ON RECURSIVE TRANSCENDENCE

R. L. GOODSTEIN AND J. HOOLEY

1. Let $P_{n}(x)$ be the $n^{\text {th }}$ polynomial in an enumeration of all one-variable polynomials with integral coefficients; let $\|z\|=\|x+i y\|=|x|+|y|$ be called the norm of a rational complex number $z=x+i y$ and let $\left\{s_{n}\right\}$ be a sequence of rational real or complex numbers. Then $\lim s_{n}$ is transcendental if

$$
\begin{equation*}
(r)(\exists k)(\exists N)(n)\left\{n \geqslant N \rightarrow\left\|P_{r}\left(s_{n}\right)\right\|>2^{-k}\right\} \tag{1.1}
\end{equation*}
$$

The convergence of $\left\{s_{n}\right\}$ is expressed by the condition:

$$
\begin{equation*}
(k)(\exists \nu)(n)\left\{n \geqslant \nu \rightarrow\left\|s_{n}-s_{\nu}\right\|<2^{-(k+2)}\right\} . \tag{1.2}
\end{equation*}
$$

Let $\nu(k)$ be the least value of ν for which (1.2) holds, so that $n \geqslant \nu(k) \rightarrow$ $\left\|s_{n}-s_{\nu(k)}\right\|<2^{-(k+2)}$, and let k_{r} and N_{r} be the least values of k and N for which (1.1) holds, so that

$$
\begin{equation*}
n \geqslant N_{r} \rightarrow\left\|P_{r}\left(s_{n}\right)\right\|>2^{-k_{r}} \tag{1.3}
\end{equation*}
$$

Now if $M=\max _{o \leqslant r \leqslant \nu(1)}\left\{\left\|s_{r}\right\|+1\right\}$, and if $P_{r}^{*}(x)$ is the sum of the absolute values of the terms of $P_{r}^{1}(x)$, the first derivative of $P_{r}(x)$, then

$$
\left\|P_{r}\left(s_{m}\right)-P_{r}\left(s_{n}\right)\right\|<\left\|s_{m}-s_{n}\right\| P_{r}^{*}(M),
$$

and, calling the exponent of the least power of 2 which exceeds $P_{r}^{*}(M), c_{r}$, we have

$$
\begin{equation*}
m, n \geqslant \nu\left(k+c_{r}\right) \rightarrow\left\|P_{r}\left(s_{m}\right)-P_{r}\left(s_{n}\right)\right\|<2^{-k-1} \tag{1.4}
\end{equation*}
$$

If s_{n} is general recursive and general recursively convergent, so that the function $\nu(k)$ is general recursive, and if further, the functions N_{r} and k_{r} in (1.3) are both general recursive, then the general recursive real (complex) number $\left\{s_{n}\right\}$ is said to be general recursively transcendental.

If $s_{n}, \nu(k), N_{r}$ and k_{r} are all primitive recursive (p.r.), then the p.r. real (complex) number $\left\{s_{n}\right\}$ is said to be primitive recursively (p.r.) transcendental.

In particular, taking $P_{r}(x)$ to be a linear function of x, we obtain the corresponding definitions of irrationality.

From (1.3) and (1.4), taking k_{r} for k and $N_{r}+\nu\left(k_{r}+c_{r}+1\right)$ for n, we find, writing $\nu_{r}(k)$ for $\nu\left(k+c_{r}+1\right)$, that

$$
\begin{align*}
& \left\|P_{r}\left(s_{\nu_{r}\left(k_{r}\right)}\right)\right\|>2^{-k_{r}-1}, \quad \text { whence } \\
& (r)(\exists k)\left\{\left\|P_{r}\left(s_{\nu_{r}(k)}\right)\right\|>2^{-k-1}\right\} . \tag{1.5}
\end{align*}
$$

If $\left\{s_{n}\right\}$ is general recursive and general recursively convergent, and if $\lim s_{n}$ is transcendental, then $\left\{s_{n}\right\}$ is general recursively transcendental. For, by hypothesis, s_{n} and $\nu_{r}(k)$ are general recursive and so if λ_{r} is the least value of k satisfying (1.5) then λ_{r} is general recursive, and

$$
\| P_{r}\left(s_{\nu_{r}}\left(\lambda_{r}\right) \|>2^{-\lambda_{r}-1}\right.
$$

Using (1.4) again with $k=\lambda_{r}+1$ we have

$$
n \geqslant \nu_{r}\left(\lambda_{r}\right) \rightarrow\left\|P_{r}\left(s_{n}\right)\right\|>2^{-\lambda_{r}-2}
$$

which proves that $\left\{s_{n}\right\}$ is general recursively transcendental. Of course it is not the case that a p.r. number which is transcendental is necessarily p.r. transcendental. However, we shall prove that e and π are p.r. transcendental in the sense that any p.r. real number whose classical limit is e or π is p.r. transcendental.
2. We start by showing that every algebraic number is a p.r. algebraic number, i.e. that to each root of a polynomial, $f(x)=\sum_{r=0}^{m} a_{r} x^{r}$, there corresponds a p.r. real (complex) number, Θ_{n}, such that $f\left(\Theta_{n}\right) \rightarrow 0$ primitive recursively.

