Notre Dame Journal of Formal Logic Volume III, Number 2, April 1962

A SIMPLE PROOF OF FUNCTIONAL COMPLETENESS IN MANY-VALUED LOGICS BASED ON ŁUKASIEWICZ'S C AND N

ROBERT E. CLAY

Past investigations, [1], [2] and [3], have used the integers $1, 2, \ldots, n$ as truth-values for an n-valued logic. In such a logic, the truth-functions associated with C and N have the following definitions

$$C(p, q) = \max(1, q-p+1);$$
 $N(p) = n-p+1.$

Here we shall use n + 1 - valued logics with truth-values $0, 1, \ldots, n$. As a result, the above definitions simplify to

$$C(p, q) = \max(0, q - p);$$
 $N(p) = n - p.$

Not only does this simplify the computations involved, but also makes a simple line of proof apparent. No logical tools are used, and the only non-trivial number-theoretic result used is "If (a, b) = d, then there are integers x and y for which ax + by = d."

Theorem 1. Any function 2 which takes the value 0 once and n otherwise is generated by C and N.

- 1. C(p, p) = 0.
- 2. N(0) = n.
- 3. $\alpha_m(p_1, \ldots, p_m) = \min(n, p_1 + p_2 + \ldots + p_m)$ is generated for $m \ge 1$. Proof is by induction.

$$C(0, p_1) = p_1 = \min(n, p_1) = \alpha_1(p_1).$$

Suppose that α_k is generated for $k \ge 1$.

$$N(\alpha_k(p_1, \ldots, p_k)) = \max(0, n - (p_1 + \ldots + p_k).$$

¹⁽a, b) = d means that d is the greatest common divisor of a and b.

²All functions used in this paper will have $0, 1, \ldots, n$ as the domain for each argument and will take values in this set.

$$C(p_{k+1}, N(\alpha_k(p_1, \ldots, p_k))) = \max(0, n - (p_1 + \ldots + p_k) - p_{k+1}) = \max(0, n - (p_1 + \ldots + p_{k+1})).$$

$$N(C(p_{k+1}, N(\alpha_k(p_1, \ldots, p_k)))) = \min(n, p_1 + \ldots + p_{k+1}) = \alpha_{k+1}(p_1, \ldots, p_{k+1}).$$

4. $\beta_m(p) = \min(n, mp)$ is generated for $m \ge 0$.

$$\beta_n(p) = \min(n, 0) = C(p, p)$$

$$\beta_m(p) = \alpha_m(p, \ldots, p) \text{ for } m \ge 1.$$

5.
$$\gamma_m(p) = \begin{cases} n, p = m \\ 0, p \neq m \end{cases}$$
, is generated for $0 < m \le n$.

Proof is by induction.

$$\beta_n(p) = \begin{cases} 0, \ p = 0 \\ n, \ p \neq 0 \end{cases}, \ N(\beta_n(p)) = \gamma_0(p).$$

Suppose that $\gamma_i(p)$ has been generated for $0 \le i < k \le n$.

$$\alpha(p) = \alpha_k(\gamma_0(p), \ldots, \gamma_{k-1}(p)) = \begin{cases} n, & 0 \le p < k \\ 0, & k \le p \le n \end{cases} \begin{pmatrix} 0, \ldots, k-1, & k, \ldots, n \\ n - \cdots - n, & 0 - \cdots - 0 \end{pmatrix}$$

There is an $s \ge 0$, for which $0 \le sk < n \le (s+1) k$.

$$\beta_{s}(p) = \begin{cases} sp, \ 0 \le p \le k \\ n, \ k$$

$$\alpha_{2}(\alpha(p),\beta_{s}(p)) = \begin{cases} sk, \ p = k \\ n, \ p \neq k \end{cases} \qquad \begin{pmatrix} 0,\ldots,k-1, \ k, \ k+1,\ldots,n \\ n-\dots n, \ sk, \ n-\dots n \end{pmatrix}$$

$$N(\alpha_{2}(\alpha(p), \beta_{s}(p))) = \begin{cases} n - sk, p = k \\ 0, p \neq k \end{cases} \begin{pmatrix} 0, \dots, k-1, k, k+1, \dots, n \\ 0 - \dots - 0, n - sk, 0 - \dots - 0 \end{pmatrix}$$

