1q

and to drop the axioms Bl, B2 and B3.
Thus, system D can be based on the following set of assumptions

{C All BlO}. It could be of interest because it shows some similarity to
modal systems. I shall not here discuss this point. On the other hand, it is
evident that D is a proper subset of the classical propositional calculus.
But the fact that in D it is possible to define functors A and K does not
prove that these functors are definable in B4 or even in the full system A.
Since in A the formula CCpqCNqNp is not valid, we are unable to obtain
formulas containing functors A and K under iVfrom D. Thus, e.g., formula
CNApqNp is not a thesis of A, although CNApqNφ is provable in D. The
characteristic matrices of s y s t e m ^ which will be established below explain
this situation.

It should be noticed that since B4 contains C and the axioms Bl, B2 and
B3, in virtue of my proof published in [lO], every classical {C K}-thesis is
a consequence of B4. Hence, B4 contains the bi-valued {C K}-propositional
calculus.

4. An extension of system A. An analysis, presented above, of the
axiom-system B1 of A allowed us:

1) to simplify greatly this axiom-system, viz. instead of Bl we were
able to accept B4,

2) to show that A contains the complete, bi-valued {C K}-system what
is not mentioned in [13].
and

3) to indicate rather peculiar properties of a subsystem of A, viz. of
system D.

On the other hand it is evident and which will be proved later that sev-
eral propositional formulas verified by the recursive models constructed
by Vuckovic for system A are not the consequences of B4. In order to
clarify this situation I shall present here such possible extension of A
that it will satisfy the following conditions:
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a) it will contain B4 and every propositional formula verified by recursive
model given in [13].

b) it will not contain the formulas clearly rejected in [13].
c) It will be weakly complete partial many-valued propositional calculus.

For this end I have established for functors C, N, K and A the following
three-valued matrices:

JLJLJLL iLJL A^AA JLLJLL
* 3 1 2 3 * 3 2 * 3 1 2 3 * 3 3 3 3

in each of which 3 is the designated value.
It is easy to check that these matrices verify the rules Rl and RII, the

axioms of B4 and the theses Wl and W2. On the other hand they falsify e.g.:
CCpqCNqNp, viz. for p/l, q/2: CC12CN2N1 = C3C32 = C32 = 2; ApNp, viz.
for p/l: A1N1 = A12 = 1; CNApqNp, viz. for p/l, q/l: CNAllNl = C32 = 2,
a.s.o.. Therefore, since the three-valued matrices Ml~M4 define the bi-
valued functors C,N,K and A from which certain properties of the bi-value-
ness are removed, system c4 determined by these matrices is a partial
system of the three-valued propositional calculus with one designated value,
And, since no set of the bi-valued matrices is sufficient to define such
properties of the considered functors which are required in [13], e.g. to
verify the axioms of B4, and in the same time to falsify for instance CNNpp
and CCpNpNp, matrices HU-U4 are the smallest matrices satisfying the,
given above, 'conditions. It should be here stressed that constructing these
matrices I disregarded entirely a problem whether these matrices are
verified by recursive model presented in [13].

It will be shown below that system <A defined by matrices HU-U4 pos-
sesses a finite axiom-system. For this reason we can consider matrices
U1-IM4 as the characteristic matrices of <A.

5. Axiomatization of <A. I shall prove in 6 that any thesis verified by
the characteristic matrices ϋl-HH of system^ is a consequence of the fol-
lowing mutually independent axioms

(i) {C}-axiom:

Fl CCCpqrCCrpCsp [Fl is Lukasiewicz's single axiom of {C}-system,

cf. [8]]

(ii) {C N} -axioms:

F2 CNpCpq [F2 is our previous All]

F3 CCNppNNp [F3 is our previous BIO]
F4 CpCNqNCpq [Ml and MZ verify F4]
F5 CNCpqNq [&l and MZ verify F5]

(Hi) {C N K}-axioms:

F6 CKpqp [F6 is our previous Bl]
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F7 CKpqq [F7 is our previous B2]
F8 CpCqKpq [F8 is our previous B3]
F9 CNpNKpq [MI-M3 verify F9]
F10 CNqNKpq [MI-M3 verify F10]
Fll CNNpCNNqNNKpq [MI-M3 verify Fll]

(iv) {C N yA}-axioms:

F12 CpApq [F12 is our previous B4]
F13 CqApq [F13 is our previous B5]
F14 CApqCCprCCqrr [F14 is our previous B6]
F15 CNApqCNpNq [Ml, MZ and U4 verify F15]
F16 CNApqCNqNp [ϋU, MZ and U4 verify F16]
F17 CNpCNqNApq [Ml, MZ and U4 verify F17]
F18 CCpNpCCqNqCNNpCNNqNApq [Ml, MZ and JH4 verify F18]

taken together with the rules of procedure Rl and Rll
It can be easily observed that the axioms F1-F3, F6-F8 and F12-F14

constitute system D, and that in the field of B4 we are able to prove without
any difficulty that {A14} ^- {Fll}, {A15} £ {F17} and {A16} & {F9;F10}.
On the other hand it has to be noticed that the axioms F4, F5, F15, F16 and
F18 are not the theses of B4.