Firstly, considering real roots, we note that if $a_{m} \geqq 1$, and if $|x|>A=$ $\sum_{r=0}^{m}\left|a_{r}\right|$, then $|x|>1$ and $|f(x)|>0$; i.e. all the roots of $f(x)$ lie in the circle $|x|<A$.

Let $F(x)=\sum_{r=0}^{l} b_{r} x^{r}$ be the quotient on dividing $f(x)$ by the highest common factor of $f(x)$ and $f^{\prime}(x)$; then the b_{r} are rational functions of the a_{r}. Let $\alpha_{l}(1 \leqslant i \leqslant \mu \leqslant l)$ denote the real roots of $f(x)$ (hence of $\left.F(x)\right)$ and, if $\mu<l$ let $\boldsymbol{\alpha}_{\iota}(\mu<i \leqslant m)$ denote the complex roots. Supposing $\mu>1$, if $b<k$ $\leqq \mu$, then

$$
\prod_{i<j \leqslant l}\left(\boldsymbol{\alpha}_{l}-\boldsymbol{\alpha}_{j}\right)^{2}=\Delta^{2}<\left(\boldsymbol{\alpha}_{h}-\boldsymbol{\alpha}_{k}\right)^{2\{ }\left\{(2 A)^{1 / 2 l(l-1)-1}\right\}_{2}
$$

and so

$$
\left|\alpha_{h}-\alpha_{k}\right|>|\Delta| /\left\{(2 A)^{1 / 2 l(l-1)-1}\right\}=\delta,
$$

say, where δ is rational since $|\Delta|$ is rational. Divide $(-A, A)$ into subintervals of length at most δ by points $\delta_{0}(=-A), \delta_{1}(=-A+\delta), \ldots, \delta_{K-1}$ $(=-A+(\kappa-1) \delta), \delta_{\kappa}(=A)$ and evaluate $F\left(\delta_{j}\right)$ for each $j(0 \leqslant j \leqslant \kappa)$.
If (i) $F\left(\delta_{j}\right)=0$ for some j, then we define $\Theta_{n}=\delta_{j}$, and no other real root lies in either $\left(\delta_{j-1}, \delta_{j}\right)$ or $\left(\delta_{j}, \delta_{j+1}\right)$;
(ii) $F\left(\delta^{\prime}\right)<0, F\left(\delta^{\prime \prime}\right)>0$ where $\delta^{\prime}, \delta^{\prime \prime}$ are the end points of some subinterval, then there is just one root of $f(x)$ in this interval. Let $\rho_{0}=\left(\delta^{\prime}+\right.$ $\left.\delta^{\prime \prime}\right) / 2$; if $F\left(\rho_{0}\right)=0$ then define $\Theta_{n}=\rho_{0}$; if $F\left(\rho_{0}\right)>0$ define $\Theta_{0}=\delta^{\prime}$ and if $F\left(\rho_{0}\right)<0$ define $\Theta_{0}=\delta^{\prime \prime}$. To complete the recursive definition of $\left\{\Theta_{n}\right\}$, let $\rho_{n+1}=\left(\rho_{n}+\Theta_{n}\right) / 2$ and then

$$
\begin{aligned}
& \Theta_{n+p+1}=\rho_{n+1},(p \geqslant 0) \text { if } F\left(\rho_{n+1}\right)=0, \\
& \Theta_{n+1}=\Theta_{n} \text { if } F\left(\rho_{n+1}\right) \text { has the same sign as } F\left(\rho_{n}\right), \\
& \Theta_{n+1}=\rho_{n} \text { if } F\left(\rho_{n+1}\right) \text { has the opposite sign to } F\left(\rho_{n}\right) .
\end{aligned}
$$

