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§5%

In [11], p. 72, point (¥ii), and p. 76, point (Xi), it is proved that the
formulas C1, B2 and B3 which are the particular instances of formulas C
and B, cf. [7], p. 274, are such that CI is a consequence of E;, B2 follows
from @ and B3 is provable in the general set theory. Now we shall show:

1) that the following particular instances of D

D2 For any cavdinal number wm and any aleph a, if 2% = 2%, then m=a.
and
D3 For any cardinal number m and any aleph w, if 2™ = 22a, then m =23,

are consequences of Cantor’s hypothesis on alephs.
2) that the following particular instance of C

C2 For any cardinal number m and any aleph u, if a<m, then 28 <2™,

is a consequence of D2;
3) that the formulas DI and CI, which are, obviously, the instances of
D2 and C2 respectively, are equivalent in the field of general set theory;and
4) that the following formula

E; For any cavdinal number m and any alephn u, if m <22a, then m < 2%

and which is such that E, is its substitution follows from @.
We prove it as follows:

(xii) Cantor’s hypothesis on alephs implies formulas D2, D3 and E,.

(m) Proof of D2. Let us assume the conditions of D2, viz. that

*The first and the second parts of this paper appeared in Notre Dame Journal of
Format Logic, v. III (1962), pp. 274-278, and v. IV (1963), pp. 67-79. They will be
referred to throughout this third part as [7] and [11] respectively. See the addi-
tional Bibliography given at the end of this part. An acquaintance with [7] and [11]
is presupposed.
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(81) m is anarbitrary cardinal number, a is an arbitvary aleph and 2™ = 2%,
Since a is an aleph, 2° is an infinite cardinal. Hence, by (81),
(82) m is a cardinal which is not finite
and, moreover, theve exists an ovdinal number o such that
(83) a = 84
Hence, in virtue of @, (81) and (83) we have
(84) 2* =2%e=R, ,=2" >n
Therefore, by (82) and (84),
(85) our arbitrary cardinal m and cavdinal 2™ are alephs
Hence, due to (85) we can establish that
there exists an ovdinal number B such that
(86) m = Rg
which, by @, implies
(87) 2™ = 2% =N8g,,
Hence, by (84) and (87),
(88) Rgy1=Rgis
which, gives at once
(89) B+1=a+1

Since the ordinal numbers B+ 1 and o + 1 are of the first kind, we can
conclude from (89) that

(90) B=«a
which due to (83) and (86) shows that
91) m =a
Thus, formula D2 follows from @.
(n) Proof of D3. Assume the conditions of D3, viz. that
(92) m is an arbitrary cavdinal, a is an arbitvary aleph and 2™ = 22",
Since due to (92) a is an aleph, in virtue of @ we have
there exists an ovdinal number o such that
(93) a =8, and 2% = 8y,
Hence, by (93),
(94) 2% is an aleph
and, therefore, (92) and (94) together with D2 imply
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(95) m =23
which shows that D3 is a consequence of @.
(n) Proof of E;. Assume the conditions of E,, viz. that
(96) m is an arbitrary cardinal number, s is an avbitvary alephand m <9?*
Then these conditions together with @ imply
theve exists an ovdinal number o such that
(97) @ = 8, and 2 = 8o, , and 22" = R,
Hence it follows from (96) and (97) immediately that
(98) either m is a finite cardinal ov wm is an aleph
But, both cases of (98) imply the desired conclusion, viz. that
(99) m < 2°

because: 1) if m is finite cardinal and a is an aleph by assumption, then,
obviously (99) holds, and 2) if on the other hand m is an aleph, then (99)
follows from (96) and E, which, cf. [6], is a consequence of @ alone. Thus,
Cantor’s hypothesis on alephs implies E,.

(%iii) Formula D2 implies C2. Let us assume D2 and the conditions of C2,
viz. that

(100) m is an arbitrary cavdinal, a is an arbitrary aleph and a < m
Hence (100) together with general set theory implies at once
(101) either 2% = 2™ or 28 < 2™

Since the first case of (101), viz. 2® = 2™, together with (100) and D2
gives a = m which is inconsistent with our assumption (100), the second
case of (101), namely

(102) 28 < 2m
holds. Therefore, C2 follows from D2.

