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A SIMPLE PROOF OF FUNCTIONAL COMPLETENESS IN
MANY-VALUED LOGICS BASED ON
X UKASIEWICZ’S C AND N

ROBERT E. CLAY

Past investigations, [1], [2] and [3], have used the integers 1, 2, ... ,n
as truth-values for an n-valued logic. In such a logic, the truth-functions
associated with C and N have the following definitions

C(p, g9 =max (1, g—p + 1); N@p)=n-p+ 1.

Here we shall use n + 1 - valued logics with truth-values 0, 1, ... ,n As
a result, the above definitions simplify to

C(p, q) = max (0, g - p); N(p) =n - p.

Not only does this simplify the computations involved, but also makes a
simple line of proof apparent. No logical tools are used, and the only non-
trivial number-theoretic result used is *If (a, b) = d,l then there are integers
x and y for which ax + by = d.”

Theorem 1. Any function? which takes the value 0 once and 7 otherwise is
generated by C and N.

1. C(p, p): 0.
2. NQ)=n.
3. a (b, ... p,)=min(n, p, +p,+...+p,)is generated for m> I.

Proof is by induction.
C(0, p) = p, = min (n, p)) = &, (p,)-

Suppose that @, is generated for k > I.

N(ak(pl, .. ,pk))=max O, n-(@, +.. .+pk).

l(a, b) = d means that d is the greatest common divisor of @ and b.
All functions used in this paper will have 0, 1,...,n as the domain for each
argument and will take values in this set.
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COppr N@p(p, .- ,0)) = max(0, n = (p, + ... + pp) = pp,,)=
max (0, n~(p, +. . . +pk+l)).

N(C(pk“, N(ay(p,, - - - » b)) = min(n, p, + . . . + Ple+1) = ak-u(f’n" .
Dpta)
4. ﬁm (p) = min(n, mp) is generated for m > 0.
B, (p) = min(n, 0) = C(p, p)
B,®)=a, (,...,p)form> 1.

n,p=m

50 ¥ (P) = {0, pdm is generated for 0 < m < n.
Proof is by induction.
0,p=0
B,®) = { " 4 o N(B,, () = v, (p)-

Suppose that y;(p) has been generated for 0 i <k 7.
) . () o n, 0<p<k (0,...,k-—1,k,...,n

a =a e ey =
p & (P Vi {O,ks_psn

There is an s > 0, for which 0 < sk<n (s + 1) k.

sp, 0<p <k 0,1,...,k, k+l,...,n
Bs'(p)={ . (
n,k<p<n 0, py...,sky, n-m==mu-m
(e, B, on= {2 =" Oreveskel, Ky tl,...on
a _(a(p), = .
AL 'Bs P {”, bk Ne--nomeeen | Sk, D--e--ee- n
Niayatp), Bom =47~ =% Oyevvsh=l, k ,ktl,...,n
a , =
a0, B, {0, pEk /S 0, n-sk, O---wmnee- 0

Since sk < n, n— sk > 1. Thus there is a t, 0 <t < n, for which t(n - sk)
> n.

ﬂ’p=k

yi (@) = B,(N(a(a(p), B () = { 004k

0, =m
n,p+m
7o reere (Boreeerby) = am(‘o‘kl(#,),---,Bkm(l’,,,))={

, is generated for 0 < m < n.

6. 8 (0)=N(y, (o) = {
0, k; = p; for I<i<m
n, otherwise

is generated form> 1 and 0 < k; <nfor 1 Li < m. 0Q.E.D.

Theorem 2. If { is a function of m variables, m > 1, with the value Cpavrerp
1

m
in the k,, ...,k  -th place, then [ is generated by C, N, and all the con-
stants ¢, , . . . .

kl’ ’ km
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8. m ... ,km(p‘, s b= C(ekl, ok (bys - - - ’p”‘)’cku---’km)=

1

{ckv ek k1=pi for 1<i<m {Cl‘x’ .