Since sk < n, $n - sk \ge 1$. Thus there is a t, $0 < t \le n$, for which $t(n - sk) \ge n$.

$$\gamma_k(p) = \beta_t(N(\alpha_2(\alpha(p), \beta_s(p)))) = \begin{cases} n, p = k \\ 0, p \neq k \end{cases}$$

6.
$$\delta_m(p) = N(\gamma_m(p)) = \begin{cases} 0, & p = m \\ n, & p \neq m \end{cases}$$
, is generated for $0 \le m \le n$.

7.
$$\epsilon_{k_1}, \dots, \epsilon_m(p_1, \dots, p_m) = \alpha_m(\delta_{k_1}(p_1), \dots, \delta_{k_m}(p_m)) = \begin{cases} 0, & k_i = p_i \text{ for } 1 \leq i \leq m \\ n, & \text{otherwise} \end{cases}$$

is generated for
$$m \ge 1$$
 and $0 \le k_i \le n$ for $1 \le i \le m$. Q.E.D.

Theorem 2. If f is a function of m variables, $m \ge 1$, with the value c_{k_1}, \ldots, c_{k_m} in the k_1, \ldots, k_m -th place, then f is generated by C, N, and all the constants c_{k_1}, \ldots, c_{k_m} .

8.
$$\pi_{k_1}, \ldots, k_m (p_1, \ldots, p_m) = C(\epsilon_{k_1}, \ldots, k_m (p_1, \ldots, p_m), c_{k_1}, \ldots, k_m) =$$

$$\begin{cases} c_{k_1}, \ldots, k_m, & k_i = p_i \text{ for } 1 \leq i \leq m \\ \max(0, c_{k_1}, \ldots, k_m - n), & \text{otherwise} \end{cases} = \begin{cases} c_{k_1}, \ldots, \overline{k_m}, & k_i = p_i \text{ for } 1 \leq i \leq m \\ 0, & \text{otherwise} \end{cases}$$

9.
$$\alpha_{(n+1)}^m (\pi_0, \ldots, 0, (p_1, \ldots, p_m), \ldots, \pi_{k_1}, \ldots, k_m, (p_1, \ldots, p_m), \ldots, \pi_{m_1, \ldots, n}, (p_1, \ldots, p_m)) = c_{k_1, \ldots, k_m}$$
 for $k_i = p_i, 1 \le i \le m$. Q.E.D.

Theorem 3. If a and b are constants, $0 \le a < b \le n$, then every constant function of the form ax + by, where $0 \le ax + by \le n$, is generated by C, N, a, b.

Proof. By induction on |x| + |y|.

If
$$|x| + |y| = 0$$
, $x = 0 = y$. $a0 + b0 = 0 = C(p, p)$.

Suppose the theorem is true if |x| + |y| < k. Consider $0 \le ax + by \le n$, where |x| + |y| = k.

Case 1. x = 0. $a0 + by = by = \beta_{v}(b)$.

Case 2.1. x > 0. $a \le ax + by \le n$.

Then $0 \le a(x-1) + by \le n-a$. Since |x-1| + |y| < |x| + |y| = k, a(x-1) + by is generated. Therefore $\alpha_{2}(a(x-1) + by, a) = ax + by$.

Case 2.2. x > 0. $0 \le ax + by < a$.

Since $ax \ge a$, y < 0. $b - a \le a(x - 1) + b(y + 1) < b$; |x - 1| < |x| and |y + 1| < |y|, so |x - 1| + |y + 1| < k. Therefore a(x - 1) + b(y + 1) is generated. C(b, a) = a - b, $\alpha_1(a(x - 1) + b(y + 1), a - b) = ax + by$.

