ON RECURSIVE TRANSCENDENCE

R. L. GOODSTEIN AND J. HOOLEY

1. Let $P_n(x)$ be the n^{th} polynomial in an enumeration of all one-variable polynomials with integral coefficients; let ||z|| = ||x + iy|| = |x| + |y| be called the *norm* of a rational complex number z = x + iy and let $\{s_n\}$ be a sequence of rational real or complex numbers. Then $\lim s_n$ is transcendental if

$$(r) (] k) (] N) (n) \{n \ge N \to ||P_r(s_n)|| > 2^{-k}\}$$
(1.1)

The convergence of $\{s_n\}$ is expressed by the condition:

$$(k) (] \nu) (n) \{n \ge \nu \to ||s_n - s_\nu|| < 2^{-(k+2)} \}.$$
(1.2)

Let ν (k) be the least value of ν for which (1.2) holds, so that $n \ge \nu$ (k) \rightarrow $||s_n - s_{\nu(k)}|| < 2^{-(k+2)}$, and let k_r and N_r be the least values of k and N for which (1.1) holds, so that

$$n \ge N_r \to ||P_r(s_n)|| > 2^{-k_r}.$$

$$(1.3)$$

Now if $M = \max_{0 \le r \le p(1)} \{ ||s_r|| + 1 \}$, and if $P_r^*(x)$ is the sum of the absolute values of the terms of $P_r^*(x)$, the first derivative of $P_r(x)$, then

$$||P_{r}(s_{m}) - P_{r}(s_{n})|| < ||s_{m} - s_{n}|| P_{r}^{*}(M)$$

and, calling the exponent of the least power of 2 which exceeds P_r^* (M), c_r , we have

$$m, n \ge \nu \ (k + c_r) \to ||P_r(s_m) - P_r(s_n)|| < 2^{-k-1}.$$
(1.4)

If s_n is general recursive and general recursively convergent, so that the function ν (k) is general recursive, and if further, the functions N_r and k_r in (1.3) are both general recursive, then the general recursive real (complex) number $\{s_n\}$ is said to be general recursively transcendental.

If s_n , $\nu(k)$, N_r and k_r are all primitive recursive (p.r.), then the p.r. real (complex) number $\{s_n\}$ is said to be *primitive recursively* (p.r.) transcendental.

Received April 22, 1960

In particular, taking $P_{\tau}(x)$ to be a linear function of x, we obtain the corresponding definitions of irrationality.

From (1.3) and (1.4), taking k_r for k and $N_r + \nu (k_r + c_r + 1)$ for n, we find, writing $\nu_r (k)$ for $\nu (k + c_r + 1)$, that

$$||P_{r}(s_{\nu_{r}}(k_{r}))|| > 2^{-k_{r}-1}, \text{ whence}$$

$$(r)(\frac{1}{2}k)\{||P_{r}(s_{\nu_{r}}(k))|| > 2^{-k-1}\}.$$
(1.5)

If $\{s_n\}$ is general recursive and general recursively convergent, and if lim s_n is transcendental, then $\{s_n\}$ is general recursively transcendental. For, by hypothesis, s_n and ν_r (k) are general recursive and so if λ_r is the least value of k satisfying (1.5) then λ_r is general recursive, and

$$||P_r(s_{\nu_r}(\lambda_r))|| > 2^{-\lambda_r-1}.$$

Using (1.4) again with $k = \lambda_r + 1$ we have

$$n \ge \nu_r(\lambda_r) \rightarrow ||P_r(s_n)|| > 2^{-\lambda_r-2}$$

which proves that $\{s_n\}$ is general recursively transcendental. Of course it is not the case that a p.r. number which is transcendental is necessarily p.r. transcendental. However, we shall prove that e and π are p.r. transcendental in the sense that any p.r. real number whose classical limit is e or π is p.r. transcendental.

