
I l l

ON THE SINGLE AXIOMS OF PROTOTHETIC

BOLESLAW SOBOCINSKI

CHAPTER II*

In this chapter I propose to present the proofs relevant to the preceding
discussion of the single axioms of system ©«- of protothetic. First of all I
will prove 1) that thesis An mentioned in Chapter I, § 3, and also each of
the theses AQ, A. and A , can serve as a single axiom of ©c , and 2) that
Lesniewski's metatheorem L discussed in § 3, can be replaced by my
metatheorem S, whose conditions constitute a relatively small fragment of
the original prerequisites set out by Leέniewski. In addition a number of
questions closely connected with the topics mentioned above will also be
discussed in what follows.

It is clear, that if metatheorem S is true, then in order to establish that
this or that protothetical thesis in which only equivalence occurs as a con-
stant term, can be adopted as a single axiom of ©^ one must be able to
prove that relatively to the rule of procedure of ©^ the thesis under consid-
eration satisfies the requirements of S. And it is evident too, that the truth
of metatheorem S depends exclusively on whether or not it is possible, by
applying the said rule, to deduce metatheorem L from the assumptions of S.
Thus, from the methodological point of view it would appear that thesis An

should be discussed after metatheorem S has been established. There are,
however, serious reasons for adopting a reversed order of presentation. For
it so happens that the proof concerning An, though long and complicated, is
much more elementary than the deductions required for the proof of S. Hence,
it seems to me that in the beginning it is better to show that An (and also
AQ, A. and A ) implies the conditions of S. This will enable one who is
not familiar with the methods of deduction in protothetic, to understand
better subsequent proofs. Moreover, the proof of the main theorem, due to

*The first part of this paper appeared in Notre Dame Journal of Formal Logic, vol. I
(I960), pp. 52-73 It will be referred to throughout the remaining parts, as [35].
See additional Bibliography given at the end of this part.
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which metatheorem S holds and due to which almost all the results discussed
here hold, is patterned on idea underlying my 1937 investigations of the
mutual relations among theses Kly K2, K3 and K4 , although, it must be
said, these investigations do not involve as complicated deductions as those
which establish metatheorem S. For this reason, although the results ob-
tained by me in 1937 have been, in a sense, superseded by metarule S, I
will present them here because they will make the proof of the metarule
more understandable.

The detailed plan of this chapter is as follows: In § 4 I shall prove
that thesis A^ implies conditions Ct and έ of metatheorem L. Hence, a
fortiori it satisfies metatheorem S which (assuming the correctness of S)
proves automatically that An can serve as a single axiom of ®y In § 5 a
proof will be outlined that the same holds for Ao, A. and A . In § 6 I shall
show that given the first four points of the rule of ©^ condition C of L and
a small fragment of theory © , viz. theses Fl and F2, imply the whole of
© , i.e. condition Ct of Lesniewski's metatheorem L. Incidentally, several
new metatheorems concerning the completeness of © 5 will be established
in paragraphs 5 and 6. In § 7 a proof will be presented that without the ap-
plication of the point € (concerning higher extensionalities) of the rule of
procedure either thesis K4 is a consequence of Kl, K2 and K3 or K3 follows
from Kl, K2 and K4, providing that we have theory ©, condition C of L and
the extensional form of the definition of conjunction. In addition, axiom-
system 5, mentioned in § 3, will be discussed in this paragraph. Finally,
in § 8 it will be demonstrated with the help of the point € of rule of © - that
condition ί) of metatheorem L results from condition 0 and theory®, which
means that it follows from condition C and theses Fl and F2 in virtue of
deductions shown in § 6.

Thus, § 6 and § 8 will contain the proof of metatheorem S, § 7 will form
an explanatory and historical introduction to § 8 and §§ 4-5 will contain de-
ductions concerning theses A — A .

The rule of procedure of © ^ allows us to add a new thesis to the sys-
tem on condition that this thesis results from one and only one of the points
which constitute the rule. Thus, e.g., if a thesis A is a consequence of
two theses B and C (previously proved) in virtue of suitable substitutions
in B and C, the distribution of the quantifier in B and the subsequent de-
tachment, then, in fact, 4 new theses have to be inscribed in the roll of the
system. I shall follow this prescription only in the first few steps in § 4 in
order to show how it works. Later I shall use combined proof lines in which
the application of points /3, γ and 8 of the rule will be indicated jointly.
The applications of points ot and € will always be pointed out separately as
the rule requires. Moreover in the course of deductions several metarules of
procedure will be established and put to use. In this way about a thousand
uninteresting steps will be omitted without affecting the rigorousness of the
deductions.

Concerning the proof lines, mentioned above, it should be noted that:
1) each such line will be closed by parentheses of the form "[" and w ] " ;
2) An inscription, e.g., w [β, p \ q; C, r\s]" indicates that in B, which is a
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thesis of the system, a meaningful formula q is substituted for the variable

p; similarly in C, which again is a thesis of the system, s is substituted for

r; then the required distributions of the quantifiers are made in B and C, and,

finally, the operation of detachment is performed; 3) Whenever a distribution

of the quantifier is made as a separate step in the course of deductions, it

will be indicated by letter β. E.g., when this point of rule is applied to a

result of detachment; 4) The proof line of the theses obtained in virtue of

points a and € have the form "[α]» and "[>]"; 5) Symbols: SI, SII, etc. oc-

curring in the proof lines indicate the application of derivative metarules

of procedure, whose validity has been proved already.