(%i¥) Formula D1 is equivalent to CI. Since the formulas DI and CI are
the instances of D2 and C2 respectively, it is evident that they follow from
a.

(p) Formula D1 implies C1. Assume the conditions of C1, viz. that
(103) a and b are the arbitrary alephs and a < b

Hence, it follows from general set theory and (103) that
(104) either 2° = 2t or 28 < 2t

Since the first case of (104), viz. 2% = 2V, together with (103) and DI
gives a =b which is incompatible with our assumption (103), the second
case of (104), viz.
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(105) 28 < 2b
holds and, therefore the proof is completed.
(g) Formula C1 imblies DI. Assume the conditions of D1, viz. that
(106) a and b are the arbitrary alephs and 2° = 2b
Hence, by (106) and the law of trichotomy for alephs,
(107) eithera =bhora<bhorh<a

Since in virtue of (106) and CI the second and the third cases of (107),
viz. a <b and b < a imply 2* < 2" and 2% < 2% respectively which contra-
dicts our assumption (106), the first case of (107), viz.

(108) a =&

holds which shows that DI follows from C1. Thus, we can establish that
{D1}=={C1}. On the other hand, I note that I was unable to prove that C2
implies D2.

§6

In [6], pp. 60-63,1 have proved that {E;;E,} == {¢}. In this and the sub-
sequent paragraphs I shall present other sets of formulas such that each of
these sets is equivalent to Cantor’s hypothesis on alephs.

(XV) The set of the formulas E;and C2 is equivalent to €. It is evident that
it sufficies to prove that formulas E; and C2 imply €. Moreover, since E,
follows, obviously, from E; by substitution, we have to prove only E,.
Hence, let us assume the conditions of E,, viz. that

(109) a and b are the arbitrary alephs and h < 2*
Then, by (109) and C2,

(110) 2t < 22

which together with (109) and E; implies

(111) either 2 = 2* or 2" < 28

Since C2 implies C1I and,therefore, D1, cf. (%Xi¥), and since B3 is a con-
sequence of general set theory, cf. (iX) in [7], we can apply DI and B3 to
(109) and (111) giving

(112) b <a
at once. And, therefore, E, follows from E; and C2. Thus, {E;;C2} = {d@}.

(%v1) Since formula D2 implies C2, cf. (¥iii), point (¥¥) allows us to estab-
lish that also {E;; D2} =={a}.

(%Vii) The set of formulas E;, D3 and D1 is equivalent to €. Obviously, it is
sufficient to prove that the former formulas imply E,. Hence, assume the
conditions of E,, i.e. point (109) which implies at once
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(112) either 2¥ = 22° oy 20 < 22°

Since the first case of (112), viz. 20 = 22° together with (109) and D3
gives b =2 which contradicts our assumption (109), the second case of
(112), viz.

(113) 2b < 22"
holds, and, therefore, by (109) and E,.
(114) either 2P = 28 or 20 < 28

Since we have DI and B3, cf. (iX) in [11], these two formulas together
with (109) and (114) allow us to conclude that

(115) h < &

which shows that E; follows from E;, D3 and DI. Thus, since E, is a con-
sequence of E; by substitution, we know that {E;;D3;D1} = {@}, and, more-
over, since {D1} = {C1}, that {E;;D3;C1} = {@}.

87

The following two formulas

E, For any alephs a and b, if 28 < 22° then 2 < 28
and

Es For any alephs a and b, if 2° < 2, then 2* < b

are, obviously, consequences of Cantor’s hypothesis on alephs, because E,
and E; are the particular substitutions of E; and C, cf. [6], p. 58 and [11],
p. 71, respectively. I shall show here that there are several sets of formu-
las such that each of these sets is equivalent to @ and, moreover, each of
them contains either E, or E;. We proceed as follows:

(XViii) Formulas C2 and E, imply E,. Assume the conditions of E,, viz. that
(116) a and b arve the avbitravy alephs and b < 2%
Then, it follows from (116) and C2 that
(117) 20 < 22°
which together with (116) and E, implies
(118) either 28 = 2% o 28 < 28

Since, as we know, C2 implies DI and B3 is a consequence of general
set theory, (116), (118), C2 and B3 yield

(119) h < &
which shows that E; is a consequence of C2 and E,.