$\left\{\Theta_{n}\right\}$ satisfies $n \geqslant \nu \rightarrow\left|\Theta_{n}-\Theta_{\nu}\right|<\delta 2^{-\nu}$, and so it is p.r. convergent. Further

$$
\begin{aligned}
\left|F\left(\Theta_{n}\right)\right|<\left|F\left(\Theta_{n}\right)-F\left(\rho_{n}\right)\right| & <\left|\Theta_{n}-\rho_{n}\right| \sum_{j=0}^{l}\left|b_{j}\right| j A^{j-1} \\
& =\left|\Theta_{n}-\rho_{n}\right| A^{*}, \text { say. }
\end{aligned}
$$

Thus $n \geqslant \nu \rightarrow\left|F\left(\Theta_{n}\right)\right|<A^{*} \delta 2^{-\nu}$, showing that $F\left(\Theta_{n}\right)$ - and hence also $f\left(\Theta_{n}\right)$ - tends p.r. to zero. A subinterval with end points $\delta^{\prime}, \delta^{\prime \prime}$ contains no root of $f(x)$ if $F\left(\delta^{\prime}\right)$ and $F\left(\delta^{\prime \prime}\right)$ have the same sign.

If $\mu \leqslant 1$, the same construction can be carried out, though of course, the δ will not have its previous importance.

If $\alpha+i \beta$ is a root of $f(x)$, there are polynomials $P(x, y), Q(x, y)$ such that $P(\alpha, \beta)=Q(\alpha, \beta)=0$, from which we arrive at $R_{1}(\alpha)=0$ on eliminating β and $R_{2}(\beta)=0$ on eliminating α, where R_{1} and R_{2} are polynomials obtained rationally from P, Q. Since α and β are thus p.r. algebraic real numbers, then $\alpha+i \beta$ is a p.r. algebraic complex number.
3. If $\left\{\alpha_{n}\right\}=\alpha,\left\{\beta_{n}\right\}=\beta$ are two p.r. real numbers, we write $\alpha=\beta$ (and say α, β are p.r. equal) if there is a p.r. function eq (k) such that $n \geqslant$ eq (k) $\rightarrow\left|\alpha_{n}-\beta_{n}\right|<2^{-k}$; we write $\alpha<\beta$ if there are integers i, j such that

$$
n \geqslant j \rightarrow \beta_{n}-\alpha_{n} \geqslant 2^{-l} ;
$$

and $\alpha>\beta$ if $\beta<\alpha$.
Using the results of para. 2 we now construct a decision procedure for deciding of two algebraic real numbers α, β which of $\alpha<\beta, \alpha=\beta, \alpha>\beta$ holds (the proof also ensures that one of these relations must hold.)
3.1 Given a primitive recursive real number $\boldsymbol{\alpha}=\left\{\boldsymbol{\alpha}_{n}\right\}$, a root of $a_{m} x^{m+1}+$ $\ldots+a_{1} x^{2}+x$ (rational a_{ℓ}), then it is decidable whether $\alpha_{n} \rightarrow 0$ or not ($\alpha=0$ or not).

Proof: Choose k so large that $2^{k-1}>\sum_{r=1}^{m}\left|a_{r}\right|$, then if $|x|<2^{-k},\left|\sum_{r=1}^{m} a_{r} x^{r}\right|<$ $2^{-k} \cdot 2^{k-1}=1 / 2$, whence

$$
\left|\sum_{r=1}^{m} a_{r} x^{r}+1\right|>1 / 2
$$

Choose n_{1} such that $n>n_{1} \rightarrow\left|\alpha_{n}-\alpha_{n_{1}}\right|<3^{-1} \cdot 2^{-k}$; then
(i) if $\left|\alpha_{n_{1}}\right|<2^{-k-1}$ we have $\left|\alpha_{n}\right|<2^{-k}\left(n \geqslant n_{1}\right)$ so that $\mid \alpha_{n}\left\{\sum_{r=1}^{m} a_{r} \alpha_{n}{ }^{r}+\right.$ $1\}\left|>\left|\alpha_{n}\right| / 2\right.$,
whence $\alpha_{n} \rightarrow 0$ primitive recursively, since the left-hand side does so. I.e. $\alpha=0$.
(ii) if $\left|\alpha_{n_{1}}\right| \geqslant 2^{-k-1}$, then for all $n \geqslant n_{1},\left|\alpha_{n}\right|>\sigma^{-1} \cdot 2^{-k}$
showing that $\alpha_{n} \notin 0$, i.e. $\alpha \neq 0$.
In case (ii) it follows of course that

$$
\left|\alpha_{n}\left\{\sum_{r=1}^{m} a_{r} \alpha_{n}^{r}+1\right\}\right|>6^{-1} \cdot 2^{-k}\left|\sum_{r=1}^{m} a_{r} \alpha_{n}^{r}+1\right|
$$

