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ON RECURSIVE TRANSCENDENCE

R. L. GOODSTEIN AND J. HOOLEY

1. Let Pn (x) be the n polynomial in an enumeration of all one-variable

polynomials with integral coefficients; let | | z | | = \\x + iy\\ - \x\ + \y\ be

called the norm of a rational complex number z = x + iy and let \sn\ be a

sequence of rational real or complex numbers. Then lim sn is transcenden-

tal if

W ( 3 k)(l N)(n)\n>N + | | P Γ ( s π ) | | > T*\ (1.1)

The convergence of is } is expressed by the condition:

( * ) ( 3 v)(n)\n>v+ \\sn-sv\\ <2Γ<k^\ . (1.2)

Let v (k) be the least value of v for which (1.2) holds, so that n ̂ v (k) ->

\\sn - sv,kΔ\ < 2~*k+2\ and let kγ and Nf be the least values of k and N for

which (1.1) holds, so that

n^Nr-+ \\Pr(sn)\\>2Γkrm ( L 3 )

Now if M = o ^ | * ( 7 ) l\\sr\\ + 2K and if Pf* (x) is the sum of the absolute

values of the terms of F (x), the first derivative of Pr (x), then

\\Pr^-Pr^\\<\\sm-^n\\P;^),

and, calling the exponent of the least power of 2 which exceeds P* (M), c r,

we have

m , n ^ v ( Λ + c r)-, | | P r ( S 7 7 2 ) ~ P r ( s n ) | | < 2 " * " 1 . (1.4)

If s is general recursive and general recursively convergent, so that

the function v (k) is general recursive, and if further, the functions Nf and

k in (1.3) a^e both general recursive, then the general recursive real (com-

plex) number \sn\ is said to be general recursively transcendental.

If s , v (k), Nr and kf are all primitive recursive (p.r.), then the p.r.

real (complex) number {5 ! is said to be primitive recursively (p.r.) transcen-

dental.
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In particular, taking Pr (x) to be a linear function of x, we obtain the

corresponding definitions of irrationality.

From (1.3) and (1.4), taking kf for k and Nf + v (kγ + cf + 1) for n, we

find, writing vγ (k) for v (k + cy + 2), that

l lPr (%(it f)
) l l> 2" i f e |^' w h e n C C

W(3 M | | p f ( ^ r U ) ) | | > r ^ M . (1.5)

If }s^| is general recursive and general recursively convergent, and if

lim sn is transcendental, then {sn\ is general recursively transcendental.

For, by hypothesis, sn and vf (k) are general recursive and so if λr is the

least value of k satisfying (1.5) then λf is general recursive, and

H p ,(%a r ) ) l l> 2 " X r ~ 3 -

Using (1.4) again with k = λr + I we have

« » v r ( λ r ) - * | | P r ( s n ) | | > 2 - λ ' - 2

which proves that {sn\ is general recursively transcendental. Of course it

is not the case that a p.r. number which is transcendental is necessarily

p.r. transcendental. However, we shall prove that e and π are p.r. tran-

scendental in the sense that any p.r. real number whose classical limit is

e oτ π is p.r. transcendental.

2. We start by showing that every algebraic number is a p.r. algebraic
m

number, i.e. that to each root of a polynomial, / (x) = X^ ar χr

9 there cor-

T—O

responds a p.r. real (complex) number, Θn, such that / (Θ ) -> 0 primitive

recursively.

Firstly, considering real roots, we note that if am = 1, and if \x\ > A -

m

^2 \a

r\> t h e n 1*1 > 1 a n d 1/ (*)| > °> i e a 1 1 t h e Γ o o t s o f / (*) i i e in t n e circle

\x\<A. ι

Let F (x) = ̂  bfx
r be the quotient on dividing / (A:) by the highest com-

r=o

mon factor of / (x) and /' (x); then the bf are rational functions of the α f.