2. We start by showing that every algebraic number is a p.r. algebraic number, i.e. that to each root of a polynomial, $f(x) = \sum_{r=0}^{m} a_r x^r$, there corresponds a p.r. real (complex) number, Θ_n , such that $f(\Theta_n) \to 0$ primitive recursively.

Firstly, considering real roots, we note that if $a_m \stackrel{>}{=} 1$, and if $|x| > A = \sum_{r=0}^{m} |a_r|$, then |x| > 1 and |f(x)| > 0; i.e. all the roots of f(x) lie in the circle |x| < A.

Let $F(x) = \sum_{r=0}^{l} b_r x^r$ be the quotient on dividing f(x) by the highest com-

mon factor of f(x) and f'(x); then the b_r are rational functions of the a_r . Let α_i $(1 \le i \le \mu \le l)$ denote the real roots of f(x) (hence of F(x)) and, if $\mu < l$ let α_i $(\mu < i \le m)$ denote the complex roots. Supposing $\mu > l$, if $b < k \le \mu$, then

$$\prod_{i < j \leq l} (\boldsymbol{\alpha}_{l} - \boldsymbol{\alpha}_{j})^{2} = \Delta^{2} < (\boldsymbol{\alpha}_{h} - \boldsymbol{\alpha}_{k})^{2} \{ (2A)^{\frac{1}{2}l(l-1)-1} \}^{2}$$

and so $|\alpha_{k} - \alpha_{k}| > |\Delta| / \{(2A)^{\frac{1}{2}l(l-1)-1}\} = \delta$,

say, where δ is rational since $|\Delta|$ is rational. Divide (-A, A) into subintervals of length at most δ by points $\delta_0 (= -A)$, $\delta_1 (= -A + \delta)$, ..., $\delta_{K-1} (= -A + (\kappa - 1)\delta)$, $\delta_K (= A)$ and evaluate $F(\delta_j)$ for each $j (0 \le j \le \kappa)$. If (i) $F(\delta) = 0$ for some i, then we define $\Theta = \delta$, and no other real root

If (i) $F(\delta_j) = 0$ for some j, then we define $\Theta_n = \delta_j$, and no other real root lies in either (δ_{j-1}, δ_j) or (δ_j, δ_{j+1}) ;

(ii) $F(\delta^{+}) < 0$, $F(\delta^{++}) > 0$ where δ^{+} , δ^{++} are the end points of some subinterval, then there is just one root of f(x) in this interval. Let $\rho_0 = (\delta^{+} + \delta^{++})/2$; if $F(\rho_0) = 0$ then define $\Theta_n = \rho_0$; if $F(\rho_0) > 0$ define $\Theta_0 = \delta^{+}$ and if $F(\rho_0) < 0$ define $\Theta_0 = \delta^{++}$. To complete the recursive definition of $\{\Theta_n\}$, let $\rho_{n+1} = (\rho_n + \Theta_n)/2$ and then

$$\begin{split} \Theta_{n+p+1} &= \rho_{n+1}, \ (p \ge 0) \ \text{if } F(\rho_{n+1}) = 0, \\ \Theta_{n+1} &= \Theta_n \ \text{if } F(\rho_{n+1}) \ \text{has the same sign as } F(\rho_n), \\ \Theta_{n+1} &= \rho_n \ \text{if } F(\rho_{n+1}) \ \text{has the opposite sign to } F(\rho_n). \end{split}$$

 $\{\Theta_n\}$ satisfies $n \ge \nu \rightarrow |\Theta_n - \Theta_{\nu}| < \delta 2^{-\nu}$, and so it is p.r. convergent. Further

$$\begin{split} |F(\Theta_n)| < |F(\Theta_n) - F(\rho_n)| < |\Theta_n - \rho_n| \sum_{j=0}^l |b_j| j A^{j-1} \\ &= |\Theta_n - \rho_n| A^*, \text{ say.} \end{split}$$

Thus $n \ge \nu \rightarrow |F(\Theta_n)| < A^* \delta 2^{-\nu}$, showing that $F(\Theta_n)$ — and hence also $f(\Theta_n)$ — tends p.r. to zero. A subinterval with end points δ^+ , δ^{++} contains no root of f(x) if $F(\delta^+)$ and $F(\delta^{++})$ have the same sign.