i.e. that α is a root of $a_{m} x^{m}+\ldots+a_{1} x+1$.
3.2 If $\left|\alpha_{n}\right|>\epsilon>0$ for all n, choose n_{2} such that $n \geqslant n_{2} \rightarrow\left|\alpha_{n}-\alpha_{n_{2}}\right|<\epsilon / 3$. Then
(i) if $\alpha_{n_{2}}>\epsilon / 2$ we have

$$
n \geqslant n_{2} \rightarrow \alpha_{n}>\epsilon / 6 \text {, i.e. } \alpha>0 \text {; }
$$

and
(ii) if $\alpha_{n_{2}} \leqslant \epsilon / 2$ we have

$$
n \geqslant n_{2} \rightarrow \alpha_{n}<5 \epsilon / 6, \text { but }
$$

$\left|\alpha_{n}\right|>\epsilon$ and so $\alpha_{n}<-\epsilon\left(n \geqslant n_{2}\right)$, i.e. $\alpha<0$.
3.3 Given two p.r. algebraic real numbers $\alpha=\left\{\alpha_{n}\right\}$ and $\beta=\left\{\beta_{n}\right\}$, roots of integral polynomials $f(x)$ and $g(x)$ respectively, then $\gamma=\left\{\gamma_{n}\right\}=\left\{\alpha_{n}-\beta_{n}\right\}$ is also a p.r. real number and we can construct rationally from $f(x)$ and $g(x)$ a polynomial with integral coefficients having γ as a root. For $f(\beta+\gamma)=0$ and can be expressed in the form

$$
f_{m}(\gamma) \beta^{m}+f_{m-1}(\gamma) \beta^{m-1}+\ldots+f_{0}(\gamma)
$$

We also have $g(\beta)=0$, whence, on eliminating β we arrive at the desired polynomial with γ as a root. Using (3.1) and (3.2) on γ we can thus decide $\alpha<\beta, \alpha=\beta$ or $\alpha>\beta$.
4. In Goodstein [1] and [2] the p.r. irrationality of p.r. sequences with (classical) limits e^{x} (rational x) and π was established: here we prove the p.r. transcendence of sequences for e and π.

We use the p.r. real numbers $\mathbf{E}(n, x)$ (rational x) defined by

$$
\mathbf{E}(0, x)=1, \mathbf{E}(n+1, x)=\mathbf{E}(n, x)+x^{n+1} /(n+1)!
$$

The following inequalities are needed:

$$
\begin{equation*}
\mathbf{E}(n, m) \leqslant\{\mathbf{E}(n, 1)\}^{m} \quad(\text { integral } m \geqslant 0) \tag{4.1}
\end{equation*}
$$

Proof: by induction on m.

$$
\begin{equation*}
\{\mathbf{E}(n, 1)\}^{m} \leqslant \mathbf{E}(m n, m) \tag{4.2}
\end{equation*}
$$

Proof: by induction on m using the easily proved

$$
\mathbf{E}(p, a) \cdot \mathbf{E}(q, b) \leqslant \mathbf{E}(p+q, a+b)
$$

(p, q, a, b integers $\geqslant 0$.)
For rational x and y, and $n>2(|x|+|y|)$

$$
\begin{equation*}
|\mathbf{E}(n, x) \cdot \mathbf{E}(n, y)-\mathbf{E}(n, x+y)| \leqslant \frac{2(|x|+|y|)^{n+1}}{(n+1)!} \tag{4.3}
\end{equation*}
$$

Proof: procedure obvious.

$$
\begin{equation*}
\mathbf{E}(n, m)<3^{m} \tag{4.4}
\end{equation*}
$$

Proof: by (4.1) and the familiar comparison with a geometric series.
To prove that $E(n, 1)$ is p.r. transcendental, define $\phi(x)$ to be the polynomial

$$
\frac{x^{p-1}}{(p-1)!}\left[\prod_{r=1}^{m}(x-r)\right]^{p}=\frac{1}{(p-1)!} \sum_{r=p-1}^{\nu} c_{r} x^{r}
$$

where $\nu=m p+p-1$ and the $c_{r}(p-1 \leqslant r \leqslant \nu)$ are integers.
Evidently $\phi(0)=\phi^{(k)}(0)=0,1 \leqslant k \leqslant p-2 ; \phi^{(p-1)}(0)=\left\{(-1)^{m} m!\right\}^{p} \not \equiv$ $0(\bmod p)$ if p be taken prime and $p>m$; also

$$
\phi^{(p+r)}(0)=\frac{(p+r)!}{(p-1)!} c_{p+r} \equiv 0(\bmod p), 0 \leqslant r \leqslant m p-1 .
$$

Let $L(\phi(x))=\sum_{k=0}^{\nu} \phi^{(k)}(x)$, then $L(\phi(0)) \not \equiv 0(\bmod p)$ but is an integer and so non-zero.