(Xi%X) Formulas E; and C1 imply E,. Assume the conditions of E4, viz. that
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(120) a and b are the arbitravy alephs and ob < 92*

Then, by (120), C1, formula A (which is provable in general set theory,
cf. [7], p. 74), and the general properties of alephs,

(121) either 2 = 2% or 28 < 2% o 28 < 2B
Hence, in virtue of E;, (120) and (121) we know that
(122) either 26 < 2% or 2% < b

Since due to (120) b is an aleph, formula 2 < b says that 2% is also an
aleph. Hence, by (120), (122) and C1,

(123) either 2% < 28 or 28 = h 0y 22" < 2B

But, the second and the third cases of (123) contradict our assumption
(120), because they, together with (120), give an impossible conclusion viz.
that 2! < 20, Hence, the first case of (123), viz.

(124) 2b < 28

holds which shows that E, follows from E; and C1. I do not know whether
E; and CI imply E;.

(XX) The set of formulas E, and D2 is equivalent to @. 1t is evident that it
is sufficient to prove that the former formulas imply @¢. Since, as we know,
C2 follows from D2, we have, by (X%Viii), E, at our disposal. Now, let us
assume the condition of @, i.e. of Cantor’s hypothesis on alephs, viz. that
(125) a is an arbitrary ovdinal number
In virtue of the known theorem, which says that
N

T3 For any ovdinal nmumber a, 2% e+l < 9227

and which is provable without the use of the axiom of choice and Cantor’s
hypothesis on alephs®, and point (125) we can establish that

(126) either 28a+1= 229 oy oRa+1< 2N
which together with D2 and E, implies at once
(127) either Rq, =28 oy 2¥a+1 < 2%a

i.e., obviously, that

(128) either 8,,,=2%2 or 8, , < 2%«

Since in virtue of E, the second case of (128), viz. a1 < 2““, gives
an impossible conclusion, namely that 8,,,<R,, the first case of (128),
viz.

(129) 8,4, = 28a
holds which shows that @ is a consequence of E, and D2.

(XXi) The set of formulas E5 and D2 is equivalent to @. It follows obviously
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from points (XiX) and (%X). Thus, we can establish that {E,; D2} == {Ez; D2}
=={@}. I do not know whether in the discussed sets, D2 can be substituted
by C2.

(%x%ii) The set of formulas E,, E5 and D1 is equivalent to €. It is sufficient
to prove that the former formulas imply @. Therefore, assume the condi-
tion of @, i.e. point (125). Hence in virtue of T3 we have also point (126)
which together with E, yields

(130) either 28 < a¥e+1 oy gRa+1 < o¥a

Since the second case of (130), viz. either aRa+1 = o¥a gy gRar1 gRa
together with D2 and B3, cf. point (1) in [11], p. 76, implies an impossible
condition, namely 8, ;< 84, the first case of (130), viz.

(131) 2% < 2%an
holds which in virtue of E, yields that
(132) either 282 =8, or 2% <N,

But, the second case of 132, viz. 28a <Rgy+,, is obviously false.
Hence, the first case of (132), viz.

(133) 2% =R,

holds and, therefore, we know that {D2; E,; Es} =={@}. Since, as it was
proved above, {C1} ={D1}, and E, implies C1, we can conclude that {@}—=
{D1; Ey; Es}=={CI1; E,; E;}={E;; E;; E;}. It is unknown whether the
formulas belonging to each of the last three sets are mutually independent.

§8

The following two formulas
K1 For any aleph a, 2* is an aleph
and

K2 For any cavdinal number wm which is not finite and any aleph u, if
m < 2%, then m is an aleph

are obvious and rather banal consequences of Cantor’s hypothesis on alephs.
But, each of the following sets {E;; K1} and {E,; K2} is equivalent to @.

Proof: Assume the conditions of C, viz. that

(134) n is an arbitravy cavdinal numberwhich is not finite, a is an arbitrary
aleph and n < 2%

Then in virtue of KI or K2, point (134) and the general set theory we
can establish that

(135) u is an aleph
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Hence, by E,, (134) and (135),
(136) n < a

which proves that C follows from E; and K1 or K2. Therefore, we have
{€} ={E;; K1} = {E,; K2}.
NOTES
8. Tl}is theorem is due to Tarski and it was announced without a proof in
[2], p. 311, theorem 81. Cf. also [3], p. 397.
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