Case 3. x < 0. Since ax < 0, y > 0.

Case 3.1. $b \le ax + by \le n$.

Then $0 \le ax + b(y - 1) \le n - b$. Since |y - 1| < |y|, |x| + |y - 1| < k. Therefore ax + b(y - 1) is generated. $\alpha_2(ax + b(y - 1), b) = ax + by$.

Case 3.2. $0 \le ax + by < b$.

Then $0 \le b - (ax + by) = a(-x) + b(1-y)$. |-x| = |x| and |1-y| < |y|, so |-x| + |1-y| < k. Therefore b - (ax + by) is generated. C(b - (ax + by), b) = ax + by. Therefore in every case, ax + by is generated. Q.E.D.

Theorem 4. If $(i_0, i_1, \ldots, i_m) = d$, where $i_0 = n$, then d is generated by C, N, i_1, \ldots, i_m .

Proof. By induction on m.

If
$$m = 0$$
, $d = n = N(C(p, p))$.

Suppose that $(n, i_1, \ldots, i_k) = d_k$ has been generated. Then $d_{k+1} = (n, i_1, \ldots, i_{k+1}) = ((n, i_1, \ldots, i_k), i_{k+1}) = (d_k, i_{k+1})$. Therefore there are

integers x and y so that $d_k x + i_{k+1} y = d_{k+1}$. Consequently, by Theorem 3, d_{k+1} is generated.

Theorem 5. If $(n, i_1, \ldots, i_m) = d$, then the set of constant functions generated by C, N, i_1, \ldots, i_m is

$$C(d) = \left\{ kd \mid 0 \le k \le \frac{n}{d} \right\}$$

Proof. $\beta_k(d) = kd$ for $0 \le k \le \frac{n}{d}$, so C(d) is generated. Further, if kd and jd are in C(d), then $C(kd, jd) = \max(0, (j-k) d)$ and $N(kd) = n - kd = \left(\frac{n}{d} - k\right) d$ are in C(d). Therefore C(d) is closed under the application of C and N. Also, since d divides i_k for each k, $i_k = \frac{i_k}{d} d$ is in C(d). Consider any constant function, $f(p_1, \dots, p_s; i_1, \dots, i_m)$, generated by C(d), C(d) for the variables. By the two facts given immediately above, C(d) must take on a value from C(d) for this substitution. Therefore these are the only constants generated.

Theorem 6. An n+1 - valued logic using the values $0, 1, \ldots, n$ and based on C, N, and the constant functions i_1, \ldots, i_m is functionally complete if and only if $(i_0, i_1, \ldots, i_m) = 1$. $n = i_0$.

Proof. If $(i_0, \ldots, i_m) = 1$, then by Theorem 5, $\mathcal{C}(1)$, which is all the constant functions, is generated. Now applying Theorem 2 we see that every function is generated. If $(i_0, \ldots, i_m) = d > 1$, then by Theorem 5, no constant function outside of $\mathcal{C}(d)$ is generated. In particular, 1 is not generated.

Corollary. An n + 1 - valued logic using the values $0, 1, \ldots, n$ and based on C and N is functionally complete if and only if n = 1.

Proof. Set m = 0 in Theorem 6. The greatest divisor of n is 1 if and only if n = 1.

BIBLIOGRAPHY

- [1] J. B. Rosser and A. R. Turquette, Many-valued logics, Amsterdam (North Holland Publishing Co.), 1952.
- [2] T. Evans and P. B. Schwartz, On Stupecki T-functions, The Journal of Symbolic Logic, vol. 23 (1958), pp. 267-270.
- [3] R. E. Clay, Note on Mupecki T-functions, The Journal of Symbolic Logic, (to appear).

University of Notre Dame Notre Dame, Indiana