Also, it should be noted that symbols *0 n and W2W are not defined con-

stants, but typographical abbreviations of *[w] . un and "[u] . u . = . [u] . u"

respectively. The use of these symbols allow us to present theses and

proofs in a shorter, clearer and more understandable manner.

§4. As a single axiom of protothetic we assume:

A n [p q ] : : p = q . = .\ [/] . \ f (p f (p [u] . u)) . = : [ r ] : f ( q r) . = . q = p

we then adjust to it the rule of procedure of system ©5. In virtue of this

rule, so adjusted, we deduce from A the following theses:

Dl [p] . p = As (p) [in virtue of point α of the rule]

Al [ f ] : : p s As (p) . EE .-. [/] .'. / (p f (p [u] . « ) ) . = : [r] : / (As(p) r) . Ξ

. As (p) = p [Λ^; in virtue of point 8 of the rule]

A2 [ p ] . p = A s (p) . EE / . [p / ] .\ f(pf(p [u] . u)) . EE : [ r ] : / ( A s (p) r ) . Ξ

. A s (p) = p [Al; in virtue of point β of the rule]

A3 [p f] .*. f(pf(p [u] . « ) ) . = : [r] : / (As (?) r) . EE . As (p) Ξ p
[Al; Dl; in virtue of point γ of the ru le]

D2 \p q] .'.p=q . = . A s (p = q) : = Vr (pq) [By α]

The proof of D1-D2 shows clearly how points Of, β, γ and 8 of the rule

are to be used if we wish to add to the system new theses. In what follows

abridged proofs will be given involving steps made in virtue of a joint ap-

plication of β, γ, and δ. Care will be taken that this does not lead to mis-

understandings. It should be noted that Dl is a definition of "assertium*

for one propositional argument and D2 is a definition of *verum" for two

propositional arguments. Obviously, the defined constant functor wAs* be-

longs to the semantical category of proposition—forming functors for one

propositional argument. And, Dl introduces this new category into the sys-

tem. On the other hand no new category is introduced by D2 since the de-

fined constant wVrw belongs to the same category as the variable w / w or the

constant w = n in An or A3, which are proposition—forming functors for two

propositional arguments.

A4 ίp q] . Vr (p q) [By β, 8, γ : D2; Dl, p | p = q]

A5 [pr] : Vr (As (?) r) . = . As (p) = p [A3, f | Vr; A4, q \ Vr (p [u] . a )]

A6 [p] . As (p) = p [A5; A4, p | As (p), q \ r]
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Now, we are able to prove the following two metarules of procedure:

SI. If in the field of our system we have a thesis of the following struc-

ture'.

U, b9 c, . . . ] : Φ. = . ψ

(where either the main quantifier does not exist or a, b, c9 . . . are the vari-

ables which belong to this quantifier and occur as free in the formula "Φ .

= . Ψ"), then we can always add to the system the following thesis:

[a, ft, c, . . . ] : Ψ . a . Φ

The proof is evident for anyone, who has understood how A6 i s obtained

from Dl.

Dem.:

a) [a, b9 c, . . . ] : Φ . = . Ψ [The assumption]

b1) [a\ b\ c\ . . . ] : Φ . = . Ψ [From the point Ct; by means of substi-
tution we change the variables occur-
ring in the main quantifier of Ct,so that
none of them remain equiform with any
variable occurring in any of the quanti-
fier in A .]

n

C) [ « ' , b', c', . . . , / ] : : / ( Φ / ( Φ [ a ] . u)) . = .\ [r] .'. / ( Ψ r) . s : Ψ . a .

Φ U β , p I Φ, q I Ψ; b]

b) [«', b\ c ' , . . . , r] .*. Vr (ψ r) . a : Ψ . a . Φ

[ C , / I Vt; A4, p I Φ, q I Vr (Φ [«] . a)]

e) [ β \ 6 ' , e , . . . ] : Ψ . a . Φ [b;A4,p\Ψ,q\τ]

f) [a, ft, c, . . . ] : Ψ . s . Φ [ £ by the way of substitution we re-

turn to the same variables which occur

in the main quantifier of α •]

Q. E. D.

SII. If in the field of the system we have two theses of the following

structure:

[a,b, c, . . .] : Φ . = . Ψ

and

[a,b, c f . . . ] . Ψ

(where a, b9 c9 . . . are variables which belong to the main quantifiers of

these theses and occur either in *Φ" or in WΨ* or in both), then we can al-

ways add to the system the following thesis:

[a,b,c, . . . ] . Φ

The proof of SII is obvious in virtue of SI and the points β and γ of
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the rule. As a scheme of reasoning SI says that although we have not yet

got the thesis:

[p q] : p EE q . EE . q EE p 6 4

nevertheless, we can always transform any thesis of the form "[a, b, c, . . . ]

: Φ . = . Ψ" into a thesis of the form "[a, b, c, . . . ] : Ψ . = . Φ". Evidently,

SI I is a sort of detachment rule working from right to left.