If $\mu \leq 1$, the same construction can be carried out, though of course, the δ will not have its previous importance.

If $\alpha + i\beta$ is a root of f(x), there are polynomials P(x, y), Q(x, y) such that $P(\alpha,\beta) = Q(\alpha,\beta) = 0$, from which we arrive at $R_1(\alpha) = 0$ on eliminating β and $R_2(\beta) = 0$ on eliminating α , where R_1 and R_2 are polynomials obtained rationally from P, Q. Since α and β are thus p.r. algebraic real numbers, then $\alpha + i\beta$ is a p.r. algebraic complex number.

3. If $\{\alpha_n\} = \alpha$, $\{\beta_n\} = \beta$ are two p.r. real numbers, we write $\alpha = \beta$ (and say α , β are p.r. equal) if there is a p.r. function eq (k) such that $n \ge eq(k)$ $\Rightarrow |\alpha_n - \beta_n| < 2^{-k}$; we write $\alpha < \beta$ if there are integers *i*, *j* such that

$$n \geq j \rightarrow \beta_n - \alpha_n \geq 2^{-l};$$

and $\alpha > \beta$ if $\beta < \alpha$.

Using the results of para. 2 we now construct a decision procedure for deciding of two algebraic real numbers α , β which of $\alpha < \beta$, $\alpha = \beta$, $\alpha > \beta$ holds (the proof also ensures that one of these relations must hold.)

3.1 Given a primitive recursive real number $\alpha = \{\alpha_n\}$, a root of $a_m x^{m+1} + \dots + a_1 x^2 + x$ (rational a_l), then it is decidable whether $\alpha_n \to 0$ or not ($\alpha = 0$ or not).

Proof: Choose k so large that $2^{k-1} > \sum_{r=1}^{m} |a_r|$, then if $|x| < 2^{-k}$, $|\sum_{r=1}^{m} a_r x^r| < 2^{-k}$. $2^{k-1} = \frac{1}{2}$, whence

$$\left|\sum_{r=1}^{m} a_{r} x^{r} + 1\right| > \frac{1}{2}.$$

Choose n_1 such that $n > n_1 \rightarrow |\alpha_n - \alpha_{n_1}| < 3^{-1} \cdot 2^{-k}$; then

(i) if $|\alpha_{n_1}| < 2^{-k-1}$ we have $|\alpha_n| < 2^{-k}$ $(n \ge n_1)$ so that $|\alpha_n| + \sum_{r=1}^{m} a_r \alpha_n^r + 1$

whence $\alpha_n \rightarrow 0$ primitive recursively, since the left-hand side does so. I.e. $\alpha = 0$.

(ii) if $|\alpha_{n_1}| \ge 2^{-k-1}$, then for all $n \ge n_1$, $|\alpha_n| > 6^{-1} \cdot 2^{-k}$

showing that $\alpha_n \neq 0$, i.e. $\alpha \neq 0$.

In case (ii) it follows of course that

$$|\alpha_n \{ \sum_{r=1}^m a_r \alpha_n^r + 1 \} | > 6^{-1} \cdot 2^{-k} | \sum_{r=1}^m a_r \alpha_n^r + 1 |$$

i.e. that α is a root of $a_m x^m + \ldots + a_1 x + 1$.

3.2 If $|\alpha_n| > \epsilon > 0$ for all *n*, choose n_2 such that $n \ge n_2 \rightarrow |\alpha_n - \alpha_{n_2}| < \epsilon/3$. Then

(i) if $\alpha_{n_2} > \epsilon/2$ we have

$$n \ge n_2 \rightarrow \alpha_n > \epsilon/6$$
, i.e. $\alpha > 0$;

and

(ii) if $\alpha_n \leq \epsilon/2$ we have

 $n \ge n_2 \rightarrow \alpha_n < 5\epsilon/6$, but

 $|\alpha_n| > \epsilon$ and so $\alpha_n < -\epsilon \ (n \ge n_2)$, i.e. $\alpha < 0$.