For each $k, 1 \leqslant k \leqslant m$, we may write $\phi(x)=\frac{1}{(p-1)!} \sum_{r=p}^{\nu} c_{k, r}(x-k)^{r}$ with integral $c_{k, r}$, showing that

$$
\phi^{(r)}(k)=0,0 \leqslant r \leqslant p-1, \text { and } \phi^{(p+r)}(k) \equiv 0(\bmod p) .
$$

Therefore $L(\phi(k)) \equiv 0(\bmod p), 1 \leqslant k \leqslant m$.
However $L(\phi(k))=\sum_{s=0}^{\nu} \sum_{r=s}^{\nu} \phi^{(r)}(0) k^{r-s} /(r-s)$!

$$
=\sum_{t=0}^{\nu} \phi^{(t)}(0) \mathbf{E}(t, k)
$$

$$
=L(\phi(0)) \mathbf{E}(n, k)-\sum_{r=0}^{\nu} \phi^{(r)}(0) k^{r} \sum_{s=1}^{n-r} k^{s} /(r+s)!\text {, for } n>\nu \text {. }
$$

Now $\left|\sum_{r=0}^{\nu} \phi^{(r)}(0) k^{r} \sum_{s=1}^{n-r} k^{s} /(r+s)!\right|<\sum_{r=0}^{\nu}\left|\phi^{(r)}(0)\right| \frac{k^{r}}{r!} \mathbf{E}(n, k)$

$$
\begin{aligned}
& =\frac{k^{p-1}}{(p-1)!}\left[\prod_{r=1}^{m}(k+r)\right]^{p} \mathbf{E}(n, k) \\
& <\frac{\left\{\prod_{r=o}^{m}(m+r)\right\}^{p}}{(p-1)!m} \mathbf{E}(n, m) .
\end{aligned}
$$

Let $a_{r}(0 \leqslant r \leqslant m)$ be integers, with $a_{m}>0$, then by the above
$L(\phi(0)) \sum_{k=0}^{m} a_{k} \mathbf{E}(n, k)=\sum_{k=0}^{m} a_{k} L(\phi(k))+\sum_{k=0}^{m} a_{k}\left[\sum_{r=0}^{\nu} \phi^{(r)}(0) k^{r} \sum_{s=1}^{n-r} k^{s} /(r+s)!\right]$
and $\left|\sum_{k=0}^{m} a_{k}\left\{\sum_{r=0}^{\nu} \phi^{(r)}(0) k^{r} \sum_{s=1}^{n-r} k^{s} /(r+s)!\right\}\right|$
$<\frac{a\left\{\prod_{r=0}^{m}(m+r)\right\}^{p}}{(p-1)!} \mathbf{E}(n, m) \quad\left(\right.$ where $\left.a={\underset{o}{ } \leqslant_{r} \leqslant m}_{\max _{m}}\left|a_{r}\right|\right)$
$<\frac{a M^{p}}{(p-1)!} 3^{m} \quad\left(\right.$ where $\left.M=\prod_{r=0}^{m}(m+r)\right)$
$<1 / 2$ if $p>1+2 M+\frac{M^{2 M}}{(2 M)!} 2 a M 3^{m}=U$, sa.y.
Also $\sum_{k=0}^{m} a_{k} L(\phi(k))$ is then a non-zero integer.
Then $\left|L(\phi(0)) \sum_{k=0}^{m} a_{k} \mathbf{E}(n, k)\right|>1-1 / 2=1 / 2$
for $p>U$ and $n>\nu$, so that

$$
\left|\sum_{k=0}^{m} a_{k} \mathrm{E}(n, k)\right|>1 / 2|L(\phi(0))|, \text { for } n>\nu
$$

Now using inequalities (4.1) and (4.2)

$$
\begin{aligned}
& \left|\sum_{k=0}^{m} a_{k}\{\mathbf{E}(n, 1)\}^{k}-\sum_{k=0}^{m} a_{k} \mathbf{E}(n, k)\right| \\
\leqslant & \sum_{k=0}^{m}\left|a_{k}\right|\{\mathbf{E}(n k, k)-\mathbf{E}(n, k)\} \\
< & \sum_{k=0}^{m}\left|a_{k}\right| \frac{n(k-1) k^{n}}{n!}<m a \frac{n m m^{n}}{n!}(\text { for } n>m) \\
< & 1 / 4|L(\phi(0))|, \text { if } n>1+v+\left(m^{\nu} / v!\right) a m^{3} 4|L(\phi(0))| \\
= & V, \text { say, where } v=2 m .
\end{aligned}
$$