We proceed by proving:

A7 [p /] .'. / (As (p) f (As (p) [«] . «)) . s : [r] : / (? r) . s . p s As (p)

[An, p I As (p), q I p; A6]

A8 [pr]:Vr(pr).^.p^ As (p)

[A7, f I Vr; A4, p | As (p), q \ Vr (As (p) [u] . u)]

D3 [p q r] . '. Vr (p r) . = . p = q : = . Φ a ±p± (q r) [a 6 5 ]

A9 [pr].Φa 4rp± (As (p) r) [D3, q \ As (p); A8]

A10 [p r] : Φ a <rp± (p r) . = . p = As (p)

lA7,f\ Φ a<rP±;A99 r\ Φ a 4rP± (As (p) [u] . u)]

All [p r] . Φ oe ±p± (p r) [A 10; Dl; SII66]

A12 [pr]:Vr(pr). = .p^p [D3, q \ p; All; SIl]

A13 \p].ρ = ρ [A12, r\ q; A4]

Thus, the law of identity for equivalence follows from A .

A 1 4 [p / ] . \ f ( p f ( p [u] . u ) ) . = : [ r ] : f ( p r ) . = . p = p [ A n , q \ p ; A 1 3 ]

Now, we are going to prove two metarules of procedure which make

clear that although we have not yet got in the system the thesis:

[pq].\pSq. = : [ β : f ( p ) . = .f ( q ) 6 7

or any other thesis which, at this stage of the system, could allow us to

make the extensional deductions directly, we nevertheless can reason in

accordance with the law of extensionality for any expression which is a

proposition.

SHI. If two formulas ot and β belong to the semantical category of

propositions and if in the field of our system we have two theses of the

following structure-.

U , b, c , . . . ] : o e . E E . β

and

[a,b,c, . . . ] . Φ ( α )

(where WΦW i s a constant or a multi-link proposition—forming functor for one

propositional argument, and where the variables a, b, c, . . . may occur as

free variables not only in noe", and "βn but also in w Φ n ) , then we can al-

ways add to the system the following thesis-.



116 BOLESfcAW SOBOCINSKI

[a,b,c, . . .] . Φ(/3)

Dem.:

α) [a, b, c, . . . ] : a = β [The assumption]

ft) [a, b, c, . . . ] . Φ (ce) [The assumption]

C ) [α', b', c\ . . . ] : α . = . β [α as in the point b of the proof of Si]

b ) [ a \ b ' , c 7 , . . . ] . Φ ( o e ) [b ; as in the point b of the proof of Si]

C) [ « ' , b ' , c ' , . . . , f ] : : f ( a f ( α [ a ] . « ) ) . = .\ [r] .: f (β r) . = : β . =

•« K , ? | α , ? | j8; ά

f) [β' f fc», c , . . . , p, q, Λ : : Vr (Φ (p) r) . Ξ : Φ (q) . H . Φ (p) .-. Ξ . ψα
4 ?•)• (? Ό [1° virtue of point a of the rule. Thus, expression f is

a scheme of a definition. If any free variables occur
in "φ", *ψα" is a multi-link functor for these varia-
bles. E.g., "ψα" can have the following form "Ψα
4a>, b>,c>, . . . 4 ]

8) [ ί , i t , c , . . . , f , r ] . Ψ α ^ ( f f ) tf. 9 I P; A12, p | Φ (p)]

ί)) [β», fc% c', . . . , r] .-. Ψα -^α^ (/3 r) . s : j8 . s . α
Le, / I Ψ α f «•)•; B, P I α , r I ψ o f « 4 (« [«] .«)]

t) [β», fr , c\ . . .] :β . = . a U SI]

ί) [β .i'.c r].Ψo^(|3r) [§; i S//]

f) [β», 6% c', . . . , r] .-. Vr (Φ (/3) r) . s : Φ (α) . = . Φ (β)

UP IJS, ? | « ; i;«/]

0 [β f, fc'.c',...]: Φ ( « ) . = . Φ(j8) [ f ; A4, p | Φ (j8), 9 | r]

nθ [«', b',c', . . .] . Φ(j8) [ I ; b]

tl) [Λ, fe, c, . . . ] . Φ (/3) [ttt; as in point f of the proof of Si]

Q. E. D.

S1V. If under the same conditions as in SHI in the field of the system
we have two theses of the following structures:

[a, b, c, . . . ] : α . s . / 3

and

[a,b,c, . . .] . Φ(j8)

then we can always add to the system the following thesis:

[a9b9c,.. . l . Φ ( o t )

The proof of SIV follows at once from SI and SHI.
It has to be noted that whenever we apply 57/J (or SIV) we must intro-

duce into our system two auxiliary definitions in order to perform the re-
quired deductions. We need one definition in order to transform the thesis
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with respect to which we want to apply extensional reasoning into a thesis

of the form similar to our assumption b , i.e. into a thesis which is formed

by means of a proposition-forming functor for one propositional argument.

The other definition is required in order to perform point f in the proof of

SHI. It i s not difficult to construct such definitions for any given case and

I shall omit them when using SHI or SIV. Only, for the purpose of illustra-

tion will I give the definitions when SHI is used for the first time. Namely:

A15 [p q] .'. p = q . = . As (p = q) : = . p = p [A12, r \ q; D2; Sill]

In order to give a complete proof of A15, we must introduce a definition:

D n [p q r] : : p = q . = . As (p = q) : = r .'. = . X a ±p q± (r) [α]

From D 21 and D2 we get:

/ ip q\ . Xa <rP q± (Vr [p q)) [D %, r \ Vr (p q); D2]

Thesis I corresponds to our assumption b and thesis A12 (r\q) to — Ct .