3.3 Given two p.r. algebraic real numbers $\alpha = \{\alpha_n\}$ and $\beta = \{\beta_n\}$, roots of integral polynomials f(x) and g(x) respectively, then $\gamma = \{\gamma_n\} = \{\alpha_n - \beta_n\}$ is also a p.r. real number and we can construct rationally from f(x) and g(x) a polynomial with integral coefficients having γ as a root. For $f(\beta + \gamma) = 0$ and can be expressed in the form

$$f_{m}(\gamma)\beta^{m}+f_{m-1}(\gamma)\beta^{m-1}+\ldots+f_{0}(\gamma).$$

We also have $g(\beta) = 0$, whence, on eliminating β we arrive at the desired polynomial with γ as a root. Using (3.1) and (3.2) on γ we can thus decide $\alpha < \beta$, $\alpha = \beta$ or $\alpha > \beta$.

4. In Goodstein [1] and [2] the p.r. irrationality of p.r. sequences with (classical) limits e^x (rational x) and π was established: here we prove the p.r. transcendence of sequences for e and π .

We use the p.r. real numbers **E** (n, x) (rational x) defined by

E (0, x) = 1, **E** (n + 1, x) = **E** (n, x) +
$$\frac{x^{n+1}}{(n + 1)!}$$

The following inequalities are needed:

$$\mathbf{E} (n, m) \leq \{ \mathbf{E} (n, 1) \}^m \qquad (\text{integral } m \geq 0) \tag{4.1}$$

Proof: by induction on m.

$$\{\mathbf{E} (n, 1)\}^m \leqslant \mathbf{E} (mn, m) \tag{4.2}$$

Proof: by induction on *m* using the easily proved

E
$$(p,a)$$
 . **E** $(q,b) \leq$ **E** $(p + q, a + b)$

 $(p, q, a, b \text{ integers} \ge 0.)$

For rational x and y, and n > 2(|x| + |y|)

$$|\mathbf{E}(n,x) \cdot \mathbf{E}(n,y) - \mathbf{E}(n,x+y)| \leq \frac{2(|x|+|y|)^{n+1}}{(n+1)!}$$
(4.3)

Proof: procedure obvious.

$$\mathsf{E}(n,m) < 3^m \tag{4.4}$$

Proof: by (4.1) and the familiar comparison with a geometric series.

To prove that **E** (n, 1) is p.r. transcendental, define $\phi(x)$ to be the polynomial

$$\frac{x^{p-1}}{(p-1)!} \left[\prod_{r=1}^{m} (x-r) \right]^{p} = \frac{1}{(p-1)!} \sum_{r=p-1}^{\nu} c_{r} x^{r}$$

where $\nu = mp + p - 1$ and the $c_r (p - 1 \le r \le \nu)$ are integers.

Evidently $\phi(0) = \phi^{(k)}(0) = 0$, $1 \le k \le p - 2$; $\phi^{(p-1)}(0) = \{(-1)^m \ m!\}^p \neq 0 \pmod{p}$ if p be taken prime and p > m; also

$$\phi^{(p+r)}(0) = \frac{(p+r)!}{(p-1)!} c_{p+r} \equiv 0 \pmod{p}, \ 0 \leq r \leq mp-1.$$

Let $L(\phi(x)) = \sum_{k=0}^{p} \phi^{(k)}(x)$, then $L(\phi(0)) \neq 0 \pmod{p}$ but is an integer

and so non-zero.