Thus for $p>U$ and $n>V$ we have

$$
\left|\sum_{k=0}^{m} a_{k}\{\mathbf{E}(n, 1)\}^{k}\right|>(1 / 2-1 / 4) /|L(\phi(0))|=1 / 4|L(\phi(0))| .
$$

If $\sum_{k=0}^{m} a_{k} x^{k}$ is the $\rho^{\text {th }}$ member of some recursive enumeration of the polynomials of one variable with integer coefficients, then the m, a_{o}, \ldots, a_{m} are p.r. functions of ρ, and therefore so are the $L(\phi(0)), U$ and V, establishing the p.r. transcendence of $\mathbf{E}(n, 1)$.

Let y_{n} be a real root of $\sum_{k=0}^{m} a_{k} x^{k}$, then we can find a p.r. function $N(i)$ such that

$$
n \geqslant N(i) \rightarrow\left|\sum_{k=0}^{m} a_{k} y_{n}^{k}\right|<1 / i
$$

Taking $i>8|L(\phi(0))|$ and $n>\max \{N(i), V\}$ we have

$$
\left|\sum_{k=0}^{m} a_{k}\left\{y_{n}^{k}-(\mathbf{E}(n, 1))^{k}\right\}\right|>1 / 8|L(\phi(0))| .
$$

Now $\quad\left|\sum_{k=0}^{m} a_{k}\left\{y_{n}^{k}-(E(n, 1))^{k}\right\}\right|$

$$
\begin{aligned}
& <\quad\left|y_{n}-\mathbf{E}(n, 1)\right| \sum_{k=0}^{m}\left|a_{k}\right| k A^{k-1} \quad(\text { where } A=\max \{3, a\}) \\
& =\quad C\left|y_{n}-\mathbf{E}(n, 1)\right|, \text { say. }
\end{aligned}
$$

Thus $\left|y_{n}-\mathbf{E}(n, 1)\right|>1 / 8 C|L(\phi(0))|$, showing by how much at least $\mathbf{E}(n, 1)$ differs from a given algebraic real number.
5. For the purposes of this section, we need some properties of the norm $\|z\|$; we take the following for granted:

$$
\begin{align*}
& \|z+w\| \leqslant\|z\|+\|w\|, \tag{5.1}\\
& \|z \pm w\| \geqslant\|z\|-\|w\|, \tag{5.2}\\
& \|z \cdot w\| \leqslant\|z\| \cdot\|w\|, \tag{5.3}\\
& |z|^{2} \leqslant\|z\|^{2} \leqslant 2|z|^{2}, \tag{5.4}\\
& \|z \cdot w\| \geqslant 1 / 2\|z\| \cdot\|w\| . \tag{5.5}
\end{align*}
$$

An inequality similar to (4.3) but with norms replacing moduli is proved in the same way, using (5.1) - (5.5) above.

Let π_{n} be the p.r. sequence defined in Goodstein [2] § 2: we shall show that this is p.r. transcendental.

Let $\alpha_{1}(=\alpha)_{1} \alpha_{2}, \ldots, \alpha_{N}$ be the roots of $\sum_{r=0}^{N} a_{r} x^{r}$ (integral a_{r}); let $2\left(\left|a_{0}\right|+\ldots+\left|a_{N}\right|\right)=A$, and $2 N A=B$ (then $\left\|\alpha_{r}\right\|<A$). Denote $i \alpha_{r}$ by $\beta_{2 r-1}$ and $-i \alpha_{r}$ by $\beta_{2 r}(1 \leqslant r \leqslant N)$, then for $1 \leqslant j \leqslant 2 N,\left\|\beta_{j}\right\|<A$. Next let $\gamma_{s}\left(1 \leqslant s \leqslant 2^{2 N}-1=M\right)$ consist of all possible sums of the numbers β_{j} taken k at a time $(1 \leqslant k \leqslant 2 N)$ so that the γ_{s} will be the roots of a polynomial

$$
Q(x)=\sum_{r=0}^{M} b_{r} x^{r} \quad\left(\text { integral } b_{r}\right)
$$

and $\left\|\gamma_{s}\right\|<B(1 \leqslant s \leqslant M)$.