Then, we can easily prove the theses corresponding to c — e Next we

introduce the second definition corresponding to point f :

D SB [p q r s t] : : Vr (X a ±s t± (p) r) . ^ : X a ζ s t± (p) . ^ . X a <-s t±

{q).\ = .Xβ4st±ί.q± (pr) [<*]/

and subsequently we get the theses corresponding to points G — n, i e. we

finally obtain a thesis:

// [p q\ . X a 4rp q± ίp = p)

which in virtue of D 21 (r \p,= p) and SΠ g i v e s A15.

A16 [p q] .'. p= q . = . p = q : = . p = p [A15; A6, p \ p = q; Sill]

All [p q] . ' . p = p . = :p = q . = . p = q [A16; Si]

D4 [pq].\p^p . = .q=qι = .Vtι(qp) [a68]

Now, in order to make the formulas clearer and easier to read I intro-

duce the following two abbreviations: "0" will be used for w[w] . u* and

*ln for W[M] . u . = . [u] . u". We should always remember that these sym-

bols ( w 0" and w l " ) are used here only as typographical abbreviations; they

are not introduced into the system by means of definitions although defini-

t ions: 6 9

DI [u] . u . = . 0

and

DII [u] . u . = Au] . u :== . 1

could be added to the system in accordance with the rule of procedure.

Hence, e.g., the real form of A18, to be proved next, is:

Yrι ([it] . «, [ « ] . ii . = . [ « ] . II)

A18 VΓJ (0 1)

[D4, p I [II] . « . = . [«] . «, q I [«] . u; A16, p \ [u] . u, q \ [u] . II]
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A19 1 . s . V^ (0 0) [A17, p \ 0, q \ 0; D4, p \ 0, q \ 0; Sill]

A20 Vrx (0 Vtι (0 0)) [A18; A19; Sill]

A21 [r] : Vtj (0 r) . = .0 = 0 [A14, P \ 0, f \ Vrx; A20]

A22 [r] . Vrx (0 r) [A21; A13; p \ 0; Sll]

A23 [p]:p&p . = . 1 [D4, q \ 0; A22y r \ p; Sll]

A24 ίp]: 1 . as .p = p [Λ23; Si]

A25 I S J . S . I S O E I S . I S O

[A13, p \ I s . 2 = 0; A23, p | 2; S/V]

A26 [p] : : 0 = . 0 = 1 : = . ' . 0 = : 0 = . p = p

[Λ23, p I 0 = . 0 = 2; Λ24; S///]

A27 I>] :•: 0 s . 0 = 2 : s 2 .". = : : 0 = : 0 s . p s p / . = 2

[Λ23, p I 0 = . 0 = 2 : = 2; A26; Sill]

D5 [p q] : : p ?z : p = . q-z q .'. ~ . Vt2(p q) [α]

A28 [ p l Λ O s . O s l s Vr2 (0 p) [A26; D5, p | 0, q \ p; SIV]

A29 [r] : : 0 = . 0 = 2 : = 2 . ' . = : Vr2 (0 r) . = . 2

[A27, p\r;D5,p\0, q\ r; Sill]

A3O 0 = . 0 = 2 : = 2 / . = : [r] : Vr2 (0 r) . = . 2 [A29; j8]

The proof of A30 deserves our attention, because A30 follows from

A29 by the distribution of the quantifier. Since we do not know any other

way of obtaining A30 in this stage and since it i s a necessary step to get

A32 and consequently the important A37, it is clear that the point β of the

rule plays an essential role in the deductions presented in this paragraph.

A31 0 = . 0 = 2 : = : [r] : Vr2 (0 r) . = . 2

[A14, p\O,f\ Vr 2 ; A28, p \ Vr 2 (0 0) ; SIV]

A32 0 = . 0 = 2 : = .". 0 s . 0 == 2 : = 2 [A31; A30; SIV]

D6 [p q] .'. p = . p= q : = . Φ β (q p) [a]

A33 Φ β (2 0) . = : Φ β (2 0) . = 2 [A32; D6, p \ 0, q\ 2; Sill]

A34 Φ j8 (2 Φ β (2 0)) [D6, p \ Φ β (1 0), q \ 1; A33]

A35 [r] : Φ β (2 r) . = . 2 H 2 [ A M , f > | I , / | Φ j8; Λ ^ l

A36 [r] . Φ j8 (2 r) [A35; A13, p \ 2; Sll]

A3! [p] :p = . p= 1 [D6, q \ 2; A36, r \ p; Sll]

A38 [p] .p=l . = p [A37; Si]

A39 [p q] .'.p= :p = . q= q [A37; A24y p \ q; Sill]

A40 [p q] ,\p= q. = :p= 1 . = q [A13, p \ p = q; A37; Sill]

A41 [p q] .". p= q . s : p = 2 . = . q= 1 [A40; A31\ p \ q; Sill]
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A42 \p].:ρ=.ρ=l:=l [A23; A37; Sill]

A43 [p] .'. 1= : p = . p , = 1 [A42; Si]

A44 [p] .'. 1 = . 1 = 1 : = : p = . p = 1 [A43, p \ 1; A43; Sill]