Let ct t (1 4 i ^ μ 4- I) denote the real roots of / (x) (hence of F (x)) and, if

μ < I let oίL (μ < i-4 m) denote the complex roots. Supposing μ > 2, if h < k
<
= μ, then
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and so \ah-<*k\ > |Δ |/ί(2A) 1 / 2 / ( / ~ l ) ' " 1 } = δ ,

say, where δ i s rational since | Δ | i s rational. Divide (-A, A) into sub-

intervals of length at most 8 by points δ 0 (= -A), 8χ (= -A + δ), . . . , δκ_ί

(= -A + (K - 2)δ), δ κ (= A) and evaluate F (δ.) for each / (0 4 j 4: K).

If (i) F (δ.) = 0 for some /, then we define &n = δ , and no other real root

l i es in either (δ._t, δ.) or (δ.y δ.+ί);

(ii) F ( δ 1 ) < 0 , F ( δ π ) > 0 where δ 1 , δ M are the end points of some sub-

interval, then there i s just one root of / (x) in this interval. Let p0 - (8 ι +

δ " ) / 2 ; if F (p0) = 0 then define Θn = p o ; if F (p0) > 0 define Θo = δ and if

F (po) < 0 define Θo = δ π . To complete the recursive definition of I θ ^ i , let

Pn+1 = (pn + Θ n )/2 and then

®n+p+1=Pn+1, (P>0) if F(Pn+ι) = 0,

®n+ι = % i f F ( P π + i ) h a s t h e s a m e s i g n a s F ( p π ) ,

®/2+l = P« i f ^ (P« + l^ Π a S t h e ° P P O s i t e S i g n t O F (Pn)

{&n\ sat is f ies n ^ v -> |Θ^ - Θ | < δ2~ i ; , and so it i s p.r. convergent.

Further

/

\F (&J < I F (θΛ) - F ( P n ) | < | β π - pn\ 2 |fcy|7 ^
;=o

Thus n > v -> | F (Θ w ) | < A*δ 2~ v , showing that F (Θ^) — and hence also

f (©w) — tends p.r. to zero. A subinterval with end points δ 1 , δ "con-

tains no root of / (x) if F ( δ 1 ) and F ( δ 1 1 ) have the same sign.

If μ 4. h t n e same construction can be carried out, though of course,

the δ will not have i t s previous importance.

If a + iβ i s a root of / (x), there are polynomials P (x, y), Q (x, y) such

that P (ct,β) - Q (ot,/3) = 0, from which we arrive at Rx (a) = 0 on elimi-

nating β and R2 (β) = 0 on eliminating α , where Rλ and R2 are polynomials

obtained rationally from P, Q. Since a and /3 are thus p.r. algebraic real

numbers, then α + iβ is a p.r. algebraic complex number.

3. If ί α π ! = α , {β w ! = β are two p.r. real numbers, we write α = β (and

say ce, β are p.r. equal) if there i s a p.r. function eq (k) such that n ^ e q (&)

-> \at - β I < 2 we write α < β if there are integers f, / such that

n>y,j^βn-an>2-ί

and oe > β if β < a .

Using the results of para. 2 we now construct a decision procedure for

deciding of two algebraic real numbers a, β which of ce < β, ot = β , α > β

holds (the proof also ensures that one of these relations must hold.)

3.1 Given a primitive recursive real number oe = tani> a root of a

m

χTn+1 +

. . . + a^x1 + x (rational a ), then it i s decidable whether ctn -* 0 or not (ce = 0

or not).
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m m

Proof: Choose k so large that 2k~x > ̂  \af\, then if |χ | < 2~k, | V afx
r\ <

r=i r=i

2Γk . 2k"1 = ̂ , whence

m

\Yda/+l\>Vι.