For each k, $1 \le k \le m$, we may write $\phi(x) = \frac{1}{(p-1)!} \sum_{r=p}^{p} c_{k,r} (x-k)^r$ with integral $c_{k,r}$, showing that

$$\phi^{(r)}(k) = 0, \ 0 \leq r \leq p - 1, \text{ and } \phi^{(p+r)}(k) \equiv 0 \pmod{p}.$$

Therefore $L(\phi(k)) \equiv 0 \pmod{p}, \ 1 \leq k \leq m.$ However $L(\phi(k)) = \sum_{s=0}^{\nu} \sum_{r=s}^{\nu} \phi^{(r)}(0) \ k^{r-s}/(r-s)!$ $= \sum_{t=0}^{\nu} \phi^{(t)}(0) \mathbf{E}(t,k)$ $= L(\phi(0)) \mathbf{E}(n,k) - \sum_{r=0}^{\nu} \phi^{(r)}(0) \ k^{r} \sum_{s=1}^{n-r} k^{s}/(r+s)!, \text{ for } n > \nu.$ Now $|\sum_{r=0}^{\nu} \phi^{(r)}(0) \ k^{r} \sum_{s=1}^{n-r} k^{s}/(r+s)!| < \sum_{r=0}^{\nu} |\phi^{(r)}(0)| \ \frac{k^{r}}{r!} \mathbf{E}(n,k)$ $= \frac{k^{p-1}}{(p-1)!} \left[\prod_{r=1}^{m} (k+r)\right]^{p} \mathbf{E}(n,k)$ $< \frac{\{\prod_{r=0}^{m} (m+r)\}^{p}}{(p-1)! \ m} \mathbf{E}(n,m).$

Let $a_r \ (0 \leq r \leq m)$ be integers, with $a_m > 0$, then by the above

$$L(\phi(0)) \sum_{k=0}^{m} a_{k} \mathbf{E}(n,k) = \sum_{k=0}^{m} a_{k} L(\phi(k)) + \sum_{k=0}^{m} a_{k} \left[\sum_{r=0}^{\nu} \phi^{(r)}(0) k^{r} \sum_{s=1}^{n-r} k^{s} / (r+s)! \right]$$

and $|\sum_{k=0}^{m} a_{k} \{ \sum_{r=0}^{\nu} \phi^{(r)}(0) k^{r} \sum_{s=1}^{n-r} k^{s} / (r+s)! \}|$
 $< \frac{a\{\prod_{r=0}^{m} (m+r)\}^{p}}{(p-1)!} \mathbf{E}(n,m) \quad (\text{where } a = \sum_{o \leq r \leq m}^{max} |a_{r}|)$
 $< \frac{aM^{p}}{(p-1)!} 3^{m} \qquad (\text{where } M = \prod_{r=0}^{m} (m+r))$
 $< 1/2 \text{ if } p > 1 + 2M + \frac{M^{2M}}{(2M)!} 2aM3^{m} = U, \text{ say.}$
Also $\sum_{k=0}^{m} a_{k} L(\phi(k)) \text{ is then a non-zero integer.}$

Then $|L(\phi(0)) \sum_{k=0}^{m} a_k \mathbf{E}(n,k)| > 1 - 1/2 = 1/2$

for p > U and $n > \nu$, so that

$$|\sum_{k=0}^{m} a_{k} \mathbf{E}(n,k)| > 1/2 | L(\phi(0))|, \text{ for } n > \nu.$$

Now using inequalities (4.1) and (4.2)

$$\begin{split} &|\sum_{k=0}^{m} a_{k} \{ \mathbf{E}(n, 1) \}^{k} - \sum_{k=0}^{m} a_{k} \mathbf{E}(n, k) | \\ &\leqslant \sum_{k=0}^{m} |a_{k}| \{ \mathbf{E}(nk, k) - \mathbf{E}(n, k) \} \\ &< \sum_{k=0}^{m} |a_{k}| \frac{n(k-1)k^{n}}{n!} < ma \frac{nmm^{n}}{n!} \quad (\text{for } n > m) \\ &< 1/4 |L(\phi(0))|, \text{ if } n > 1 + \nu + (m^{\nu}/\nu!)am^{3} 4 |L(\phi(0))| \\ &= V, \text{ say, where } \nu = 2m. \end{split}$$