Now, although we have not ye t got the t h e s i s :

[ / ] : : / ([«] . « ) . s / . / ( [ « ] . a . = . [iι] . « ) . s : [p] : / ([«] . u) . = . f

(?)7°
or any other thesis which, at this stage of the system, could allow us to
make the deductions of generalization directly, we are in a position to
prove a scheme of reasoning which says that in the field of the system we
can always reason in accordance with the principle of bivalence for propo-
sitions. Viz: we prove the following metarule of procedure:

SV. If in the field of the system a formula

[a, b, c, . . . , p] . Φ (p)

possesses a sense, i.e. if it is a well formed formula, in which *pn belongs
to the semantical category of propositions, and if the variables a, b, c . . .
are free in *Φn which is a simple or a multi-link functor belonging to the
category of proposition-forming functors for one propositional argument,
and, finally, if the following two formulas

[a,b,c, . . . ] .Φ([«] . u)

and

[a, b,c,...]. Φ([u] . i i . s . [«] . K)

are already proved in the system, then we can always add to it as a new
thesis the formula

[a, b, c, . . . , p] . Φ (p)

Dem.:

α) [a, b, c, . . . ] . Φ (0) [The assumption]

b) [a, b, c, . . .] . Φ (1) [The assumption]

C) [a\ b\ c\ . . . ] . Φ (0) [ α, as in point b of the proof of Si]

b) [a9, b\ c\ . . . ] . Φ (1) [ b, as in point b of the proof of Si]

0 \a\ b',c9,...,p]:Φ(0). = .p = p [A39, p \ Φ (0) , q \ p; c]

f) la', b',c',...,p]:Φ(l). = .p = p [A39, p \ Φ ( 1 ) , q \ p; b]

9) [a9, b\ c \ . . . , p , q] .\Φ(q). = .p = p: = . Ψ β (p q)

[in virtue of point a of the rule, as in point f of the proof of 57//]

ί)) [a', b>,c',...,p].ψβ(pθ) [i,q\ 0; e]

t) [α\ b\ c', . . . , p] . Ψ β (p 1) [i,q\ 1; f]
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j) [α«, b\ c>, . . . ,p] : Ψ j 8 ( p 0 ) . β . 1 [A37, p | Ψ β (p 0); ί) ]

ϊ) [a', b\ c', . . . , p] . Ψ β (p Ψ β (p ίu] . u)) [ t j SIV]

I) [ί , i ' ( c ' ί , r ] : Ψ | 3 ( f f ) . a . M ί [A14, / | Ψ β; ϊ ]

m) [a\ b', c', . . . , p, A . φ β (p r) [ I A13; SIl]

n) [a',b>,c',...,p]:Φ(p).s.p&p [Q , q \ p; m, r \ p; SIl]

0) [a', b>, c\ . . . , p \ . Φ (p) [ n ; A13; SIl]

p) [a, b, c, . . . , p] . Φ {.p) [ 0 a s in point f of the proof of Si]

Q.E.D.

The proof of SV shows that A^ satisfies the condition c of the meta-

theorems L and S. Just as in the case of applying SHI (or SIV) whenever

we use SV, we must introduce into our system two auxiliary definitions.

Since the construction of such definitions is not difficult, I shall omit them

using SV. Only for purposes of illustration will I give the definitions, when

SV is used for the first time. Viz.:

A45 [p] .-. 1 ~p . = : I = 0 . = . p = 0

[A17,p \ 1 , q\0;A39, p \ l = 0,q\0;SV]

In order to have a complete proof of A45, we must introduce the follow-

ing definition:

D g [p] : : 1 = p . = : 1 = 0 . == . p = 0 .'. = . X γ (p) [a71]

From D © and A39 we get:

/// X y (0) [D (£, p I 0; A39, p \ 1 = 0, q \ 0]

and from D © and A17:

IV Xγ(l) [D®9p I l;A17,p \ 1, q \ 0]

Theses /// and IV correspond to our assumptions Ct and 6 respectively.

Then an easy proof gives theses corresponding to points C - f. Next, we

introduce a second definition according to point 0 :

D © ίp q] . \ X γ (q) . = . p = p : = . X 8 (p q) [α]

and, subsequently, we get the theses corresponding to points f) - p, i.e.,

finally, we obtain

V [p] . X γ (p)

which in virtue of D β and SIl gives A45.

Our deductions proceed as follows:

A46 [p] : : 1 = . l~p : = . \ 1 = 0 . = : 1 = 0 , = p

[A45, p \ 1 = 0; A44y p \ 1 = 0 ; SV]

A47 1 = : 1 = . 1 = 0 .'. = . 1 = 0

[A46, p \ 1 = 0; A39, p \ 1 = 0, q\ 1 = 0; SIV]

A48 [p] /. l=p . = . 1=0 : = : 1 = .p = 0 [A25; A16, p \ I, q \ 0; SV]
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A49 1 = . ' . 1 = . 1 = 0 : = 0 [A48, p \ 1 = . 1 = 0; A47]

A50 1 = . 1 = 0 : = 0 [A49; A13, p \ 0]

A51 [q] .'. 1 = . 1 = q:= q [A50; A42, p \ 1; SV]

A52 [q] .'.0= .0= q: = q [A38, p \ 0; A42, p \ 0; SV]