Choose nx such that n> nir* \an ~~<Xn I < 3""1 . 2~*; then
m

(i) if \anι\ < Tk~x we have | α j < 2~h (n >nλ) so that \an {^ afOLn

r +
r-i

ill > lαJ/2,

whence α -> 0 primitive recursively, since the left-hand side does so.
I.e. a = 0?

(ii) if | α π j >2" A " 1 , then for all n ̂ nl9 \an\ > (Γ^2~k

showing that an /> 0, i.e. a φ. 0.

In case (ii) it follows of course that

m m

r—i r=ι

i.e. that a is a root of a xm + . . . + a,x + 1.
m

3.2 If (α I > e > 0 for all n, choose n2 such that n^n2^ \ctn - <Xn \ < e/3.
Then

(i) if a > e/2 we haven2

n >, n2 -• an > e/6 , i.e. α > 0

and

(ii) if α^ <$ e/2 we have

n ^n2 -> α n < 5e/6, but

| α n | > e and s o α n < - e {n ̂  «2), i.e. a < 0.

3.3 Given two p.r. algebraic real numbers a = {a } and β - {β !, roots of
integral polynomials / (x) and g (x) respectively, then γ = \γn\ = {an - βn\ is
also a p.r. real number and we can construct rationally from / (x) and g (x) a
polynomial with integral coefficients having γ as a root. For / (j8 + y) = 0
and can be expressed in the form

fm ( γ ) β m + /OT_, W β m ~ ι + ••• + /. ( y ) .

We also have g (β) = 0, whence, on eliminating β we arrive at the desired
polynomial with γ as a root. Using (3.1) and (3.2) on y we can thus decide
<*<β, a = β or a> β.
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4. In Goodstein [ l ] and [2] the p.r. irrationality of p.r. sequences with

(classical) limits ex (rational x) and π was established: here we prove the

p.r. transcendence of sequences for e and π.

We use the p.r. real numbers E (n, x) (rational x) defined by

E (0, x) = 1, E (n + 1, x) = E («, x) + xn+1/(n + 1)\

The following inequalities are needed:

E (n, m)^ \E (n, l)\m (integral m £ 0 ) (4.1)

Proof: by induction on m.

{E («, 2 ) ! m < E (flWl, 772) (4.2)

Proof: by induction on ra using the easily proved

E (p,a) . E (q,b)^E (p + q, a+ b)

(p, q, a, b integers ^ 0 . )

For rational x and y, and n > 2 (\x\ + \y\)

|E («,x) . E («,y) ~ E (Λ,χ + y)| < 7^+1)! ( 4*3 )

Proof: procedure obvious.

E (n,»») < 3m (4.4)

Proof: by (4.1) and the familiar comparison with a geometric series.

To prove that E (n, 1) is p.r. transcendental, define φ (x) to be the

polynomial

p-i m 1 v

where p - mp + p - 1 and the c^ (/? - I -ζ r ̂  v) are integers.

Evidently ^ (0) = φ(k) (0) = 0, 1 < k < p - 2; 0 ^ ~ l } (0) = {(- i)"2 ττz!p ^

0 (mod p) if £ be taken prime and p > m; also

^(P+r) ( 0 ) = (p + r)! c ^ ^ s 0 ( m o d ? ) , 0 < r^ TTzp - i.

Let L (0(x)) = 5 ^ 0 ( ^ } (x), then L (φ(β)) ύ 0 (mod p) but is an integer

and so non-zero.

2 *
For each &, 1 <$ kζ m, we may write φ(x) = ̂ 7 rr ^ c^ r (x-k)r with

integral c^ ^ , showing that r~^

φir) (k) = 0,04r^p - 2, and < ^ + r ) (ife) Ξ 0 (mod p).
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Therefore L (φ(k)) = 0 (mod p), l^k<m.

v v

However L (φ(k)) = ^ Σ ^ ( 0 ) * ^ " S / ( r ~ s ) !