Thus for p > U and n > V we have

$$\left|\sum_{k=0}^{m} a_{k} \left\{ \mathsf{E}(n, 1)\right\}^{k} \right| > (1/2 - 1/4)/|L(\phi(0))| = 1/4|L(\phi(0))|.$$

If $\sum_{k=0}^{m} a_k x^k$ is the ρ^{th} member of some recursive enumeration of the poly-

nomials of one variable with integer coefficients, then the m, a_o , ..., a_m are p.r. functions of ρ , and therefore so are the $L(\phi(0))$, U and V, establishing the p.r. transcendence of **E**(n, 1).

Let y_n be a real root of $\sum_{k=0}^m a_k x^k$, then we can find a p.r. function

N(i) such that

$$n \ge N(i) \rightarrow \left|\sum_{k=0}^{m} a_{k} y_{n}^{k}\right| < 1/i.$$

Taking $i > 8|L(\phi(0))|$ and $n > \max{N(i), V}$ we have

$$\left|\sum_{k=0}^{m} a_{k} \left\{ y_{n}^{k} - (\mathbf{E}(n, 1))^{k} \right\} \right| > 1/8 \left| L\left(\phi(0)\right) \right|.$$
$$\left|\sum_{k=0}^{m} a_{k} \left\{ y_{n}^{k} - (\mathbf{E}(n, 1))^{k} \right\} \right|$$

Now

<
$$|y_n - \mathbf{E}(n, 1)| \sum_{k=0}^{m} |a_k| k A^{k-1}$$
 (where $A = \max\{3, a\}$)
= $C |y_n - \mathbf{E}(n, 1)|$, say.

Thus $|y_n - \mathbf{E}(n, 1)| > 1/8 C|L(\phi(0))|$, showing by how much at least $\mathbf{E}(n, 1)$ differs from a given algebraic real number.

5. For the purposes of this section, we need some properties of the norm ||z||; we take the following for granted:

$$||z + w|| \leq ||z|| + ||w||,$$
 (5.1)

$$||z \pm w|| \ge ||z|| - ||w||,$$
 (5.2)

$$||z \cdot w|| \leq ||z|| \cdot ||w||, \qquad (5.3)$$

$$|z|^2 \leq ||z||^2 \leq 2|z|^2,$$
 (5.4)

$$||z \cdot w|| \ge \frac{1}{2}||z|| \cdot ||w||.$$
 (5.5)

An inequality similar to (4.3) but with norms replacing moduli is proved in the same way, using (5.1) - (5.5) above.

Let π_n be the p.r. sequence defined in Goodstein [2] § 2: we shall show that this is p.r. transcendental.

Let $\alpha_1 (= \alpha)_1 \alpha_2, \ldots, \alpha_N$ be the roots of $\sum_{r=0}^N a_r x^r$ (integral a_r); let $2(|a_0| + \ldots + |a_N|) = A$, and 2NA = B (then $||\alpha_r|| < A$). Denote $i\alpha_r$ by β_{2r-1} and $-i\alpha_r$ by β_{2r} $(1 \le r \le N)$, then for $1 \le j \le 2N$, $||\beta_j|| < A$. Next let γ_s $(1 \le s \le 2^{2N} - 1 = M)$ consist of all possible sums of the numbers β_j taken k at a time $(1 \le k \le 2N)$ so that the γ_s will be the roots of a polynomial

$$Q(x) = \sum_{r=0}^{M} b_{r} x^{r} \qquad (\text{integral } b_{r})$$

and $||\gamma_s|| < B \ (1 \leq s \leq M).$

Let
$$\psi(x) = \frac{x^{p-1}}{(p-1)!} b_M^{pM} \{Q(x)\}^p$$

= $\frac{1}{(p-1)!} \sum_{r=p-1}^{pM+p-1} c_r x^r$

where p is a prime exceeding both $|b_o|$ and $|b_M|$.