A53 [p q].\p = .p=q: = q [A52; A51; SV72]

A54 [p q] .'. q=:p= .p = q [A53; Si]

A55 [p q] .\ q= 1 . = :p = .p = q [A54; A37, p \ q; Sill]

A56 [q] .\0 = q. = : 1 = . q = 0 {A55, p \ 1, q \ 0; A37, p \ 0 = 0; SV]

A57 [p q] .'. p = q . = :p = 0 . = . q = 0 [A56; A45, p \ q; SV]

A5S [p qr] . ' . p = q . = : p = r . = . q~r [A57; A41; SV]

A59 [p qr] : :p = q . = Λ p s . q = r :=r
[A58, r\ q=r; A53, p \ q, q \ r; Sill]

A60 [p q] : :p = Λ f s . 1= q: = q [A59, q\ l,r\ q; A38; SHI]

A61 [p q] : :p= . 1 = q:= q .'. = p [A60; Si]

A62 [p q] :•: p= : : p = . 1 = q : = 1 .'. = q [A60; A37, p \ p = . 1 = q; Sill]

A63 ίp q] : : p s :•: p s . 1 = q : s 1 .'- s 1 : : s q
[A60; A379 p \ p = . 1 = q : = 1; Sill]

A64 [p] ':': p = . 1 = p : s :•: p = . 1 = p : = 1 .'. = 1 : : = p i ! = :•: p ~ . 1 =
p : = 1 .'. = 1 : : = p [A61, q \ p; A63, q \ p; Sill]

D7 [p q] :-: 0 = . p = 0 : = . q = 0 .". = . q = 0 : : = . Φ γ (p q) [oe]

A65 0 = . l = 0 : E . Φ y ( 1 0 ) = 0 . . Ξ . Φ y ( 1 0 ) = 0

[A64, p \ 0 ; D 7 , p \ l,q\0; S i l l ]

A 6 6 Φ y ( l Φ y (I 0)) [D7, p\ 1, q \ Φ γ (1 0); A65]

A67 [r] : Φ γ (1 r) . = . 1 = 1 [A14, p \ 1, f \ Φ γ; A66]

A68 [q] . Φ γ (1 q) [A67, r \ q; A13, p \ 1; SIl]

A69 [q] : : 0 = . 1 = 0 : = . q = 0 .'. = . q = 0 [D7, p \ 1; A68; SIl]

A70 0 = . 1 = 0: = .0 = 0 [A69, q \ 0; A13; p \ 0; SIl]

All 0 = . 1 = 0 [A70; A13, p \ 0; SIl]

A71 constitutes a crucial point in this proof, since it gives:

A72 [p] : p = . l = p [All; A37, p \ 1; SV]

A73 [p]: l = p m = .p=l [A37; A72; Sill]

A74 [p] : ρ = 1 . = . l = ρ [A73; Si]

A75 \fi]:p = 0 . = .0 = p [A13, p \ 0 = 0; A73, p \ 0; SV]
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A76 [p q] : p = q . = . q = p [A75; A74; SV]

Thus, we have proved that equivalence is symmetrical, and that as
from now we can dispense with SI and SI I.

All [pqr].\p=q. = : q = r . = .p = r

[A58; A76y p \ p = r, q | q = r; Sill]

A78 [pqr].'.p=q. = : r = q . = .p = r [A77; A76, p \ q, q \ r; Sill]

Since A78 is Lukasiewicz's axiom £.1 of the classical equivalential
propositional calculus and since the rules of procedure of that theory are,
obviously, included into the rule of ©^, I have proved that from An system
©can be obtained, which satisfies condition Ct of metatheorem L. Condi-
tion C of that metatheorem is also satisfied by A as can be seen from
metarule SV. Since condition 6 of L is superfluous as will be shown in § 8
of this chapter, we have a proof that An can serve as a single axiom of sys-
tem ©5 of protothetic. It is worth noting that although we did not use point
€ of the rule of procedure so far, we were able to obtain very strong de-
ductive results. On the other hand I am unable to prove that An (or AQ or Ap

or A ) is a single axiom of © ^ without the application of reasonings, which
will be discussed in § 8 and in which point € plays an essential role.

Evidently Fl and F2 (appearing in the metarule S) can be derived from
A78 alone by substitution and detachment. Fl has been proved already as
it results by substitution from A13 (p \ [u] . ύ) and F2 is obtainable easily
as follows:

A79 [pq].\p=:q=p. = q [A54, p \ q, q \ p; A76, p | q, q | q EE p; Sill]

§ 5. A simple inspection of the deductions presented in the preceding
paragraph will convince us that each of the theses:

Ao [pq]::p=q. = .\ if] . \ / {q f (q M . u)) . = :[r] : f (p r) . = . q = p

Ap [p q]::p^q. = .'. [/] . \ / (p f (q [u] . 11)) . Ξ : [r] : / (q r) . Ξ . q Ξ p

Λq [ f ί l : : p M . = -'• W •'• / (* / (P M «)) Ξ : W / (P ') Ξ q = P

can serve as a single axiom of system © y It is evident that the theses
A 1 - A14 and the metarules SI and SH can be obtained from each of the dis-
cussed theses in exactly the same way as they were obtained from A^. An
entirely analogous proof of SHI exist for Ap. In the case of AQ and A a
little modification has to be introduced in order to get this metarule. Viz.,
a scheme of a definition used in point f has to have now the following form:

f *) [a', b\ c f , . . . , p , q , r ] : : Vr ( Φ ( f ) r) . s : Φ (p) . s . Φ (q) .'. Ξ .