5.1 The proof of axiomatization of system <Λ requires several theses
which will be deduced here from the axioms F1-F18. Since we have Fl, F6,
F7 and F89 in virtue of [8] and [10], we can assume any {C,K}-the sis without
a proof. The theses used in the investigations will be marked by asterisk.

*F19 Cpp [Fl]
*F20 CpCqp [Fl]
*F2l CqCpp [Fl]
*F22 CpCqCrp [Fl]

F23 CpCCpCqrCCrsCCsvCqv [Fl]
*F24 CCpqCCqrCpr [Fl]
*F25 CCqrCCpqCpr [Fl]

F26 CCprCCqrCCCpsqr [Fl]
F27 CCpqCCqCrsCrCps [Fl]

*F28 CCqrCCpCsqCpCsr [Fl]
F29 CCpqCCCprsCCqrs [Fl]

*F30 CCpqCCprCCqCrsCps [Fl]
*F31 CCrsCCCqvCpsCCCpqrs [Fl]

F32 CCprCCqrCCrsCCCpvqCts [Fl]
*F33 CCpqCCprCCpsCCptCCqCrCsCtvCpv [Fl]
*F34 CCqpCCqtCCqsCCqvCCpCtCsCvrCqr [Fl]
*F35 CCqrCCpCtCsCυqCpCtCsCvr [Fl]

F36 CCpvCCqvCCCprCCqrsCCvrs [Fl]
*F37 CCrsCCCqvsCCCptsCCpCqrs [Fl]
*F38 CCpCpqCpq [Fl]
*F39 CCpCqrCqCpr [Fl]
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F40 CCpCqrCCrsCpCqs [Fl]
F41 CCpCqrCsCvCqCpr [Fl]
F42 CCpCqrCCspCCsqCsr [Fl]
F43 CCpCqrCCsqCCrυCpCsv [Fl]
F44 CCpCqrCCCprCsvCqCsv [Fl]
F45 CCpCqrCCCprCsvCsCqv [Fl]
F46 CCpCqrCCCsυCqrCCspCqr [Fl]
F47 CCpCqrCCsCvpCCsCvqCsCvr [Fl]
F48 CCpCqrCCsCvCtpCCsCvCtqCsCvCtr [Fl]
F49 CCpCqCrsCqCrCps [Fl]
F50 CCpCqCrsCrCpCqs [Fl]
F51 CCpCqCrsCpCCυqCrCvs [Fl]
F52 CCpCqCrsCCsvCCCrvtCpCqt [Fl]
F53 CCpCqCrCstCCCqtCvzCvCrCsCpz [Fl]
F54 CCCpqpp [Fl]

*F55 CCCpqrCpr [Fl]
F56 CCCpqrCCrpp [Fl]

*F57 CCCpqrCCsrCCpsr [Fl]
F58 CCCpCqrsCrs [Fl]

*F59 CCCpCqrsCCprs [Fl]
F60 CCCprCtsCtCCqrCCpqs [Fl]

*F6l CCCCpqrsCCqrCps [Fl]
F62 CpCNpq [F39,p/Np,q/p,r/q;F2]
F63 CrCsCNpCpq [F229p/CNpCpq,q/r,r/s;F2]
F64 CrCsCpCNpq [F22,p/CpCNpq,q/r,r/s;F62]

*F65 CCpNpCpq [F46,p/Np,q/p,r/q,s/p,v/Cpq;F2;F38]
*F66 CCCpqrCCpNpr [F24,p/CpNp,q/Cpq;F6δ]
F67 CCpNpCrCpq [F66,r/CrCpq;F20,p/Cpq,q/r]
F68 CCpqCNqCpr [F57,q/Np,r/CNqCpr,s/q;F67,q/r,r/Nq;F62,p/q,q/Cpr]

*F69 CCCpqrCNpr [F24,p/Np9q/Cpq;F2]
*F70 CNCpqp [F69fp/Cpq,q/p,r/p;F54]
F71 CCCpNpqCNqp [F52,p/CCpNpq,q/Nq,r/CpNp,s/NCpNp,t/p,v/p;