Again write $L(\psi(x)) = \sum_{r=0}^{p,M+p-1} \psi^{(r)}(x)$, then $L(\psi(0))$ is an integer not divisible by p. Further, if x is a root of Q(x) then $\psi^{(r)}(x) = 0$ for $r \leq p-1$;

and
$$\sum_{m=1}^{M} \psi^{(r)}(\gamma_m)$$
 is an integer divisible by p , for $r \ge p$.
Let $T_n = \prod_{r=1}^{2N} (1 + \mathbf{E}(n, \beta_r))$ so that
 $T_n = 1 + \sum_{r=1}^{M} \mathbf{E}(n, \gamma_r) + U_n$

where
$$||U_n|| < 2 M \sum_{r=0}^{2n-2} (\mathbf{E}(n,A)^r B^{n+1}/(n+1)!)$$

= 2 M* Bⁿ⁺¹/(n+1)!, say.

But
$$L(\psi(0)) \mathbf{E}(n,\gamma) = L(\psi(\gamma)) + \sum_{r=0}^{p M + p - 1} \psi^{(r)}(0) \gamma^r \sum_{s=1}^{n-r} \gamma^s / (r+s)!$$

for $n > pM + p - 1 = \mu$, say.

Now,
$$\left\|\sum_{t=0}^{M}\sum_{r=0}^{\mu}\psi^{(r)}(0)\gamma_{t}^{r}\sum_{s=1}^{n-r}\gamma_{t}^{s}/(r+s)!\right\| < M \mathsf{E}(n,B)\sum_{r=p-1}^{\mu}|c_{r}|B^{r}/(p-1)!$$

But
$$\frac{1}{(p-1)!} \sum_{r=p-1}^{\mu} |c_r| B^r = \frac{B^{p-1}}{(p-1)!} |b_M^{p,M}| \{\sum_{k=0}^{M} |b_k| B^k\}^p \rightarrow 0 \text{ as } p \rightarrow \infty$$

Therefore
$$L(\psi(0)) \sum_{t=0}^{M} \mathbf{E}(n, \gamma_t) = L(\sum_{t=0}^{M} \psi(\gamma_t)) + \epsilon_p$$

where $\epsilon_p \to 0$ as $p \to \infty$ and $L(\sum_{t=0}^{M} \psi(\gamma_t))$ is an integer divisible by p.

Hence
$$L(\psi(0))T_n = L(\psi(0)) + L(\sum_{t=0}^{M} \psi(\gamma_t)) + \{\epsilon_p + U_n\} L(\psi(0)).$$

Choose p so that $||\epsilon_p|| < 1/3$, then for $n \ge 6|L(\psi(0))|M^*B^{B+1}/B!$

we have
$$2|L(\psi(0))|M^* B^{n+1}/(n+1)! < 1/3$$
 and therefore
 $||L(\psi(0))T_n|| > 1 - 1/3 - 1/3.$

However

$$||T_n|| < ||1 + \mathbf{E}(n,i\alpha)||4^{(2N-1)A} < ||1 + \mathbf{E}(n,i\alpha)||4^B$$
$$||1 + \mathbf{E}(n,i\alpha)|| > 1/3L(\psi(0))4^B.$$

whence

Now for $n \ge 14$ (see Goodstein [2]),

$$||1 + \mathbf{E}(2n + 1, i \pi_n)|| < 1/10^{n-1} < 1/12|L(\psi(0))|4^B$$

if $n \ge |L(\psi(0))|4^{B+1}$. Therefore

$$||\mathbf{E}(2n+1, i\alpha) - \mathbf{E}(2n+1, i\pi_n)|| > 1/|L(\psi(0))|4^{B+1}||$$

for $n \ge c = \max\{|L(\psi(0))|4^{B+1}, 3|L(\psi(0))|MB^{B+1}/B!\}.$ Since $||i\pi_n|| < 4$ and $||i\alpha|| < A$, taking C to be max $\{4, A\}$, we see that $||E(2n+1), i\alpha) - E(2n+1, i\pi_n)|| \le ||\alpha - \pi_n||E(2n, C)$ $< ||\alpha - \pi_n||3^C$

and therefore $||\alpha - \pi_n|| > 1/|L(\psi(0))|4^B \beta^C$ for $n \ge c$.