ψ* α^(fr)

from which and points α - C the analogues of points q - Tΐ can be obtained
without any difficulty. Now, the metarules SIV and SV and the theses A15 -
A78 are provable in each of these cases in exactly the same way as in § 4,
since no direct application of axiom is used in order to obtain them. Hence
each of the discussed theses can serve as a single axiom of system ©c.
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A more penetrating analysis of the demonstrations given in § 4 allows
us to establish the following metatheorem S*:

METATHEOREM S*: An axiom-system of protothetic having the rules
of procedure inferentially equivalent to the rule of © ^ yields a complete
system, if in its field the following conditions are satisfied:

I. Thesis A14 is provable.
II. Metarules SI and SIII are provable.

In fact in virtue of the rule of © 5 alone we have Dl, D2, A4; and SII
and SIV follow from SI and SHI, hence, as an inspection of § 4 shows, one
can obtain A12, A13, SV and A15 - A78 using only the conditions of S*.
Therefore, having A78 and SV, we get the required conditions of S. It seems
to me that without the application of point € (concerning higher extension-
alities) it is impossible to prove An (or Ao, Ap, Aq) from the conditions of
S*. But it is easy to deduce axiom A^ mentioned in § 3

Dem.: Obviously, in virtue of S* we have All and A18. And due to
Lukasiewicz's proof, the following two theses can be obtained from A18.

Ml [p q r s t] :•: s = . t = t : = : : s = . ' . p = q . = : r = q . = . p = r

M2 [p q] .*. p = : p = q . = q

Therefore, we have:

M3 [f p q] :•: [r] : / (p r) . Ξ . p = p : - : : [r] : : / (p r) . Ξ .'. p Ξ q . Ξ : r =

q . = . p = r [Ml, S I / (p r), t \ p; and the application of point β

of the rule in respect to r]

M4 [f p t] : :[r] : / (p r) . Ξ . p Ξ p : Ξ t . ' . Ξ : / (p f (p [u] . u)) . Ξ ί

[A77, H / (f> / «> M . «»» ί I W : / (p r) . s . f Ξ

p, r I ί; j8; A24, in virtue of S*]

M5 [f p q] :•: f (p f ( p [u] . u)) . ^ : : [r] : : f (p r) . = .'. p = q . = : r EE q .

^ . p ^ r

[M4, t \ [ r \ : : f ( p r ) . = . \ p = q . = : r = q . = . p = r; β ; M3]

* t \lfp q \ : . : f ( p f(p M . u ) ) . = : ' Λ r ] : : f ( p = q . = q r ) . = . ' . p = q . ^
:r= q . = ,p = r [M5; M2; SHI, in virtue of S*]

Q.E.D.

On the other hand there is no simple way of obtaining the conditions of
S* from A[ alone. Indeed, using elementary deductions we can get A18 from
it at once as, in virtue of the rule, we have at our disposal Dl, D2 and A4.
Therefore, we have also SI (by A18) and we can prove easily:

Nl [fpq\:f(Pf (P M - «)) . s . [ r ] . / ( f δ ί . s ? r )

But, A14 and SHI cannot be deduced directly from A18 and Nl, as the
last thesis gives only an extremely narrow possibility of extensional de-
ductions. In order to obtain the discussed thesis A14 and metarule SHI
from those assumptions we have to use metatheorem S, i.e. we have to prove
previously that its condition C (SV) follows from A18 and NL And this
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can be done only by an application of point £ of the rule and the reasonings
which mutatis mutandis are similar to those to be presented in § 8 of this
chapter. I will return to this question in chapter HI of the present paper.

To conclude these considerations concerning the structure of A I would
like to make the following historical remark. The methods of deductions
due to which SI and SV were obtained in the preceding paragraph had been
established by Lesniewski and applied to axioms Aa - Am. On the other
hand the proofs by which A13, A37, All and metarule SHI are obtained from
A in § 4 were previously unknown. The "decompositions" of Aa - Am are
much more simple than the decomposition of An and do not involve so com-
plicated deductions.

NOTES

54. Cf. [35], p. 67.

55. Cf. [35], p. 63.

56. Cf. [35], pp. 67-68.

57. Cf. [35], pp. 65-66.

58. Concerning this rule cf. [35], § 2, pp. 56-63. Also, cf. [5], pp. 59-78.

59. It is well known, c/., e.g., [31], pp. 1-8 and [20], pp. 97-100, that Tarski
has established that it is possible to define conjunction in terms of
equivalence provided one is allowed to use quantifiers and variable
functors. I.e., such definitions can be established in a system of the
calculus of propositions in which variables of higher semantical cate-
gories are allowed, and in which quantifiers are used with appropriate
rules to bind variables of any category. It is also known that defini-
tions suggested by Tarski are of two different types.

The following propositions can serve as example of the one type
of definition:

1 [pq\:. Λf\ι:p = . Λr]:p=.f(r): = :[r]:q=.f{r):: = .p. q

2 [p q] :•: [f\ : : q = .'Λr] z p = . f (r) : Ξ : [r] : q s . f\r) :: = .p.q

In this type of definitions the arguments of definiendum ("pv and
*qn in the examples given above) do not occur as arguments of the
variable functors in the definiens (we have 7 (r)n in the definiens but
not 7 (p)» and «/(?)»).