F68,p/CpNp,r/NCpNp;F70,q/Np;F54,q/Np]
*F72 CpNNp [F55,p/Np,q/p,r/NNp;F3]
*F73 NNCpp [F729p/Cpp;F19]
*F74 CqNNCpp [F20,p/NNCpp;F73]
F75 CCpNpNNCpq [F24,p/CpNp,q/Cpq,r/NNCpq;F65;F72,p/Cpq]
F76 CCNNpNpNp [F56,p/Np,q/p,r/NNp;F3]

*F77' CNNNpNp [F69,p/NNp,q/Np,r/Np;F7β]
F78 CCNprCCNNprr [F23,p/CCNNpNpNp,q/CNpr,r/CCNNpNpr,

s/CCrNNpNNp,v/CCNNprr;F76;F24,p/CNNpNp,q/Np;
F56,p/NNp,q/Np;F56,p/r,q/NNp9r/NNp]

*F79 CCNNprCCqrCCNpqr [F60,p/Np,s/r,t/CNNpr;F78]
F80 CCNprCCqrCCNNpqr [F29,p/NNNp,q/Np,s/CCqrCCNNpqr;

F77;F79,p/Np]
F81 CCsCNNprCCsCqrCsCCNpqr [F42,p/CNNpr,q/Cqr,r/CCNpqr;F79]
F82 CCNpqCNqNNp [F51,p/CNNpNNp,q/CqNNp,r/CNpq,s/NNp,v/Nq;

F79,r/NNp Fl 9,p/NNp ;F2,p/q, q/NNp ]
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F83 CCNNpNNqCNqNp [F43,p/CNNpNNq,q/NNN(j,r/NNNp,s/Nq,v/Np;
F82φ/Np,q/NNq;F72,p/Nq;F77]

*F84 CNNCpqCpNNq [F27,q/CNqNCpq,r/NNCpq,s/NNq;F4;F82,p/q,q/NCpq]
F85 CNNqNNCpq [F82,p/Cpq,q/Nq;F5]

*F86 CCpNNqNNCpq [F57,q/Np9r/NNCpq,s/NNq;F75;F8δ]
F87 NNCNNpp [F86,p/NNp,q/p;F19,p/NNp]

*F88 CCpCqrCKpqr [F1;F6;F7]
*F89 CCKpqrCpCqr [F1;F8]
*F90 CCCKpqrsCCpCqrS [Fl Fβ]
*F91 CCCpCqrsCCKpqrS [F1;F8]
*F92 CCpKqrCpq [Fl Fβ]
*F93 CCpKqrCpr [F1;F7]
*F94 CCpqCCprCpKqr [F1;F8]
*F95 CCNNpNqNKpq [F8Oyq/Nq,r/NKpq;F9;Flθ]
*F96 CNKpqCNNpNq [F27,p/NNp,q/CNNqNNKpq,r/NKpq,s/Nq;

Fll;F83;P/q,q/KPq]
*F97 CmKpqmp [FS2,q/NKpq;F9]
*F98 CNNKpqNNq [F82,p/q,q/NKpq;Flθ]
*F99 CNNKpqKNNpNNq [F94,p/NNKpq,q/NNp,r/NNq;F97;F98]
*F100 CKNNpNNqNNKpq [F88,p/NNp,q/NNq,r/NNKpq;Fll]
F101 CNKpqCCNpNqNq [F27,p/NKpq,q/CNNpNq,r/CNqNq,s/CCNpNqNq;

F96;F79,q/Nq,r/Nq;F19,p/Nq]
*F102 CNApqCpr [F68,q/Apq;F12]
*F103 CCApqrCpr [F24,p/Apq;F12]
*F104 CNApqCqr [F68,p/q,q/Apq;Fl3]
*F105 CCApqrCqr [F24,p/q9q/Apq;F13]
*F106 CCCpsqApq [F26,r/Apq;F12;F13]
*F107 CCCprCCqrsCCApqrs [F36,v/Apq;F12;F13]

F108 CCCpvqCtNNApq [F32,r/Apq,s/NNApq;Fl2;F13;F72,p/NNApq]
*F109 CApqCCpqq [F50,p/Apq,q/Cpq,r/Cqq,s/q;F14,r/q;F19,p/q]
*F110 CCprCCqrCApqr [F49,p/Apq,q/Cpr,r/Cqr9s/r;F14]
*F111 CCCApqrsCCprCCqrs [F4O,p/Cpr^/Cqr,r/CApqr;Fllθ]
F112 CNpCNNqNNApq [F44,p/NApq,q/Np,r/Nq,s/NNq,v/NNApq;

F15;F82,p/Apq,q/Nq]
F113 CNqCNNpNNApq [F44,p/NApq,q/Nq,r/Np,s/NNp,υ/NNApq;

F16;F82yp/Apq,q/Np]
F114 CNqCCNqNNpNNApq [F81,p/q,q/NNp,r/NNApq,s/Nq;