_ "k:n, k=p, for I<i<m
max (0, ¢, ek~ n), otherwise 0, otherwise
1 *'“m

9. a(,,_,_,)”l (ﬂo,...,o(Pu- "ypm)s" ',ﬂkl"' .,km(plf"'9pm)v"'7
"n,...,n(pl""’pm))=Ck”_ p fork;=p, 1<igm QE.D.

e 9y "m

Theorem 3. If a and b are constants, 0 < @ < b < n, then every constant
function of the form ax + by, where 0 < ax + by < », is generated by C, N, a,
b.

Proof. By induction on |x| + |y]|.

If |x|+|y|l=0,x=0=y. a0+ b0=0=C(p, p)-

Suppose the theorem is true if |x| + |y| < k. Consider 0 < ax+ by <n,
where |x| + |y| = &.

Casel. x=0. a0+ by=0by= By (b).

Case 2.1. x> 0. agax+ by<n.

Then 0 < a(x = 1) + by < mn— a. Since |x = 1| + |y| <|x| + |y| =%, a(x=1)
+ by is generated. Therefore @, (a(x ~ 1) + by, a) = ax + by.

Case 2.2. x>0. O<ax+by<a.

Since ax> a, y<0. b—a<a(x=1)+b(y+ 1)<b; |x-1|<|x| and |y + 1|
<|yl,so|x=1|+|y+ 1| <k. Therefore a(x — 1) + b(y + 1) is generated.
C(b,a)=a~-b, az(a(x— D+b(y+ 1), a=b) = ax + by.

Case 3. x<0. Sinceax<0,y>0.
Case 3.1. b<ax+ by<n

Then 0 L ax + b(y - 1)< n~b. Since |y-1|<|y|, |x| + |y = 1| < k. There-
fore ax + b(y ~ 1) is generated. @, (ax + b(y ~ 1), b) = ax + by.

Case 3.2. 0<ax+ by<b.

Then 0 < b - (ax + by) = a(= x) + b(I = y). |- x| = |x|and |I - y| < |y]|, so
|- x| + |1 = y| < k. Therefore b — (ax + by) is generated. C(b - (ax + by),
b) = ax + by. Therefore in every case, ax + by is generated. O.E.D.

Theorem 4. If (i, i, ... ,im) = d, where i, = n, then d is generated by
C, Nyiyy oo oyi

,m'

Proof. By induction on m.
¥ m=0,d=n=N(C(p, p)).

Suppose that (n, i, ... ,z'k) = dk has been generated. Then afk_,_1 = (n,
il, .o ’ik+1) = ((n, 7, ...,4), ik.“) = (dy, ik#)' Therefore there are
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integers x and y so that d;x + Y = dy.,- Consequently, by Theorem 3,
dk+1 is generated.

Theorem 5. 1f (n, i, ...,i ) = d, then the set of constant functions gen-
erated by C, N, i, . . ., is

C(d)={kd| ngg;}

Proof. /Sk (d) = kd for 0 < k g_;-’, so ((d) is generated. Further, if kd and jd
are in C (d), then C(kd, jd) = max (0, (j — k) d) and N(kd) = n — kd = (3—:1@) d
are in C (d). Therefore C(a’) is closed under the application of C and N.

1
Also, since 4 divides i, for each &, i, =-§‘ d is in C (d). Consider any con-
stant function, f(p,, . cosbg By - .. ,1), generated by C, N, 7, ... ,1 .
Substitute values from{ (d) for the variables. By the two facts given im-
mediately above, { must take on a value from ( (d) for this substitution.
Therefore these are the only constants generated.

Theorem 6. An n + 1 - valued logic using the values 0, I, ... ,n and based
on C, N, and the constant functions i, . .. ,i  is functionally complete if
and only if (4,, 7,, . . . , i, )= 1. n=i,.

Proof. 1If (i, - . . ,im) = 1, then by Theorem 5, C(I), which is all the con-
stant functions, is generated. Now applying Theorem 2 we see that every
function is generated. If (¢, ... ,im) = d > 1, then by Theorem 5, no con-

stant function outside of ((d) is generated. In particular, I is not generated.

Corollary. An n + 1 - valued logic using the values 0, I, ... ,n and based
on C and N is functionally complete if and only if n = 1.

Proof. Set m = 0 in Theorem 6. The greatest divisor of » is I if and only
ifn=1.
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