$$
\text { Let } \begin{aligned}
\psi(x) & =\frac{x^{p-1}}{(p-1)!} b_{M}^{p M}\{Q(x)\}^{p} \\
& =\frac{1}{(p-1)!} \sum_{r=p-1}^{p M+p-1} c_{r} x^{r}
\end{aligned}
$$

where p is a prime exceeding both $\left|b_{o}\right|$ and $\left|b_{M}\right|$.
Again write $L(\psi(x))=\sum_{r=0}^{p M+p-1} \psi^{(r)}(x)$, then $L(\psi(0))$ is an integer not divisible by p. Further, if x is a root of $Q(x)$ then $\psi^{(r)}(x)=0$ for $r \leqslant p-1$;
and $\sum_{m=1}^{M} \psi^{(r)}\left(\gamma_{m}\right)$ is an integer divisible by p, for $r \geqslant p$.
Let $T_{n}=\prod_{r=1}^{2 N}\left(1+\mathbf{E}\left(n, \beta_{r}\right)\right)$ so that

$$
T_{n}=1+\sum_{r=1}^{M} \mathbf{E}\left(n, \gamma_{r}\right)+U_{n}
$$

where $\quad\left\|U_{n}\right\|<2 M \sum_{r=0}^{2 n-2}\left(\mathbf{E}(n, A)^{r} B^{n+1} /(n+1)\right.$!

$$
=2 M^{*} B^{n+1} /(n+1)!, \text { say } .
$$

But $L(\psi(0)) \mathbf{E}(n, \gamma)=L(\psi(\gamma))+\sum_{r=0}^{p M+p-1} \psi^{(r)}(0) \gamma^{r} \sum_{s=1}^{n-r} \gamma^{s} /(r+s)$!
for $n>p M+p-1=\mu$, say.
Now, $\quad\left\|\sum_{t=0}^{M} \sum_{r=0}^{\mu} \psi^{(r)}(0) \gamma_{t}^{r} \sum_{s=1}^{n-r} \gamma_{t}^{s} /(r+s)!\right\|<M \mathbf{E}(n, B) \sum_{r=p-1}^{\mu}\left|c_{r}\right| B^{r} /(p-1)!$
But $\quad \frac{1}{(p-1)!} \sum_{r=p-1}^{\mu}\left|c_{r}\right| B^{r}=\frac{B^{p-1}}{(p-1)!}\left|b_{M}^{p M}\right|\left\{\sum_{k=0}^{M}\left|b_{k}\right| B^{k}\right\}^{p}$ $\rightarrow 0$ as $p \rightarrow \infty$

Therefore $\quad L(\psi(0)) \sum_{t=0}^{M} \mathbf{E}\left(n, \gamma_{t}\right)=L\left(\sum_{t=0}^{M} \psi\left(\gamma_{t}\right)\right)+\epsilon_{p}$
where $\quad \epsilon_{p} \rightarrow 0$ as $p \rightarrow \infty$ and $L\left(\sum_{t=0}^{M} \psi\left(\gamma_{t}\right)\right)$ is an integer divisible by p.
Hence $\quad L(\psi(0)) T_{n}=L(\psi(0))+L\left(\sum_{t=0}^{M} \psi\left(\gamma_{t}\right)\right)+\left\{\epsilon_{p}+U_{n}\right\} L(\psi(0))$.
Choose p so that $\left\|\epsilon_{p}\right\|<1 / 3$, then for $n \geqslant 6|L(\psi(0))| M^{*} B^{B+1} / B$!
we have $\quad 2|L(\psi(0))| M^{*} B^{n+1} /(n+1)!<1 / 3$ and therefore

$$
\left\|L(\psi(0)) T_{n}\right\|>1-1 / 3-1 / 3
$$

However

$$
\begin{gathered}
\left\|T_{n}\right\|<\|1+\mathbf{E}(n, i \alpha)\| 4^{(2 N-1) A}<\|1+\mathbf{E}(n, i \boldsymbol{\alpha})\| 4^{B} \\
\|1+\mathbf{E}(n, i \alpha)\|>1 / 3 L(\psi(0)) 4^{B} .
\end{gathered}
$$

whence

Now for $n \geqslant 14$ (see Goodstein [2]),

$$
\left\|1+\mathbf{E}\left(2 n+1, i \pi_{n}\right)\right\|<1 / 10^{n-1}<1 / 12|L(\psi(0))| 4^{B}
$$

if $n \geqslant|L(\psi(0))| 4^{B+1}$. Therefore

$$
\left\|\mathbf{E}(2 n+1, i \boldsymbol{\alpha})-\mathbf{E}\left(2 n+1, i \pi_{n}\right)\right\|>1 /|L(\psi(0))| 4^{B+1}
$$

for $n \geqslant c=\max \left\{|L(\psi(0))| 4^{B+1}, \quad 3|L(\psi(0))| M B^{B+1} / B!\right\}$.
Since $\left\|i \pi_{n}\right\|<4$ and $\|i \alpha\|<A$, taking C to be max $\{4, A\}$, we see that