F62,p/Nq,q/NNApq;FU3]
F115 CCNNqCCpυqCCNqNNpNNApq [F80,p/q,q/CCpvq,r/CCNqNNpNNApq;

FlU;FlO8yt/CNqNNp]
F116 CrCsCNqCNpNApq [F41,p/Np,q/Nq,r/NApq,s/r,v/s;F17]
F117 CrCsCCNpNqCNpNApq [F47,p/CNNpCNpNApq,q/CNqCNpNApq,

r/CCNpNqCNpNApq,s/r,v/s;F79,q/Nq,r/CNpNApq;
F63,p/Np,q/NApq;F116]

*F118 CNNApqCNqNNp [F45,p/Np,q/Nq,r/NApq,s/NNApq,v/NNp;
F17;F82tq/NApq]
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F119 CNpCCNqNNpNNApq [F81,p/q,q/NNp,r/NNApq,s/Np;
F112;F62,p/Np,q/NNApq]

*F120 CCNNpCNNqCCpvqCCNqNNpNNApq [F80,q/CNNqCCpvq,
r/C CNqNNpNNApq Fl 19;F115 ]

*F121 CNNApqCNNpCNNqCCpNpq [F53,p/CpNp,q/CqNq,r/NNp,s/NNq,
t/NApq,v/NNApq,z/q;F18;F71,p/q,q/NApq]

F122 CCpNpCCqNqCCNpNqCNNqNApq [F47,p/CNNpCNNqNApq,
q/CNqCNNqNApq,r/CCNpNqCNNqNApq,s/CpNp,v/CqNq;F79,q/Nq,

r/CNNqNApq;F18;F64,p/Nq,q/NApq,r/CpNp,s/CqNq]
*F123 CCpNpCCqNqCCNpNqCCNqNpNApq [F48,p/CNNqNApq,q/CNpNApq,

r/CCNqNpNApq,s/CpNp,υ/CqNq,t/CNpNq;F78,p/q,q/Np,r/NApq;
F122;F117,r/CpNp,s/CqNq]

F124 CNNApqCNNNpNNq [F24,p/NNApq,q/CNqNNp,r/CNNNpNNq;
F118;F82,p/q,q/NNp]

F125 CNNApqCCNNpNNqNNq [F81,p/Np,q/NNq,r/NNq,s/NNApq;
F124;F21 ,p/NNq,q/NNApq]

F126 CNNApqANNpNNq [F24,p/NNApq,q/CCNNpNNqNNq,r/ANNpNNq;
F125;F106,p/NNp,q/NNq]

F127 NNApNp [F120,q/Np;F62,p/NNp,q/CCpvNp;F19,p/NNp]
F128 CNKpqANpNq [F24,p/NKpq,q/CCNpNqNq, r/ANpNq;

F101;F106,p/Np,q/Nq]

It should be noticed that it has shown here that the axioms F1-F18 im-
ply not only the theses marked by asterisks, but also F128, F126, F99, F127
and F87, i.e. Vuckovic's axioms A14, A15, A16 and the theses Wl and W2
respectively. Thus, we have proved that c4 contains B4.

5.2 Besides the theses which are proved in 5.1 and are there marked
by the asterisks we have to establish four simple metarules which will be
used in our further discussion. Namely, the inductive reasonings show
without any difficulty that in cAy i.e. in the system generated by the axioms
F1-F18 taken together with the rules R! and RII,for any formulas which are
accepted as the theses and have the structures indicated in the contents of
the, given below, metatheorems, the following forms of deduction:

MRI For any n>l,{CaιCa2C...Can_ιCoιnβ} Z~ {CanCa1Ca2C...Can-1β}

[Proof by F39, F25 and induction]

MRII If\-Cβγand \-Cγβ, then, for any n>l, {Ca1Ca2C...Canβ} ^ {Ca^azC

...Canγ} [Proof by F24, F25 and induction]

MRIII ΓfhCβγ, \-Cβδand [-CγCδβ, then, for any w > l , {CaιCa2C...Coίnβ} ^

{Ca1Ca2C...Canγ;Cθί1Ca2C ...Canδ}

[Proof by F24, F30, F25 and induction]

MRIV ifVCβy, hCβδ, \-Cβε, \-Cβζand [-CγCδCeCζβ then, for any n> 1,

{CaιCa2C...Canβ} Z {CaιCa2C...Canγ; Ca^azC.Cotnδ; CaγCa2C „..

Cane}; CθίλCa2 C...Canζ} [Proof by F24, F33, F24 and induction]

hold.
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NOTES

1. A notion "the degree of completeness" is defined in [ll], definition 5,
p. 35.

2. Concerning a provability of Wl and W2 in Heyting's system, cf. [l] and

[2]. Also, [9], p. 58.
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