It then follows that

$$\begin{split} ||\sum_{r=0}^{N} a_{r} \pi_{n}^{r}|| \geq & \||a_{N}|| \cdot \prod_{r=1}^{N} ||\alpha_{r} - \pi_{n}|| \} / 2^{N} \\ & > ||a_{N}|| / |L(\psi(0))|^{N} 2^{2(B+1)N} 3^{NC} \text{ for } n \geq c. \end{split}$$

6. Having proved the p.r. transcendence of $\mathbf{E}(n, 1)$ and π_n , we must show that any other p.r. real numbers with classical limit e or π are also p.r. transcendental. This follows from:

6.1 Any two p.r. numbers which are classically equal are also p.r. equal; and

6.2 if $\{\alpha_n\}$ and $\{\beta_n\}$ are p.r. equal and $\{\alpha_n\}$ is p.r. transcendental, then $\{\beta_n\}$ is p.r. transcendental.

Proof of (6.1) Classical equality of $\{\alpha_n\}$ and $\{\beta_n\}$ is expressed by (k)(] N $(n)\{n \ge N \rightarrow ||\alpha_n - \beta_n|| < 2^{-k-3}\}$. There is a p.r. $\nu(k)$ such that

$$n \ge \nu(k) \rightarrow ||\alpha_n - \alpha_{\nu(k)}|| < 2^{-k-3} \&$$
$$||\beta_n - \beta_{\nu(k)}|| < 2^{-k-3}$$

Then it follows that $||\alpha_{\nu(k)} - \beta_{\nu(k)}|| < 3.2^{-k-3}$,

whence $n \ge \nu(k) \Rightarrow ||\boldsymbol{\alpha}_n - \boldsymbol{\beta}_n|| < 2^{-k}$.

Proof of (6.2) For some p.r. N_r , k_r , in the notation of para. 1

$$n \ge N_r \rightarrow ||P_r(\boldsymbol{\alpha}_n)|| > 2^{-k_r} \dots$$
 (i)

There is a p.r. eq(k) such that

$$\begin{split} n \geqslant \mathrm{eq}(k) \rightarrow ||\boldsymbol{\alpha}_n - \boldsymbol{\beta}_n|| < 2^{-k}. \\ ||\boldsymbol{P}_r(\boldsymbol{\alpha}_n) - \boldsymbol{P}_r(\boldsymbol{\beta}_n)|| \le ||\boldsymbol{\alpha}_n - \boldsymbol{\beta}_n|| \boldsymbol{P}_r^* \ (\mathbf{S}) \end{split}$$

where **S** is an upper bound for $||\alpha_n||$ and $||\beta_n||$, and if 2^{c_r} is the least power of 2 to exceed P_r^* (**S**), then

$$n \geq \operatorname{eq}(k_r + c_r + 1) \rightarrow ||P_r(\alpha_n) - P_r(\beta_n)|| < 2^{-k_r - 1}.$$

From this and (i) follows

$$n \ge \max\{N_r, eq(k_r + c_r + 1)\} \Rightarrow ||P_r(\beta_n)|| > 2^{-k_r - 1}.$$

REFERENCES

[1] R. L. Goodstein: "The Strong Convergence of the Exponential Function". Journal of the London Mathematical Society, Vol. 22, 1947 pp. 200-205.

[2] R. L. Goodstein: "The Recursive Irrationality of π ." Journal of Symbolic Logic, Vol. 19, 1954, pp. 267-274.

University of Leicester, England