The other type of definitions can be examplified with the aid of
the following propositions:

3 [ p q \ : : l f ] . . p s : f ( p ) . s . f ( q ) . ' . s . p . q

4 [ p q ] : : [ f ] . . q S : f ( p ) . S . f ( q ) . \ = . p . q

In 3 and 4 the arguments of the definiendum (i.e. *pn and *qn in 3
and 4) occur as arguments of the variable functor in the definiens (in
the formula 3 and 4 we have 7 (P)" a n d 7 (q)*)
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Only in the field of a theory of propositions which is enriched by

the addition of the law of extensionality for propositions we are able

to give a proof that both types of these definitions are inferentially

equivalent. Cf. [28], [29], [31], pp. 1-8 and [20], pp. 97-100. It is

quite obvious that in the field of full systems of protothetic, such as

©j-©5, this equivalence holds.

Definitions of both types admit of modifications. Thus, for in-

stance, we have Tar ski's thesis;

5 [p q] :•: [ / ] : : ? = . \ [r] . / (r) . = : [r] : q = . / (r) :: = . p . q

cf. [ 6 ] , p. 27, which be longs to the first type. On the other hand, the

formulas e s t a b l i s h e d by L e s n i e w s k i :

6 [ p q ] : : [ / \ . ' . p s : f ( q ) . s . f (1) .; = . p . q

7 [p q\: : [ / ] . ' . ? a : / ( p ) . s . / ( ! ) . - . = . p . ?

cf. [ 6 ] , p. 2 4 , a n d t h e d e f i n i t i o n s , s u g g e s t e d by m y s e l f :

8 [p ql.'Af] if(pq). = .f(U): = .p. q

9 [p ql . '. [/] : / (p 1) . = . / (1 q) : ^ . p . q

10 ίpq}. Λf\:f{lp). = .f(ql): = .p.q

cf. [22] and [23], belong to the second class. In § 8 of this paper I shall

use a definition of conjunction by equivalence of the second type but

much more complicated than the formulas 3 or 4. The results discussed

in § 7 hold for such definitions of the second kind which possess strict-

ly "extensional" form, as the theses 3 and 4 or their suitable modifica-

tions. Namely, in order to obtain the deductions presented in § 7 we

can adopt an arbitrary definition of conjunction by equivalence, but this

definition must satisfy the following additional condition: Both argu-

ments of the definiendum must occur as the n - th arguments (for n: 1,

2, 3, . . .) of the variable functor in the definiens. This additional con-

dition is satisfied by the formulas 3 and 4, but not by the theses 6-10.

The meaning of symbol w l " which is used in the formulas 6-10 is

explained at the end of this introduction.

60. Cf. [35], pp. 65-66.

61. Cf. [35], p. 57, [5], p. 76 and [7]. Lesniewski observed this require-

ment consequently in [7],

62. Cf. [35], p. 63 and p. 70, note 39.

63. A formulation of the rule of procedure of © c requires to adjust this

rule to each particular axiom—system of © 5 . There exists a method

using which we can make such adjustment automatically. Cf. [5], pp.

59-76, especially p. 63, T. E. I - T. E. IV.

64. This theorem will be proved later, viz. as the thesis A76.
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65. In this and the subsequent definitions I am using the symbols n φ α w ,
"Φ j8w, , . . β ψ α * . WΨ β" a. s. o. when the defined terms possess no
important logical meanings. I.e., when the suitable definitions have
purely auxiliary character.

Obviously, an expression WΦ ct •(-£.}." occurring in the definiendum
of D3 belongs to the same semantical category as */* in Λ7, and, there-
fore, we can substitute it for this variable in order to obtain A10.

66. Evidently, instead of 5"// we can use 57, but in such a case the deduc-
tions would be longer.

67. Cf. [35], p. 61, formula ZU.

68. In this and the subsequent definitions I am using symbols "Vrj*, wVr2

n

etc. in order to indicate that the defined terms are really the same as
wVr", introduced by D2. At this stage we are not yet able to show that
these terms are the same. This will be possible at later stage, when
the system is sufficiently developed. Cf. the use of such symbols in
[7], e.g. D9, p. 126 and DIO, p. 130.

69. The formulas Dl and Dll belong to the type of definitions which in
Les'niewski's system are called the absolute protothetical definitions
(in protothetic). Cf. [35], p. 69, note 22.

70. In connection with this thesis cf. [35], p. 66, thesis SI. Obviously, if
we have at our disposal S7, then the rule of @ 5 allows us to prove
that these theses are inferentially equivalent.

71. Obviously, the symbols *0w and *1" which occur in the definiens of
this definition are only typographical abbreviations. Cf. the introduc-
tion to the chapter II of this paper.

72. The application of SV in this case requires, obviously, an auxiliary
definition which must be multi-link, viz.:

[p q] : : p ^ . p s q : = q .'. Ξ . X δ ± q± (p)

Similarly, in the proof of A57 a. s. o.

73. Cf. [35], p. 66 (where due to a typographical error the axioms A^ and
Aj and, also, the formula Z18 are numbered A,, A^ and Z15 respective-

iy).
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