$$
\begin{aligned}
\| \mathbf{E}(2 n+1), i \boldsymbol{\alpha})-\mathbf{E}\left(2 n+1, i \pi_{n}\right) \| & \leqslant\left\|\boldsymbol{\alpha}-\pi_{n}\right\| \mathbf{E}(2 n, C) \\
& <\left\|\boldsymbol{\alpha}-\pi_{n}\right\| 3^{C}
\end{aligned}
$$

and therefore $\left\|\alpha-\pi_{n}\right\|>1 /|L(\psi(0))| 4^{B}{ }_{3} C$ for $n \geqslant c$.
It then follows that

$$
\begin{aligned}
\left\|\sum_{r=0}^{N} a_{r} \pi_{n}^{r}\right\| & \geqslant\left\{\left\|a_{N}\right\| \cdot \prod_{r=1}^{N}\left\|\alpha_{r}-\pi_{n}\right\|\right\} / 2^{N} \\
& >\left\|a_{N}\right\| /|L(\psi(0))|^{N} 2^{2(B+1) N} 3^{N C} \text { for } n \geqslant c .
\end{aligned}
$$

6. Having proved the p.r. transcendence of $\mathbf{E}(n, 1)$ and π_{n}, we must show that any other p.r. real numbers with classical limit e or π are also p.r. transcendental. This follows from:
6.1 Any two p.r. numbers which are classically equal are also p.r. equal; and
6.2 if $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}\right\}$ are p.r. equal and $\left\{\alpha_{n}\right\}$ is p.r. transcendental, then $\left\{\beta_{n}\right\}$ is p.r. transcendental.

Proof of (6.1) Classical equality of $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}\right\}$ is expressed by $(k)(\exists N)$ $(n)\left\{n \geqslant N \rightarrow\left\|\alpha_{n}-\beta_{n}\right\|<2^{-k-3}\right\}$. There is a p.r. $\nu(k)$ such that

$$
\begin{aligned}
n \geqslant \nu(k) \rightarrow & \left\|\alpha_{n}-\alpha_{\nu_{(k)}}\right\|<2^{-k-3} \& \\
& \left\|\beta_{n}-\beta_{\nu_{(k)}}\right\|<2^{-k-3}
\end{aligned}
$$

Then it follows that $\left\|\alpha_{\nu(k)}-\beta_{\nu(k)}\right\|<3.2^{-k-3}$,
whence $n \geqslant \nu(k) \rightarrow\left\|\alpha_{n}-\beta_{n}\right\|<2^{-k}$.
Proof of (6.2) For some p.r. N_{r}, k_{r}, in the notation of para. 1

$$
\begin{equation*}
n \geqslant N_{r} \rightarrow\left\|P_{r}\left(\alpha_{n}\right)\right\|>2^{-k_{r}} \ldots \tag{i}
\end{equation*}
$$

There is a p.r. eq (k) such that

$$
\begin{aligned}
& n \geqslant \mathrm{eq}(k) \rightarrow\left\|\boldsymbol{\alpha}_{n}-\beta_{n}\right\|<2^{-k} . \\
& \left\|P_{r}\left(\boldsymbol{\alpha}_{n}\right)-P_{r}\left(\beta_{n}\right)\right\| \leqslant\left\|\boldsymbol{\alpha}_{n}-\beta_{n}\right\| P_{r}^{*}(\mathbf{S})
\end{aligned}
$$

where S is an upper bound for $\left\|\alpha_{n}\right\|$ and $\left\|\beta_{n}\right\|$, and if $2^{C_{r}}$ is the least power of 2 to exceed $P_{r}^{*}(\mathbf{S})$, then

$$
n \geqslant e \mathrm{eq}\left(k_{r}+c_{r}+1\right) \rightarrow\left\|P_{r}\left(\alpha_{n}\right)-P_{r}\left(\beta_{n}\right)\right\|<2^{-k_{r}-1}
$$

From this and (i) follows

$$
n>\max \left\{N_{r}, \text { eq }\left(k_{r}+c_{r}+1\right)\right\} \rightarrow\left\|P_{r}\left(\beta_{n}\right)\right\|>2^{-k_{r}-1}
$$

REFERENCES

[1] R. L. Goodstein: "The Strong Convergence of the Exponential Function". Journal of the London Mathematical Society, Vol. 22, 1947 pp. 200205.
[2] R. L. Goodstein: "The Recursive Irrationality of π." Journal of Symbolic Logic, Vol. 19, 1954, pp. 267-274.

University of Leicester, England