V

= Σ Φ(t) (0) E (*,*)

= L (0(0)) E(/2,^)-^0 ( r ) (O)Γ^ W(r+ s)!, for«>ι/.
r—o s=i

Now | j]0 ( r )(O)Λ f J]ΛV(r+s)! | < ̂  f0(r) (0) | — E (n, k)
r—o s—i r=o

= 7ΓTrλ& (* + ') E(«, k)
(p-l)l |_r=i J

(p-1)! m

Let αr (0 ζ r^ m) be integers, with ^ > 0, then by the above

171 m m r" y n—r —

L(<A(O» Σ βjfe E(»,A) = Σ ΛA L W * »
 + Σ a * Σ ^ ( r )ί°)* r Σ * s / ( f 4 5)!

^=o ^=o ^=o L r = o 5::=1 _

m v n—r

and | 2 ak {£ Φ(r) W)kr "£ ks/(r+s)l\\
k=o r=o s=i

β ί Π (™+r)!/' max
< ( Γ - 1)! E(W> M> (WheΓe Λ = AAm Wrl)

aNP m

< — — 3m (where Λi = Π (m +r))
(p-ί)!

M2 Λ 1

< 1/2 if p > 2 + 2M + 2aM3m = U, sr.y.
(2M)!

m

Also V^ fit; L (φ(k)) is then a non-zero integer.
k=o

m

Then \L(φ(0)) ^ ^ E(Λ,^)| > 1 - 2/2 = 2/2
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for p > U and n > v, so that

m

| £ ak E(n,A)| > 1/2 I L (0(0)) I, forOi/.

Now using inequalities (4.1) and (4.2)

m m

| £ *AίE(B, l)\k-Σ «*E(«,*>|

m

^ Σ l«JlE(n*. A)-E(B, *)|
A=o

< 2/4 |L (0(0)) |, if ?2> 2 + v + (m9/vl)am* 4 |L(0(O))|

= V, say, where v = 2m.

Thus for p > U and n > V we have

772

I Σ **IE(*, 2)}Λ| X 2 / 2 - 2/4)/|L(0(O))| = 2/4|L(0(O))|.

77Z

If V^ β, x* is the p member of some recursive enumeration of the poly-
k=o

nomials of one variable with integer coefficients, then the m, aQy . . . , am

are p.r. functions of p, and therefore so are the L(φ(0))9 U and V, estab-
lishing the p.r. transcendence of E(n,l).

m

Let yn be a real root of V^ a^ x , then we can find a p.r. function

N (i) such that

m

n>N(i)+\Σa

kyn

k\<1/L

Taking i > 8\L (0(0))| and n > max ίN(z), V\ we have

772

\Σ *kbn

k -(E(«, 2))*!| > 2/8 |L(0(O))|.

772

Now \Σ ak{yn

k-(E(n,l))k\\
k=o
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m

< \yn - E(w, 2)| 2 1**1 * Ak~X ( w h e r e Λ = m a x { 3 > **>

C | y n - E ( κ , 1)|, say.

Thus \yn - E(Λ, ΐ)\ > 1/8 C\L(φ(0))\, showing by how much at least E(«, I)
differs from a given algebraic real number.

5. For the purposes of this section, we need some properties of the norm
\\z\\ we take the following for granted:

||* + «ΊKIMI + IMI, (5.D

II*±«ΊI ^11*11-IMI. (5.2)

\\z u/|l< 11*11 | H | , | (5.3)

H » « | | z | | » $ 2 | * | » , (5.4)

| | * . u / | | ^ I M I IMI (5-5)

An inequality similar to (4.3) but with norms replacing moduli is proved in
the same way, using (5.1) — (5-5) above.

Let πn be the p.r. sequence defined in Goodstein [2] § 2: we shall show
that this is p.r. transcendental.

N

Let ax (= a)x a2, . . . , α N be the roots of ^ aγx
r (integral ar); let

r—o

2(\ao\ + . . . + \aN\) = A, and 2NA = B (then | | α r | | < A). Denote iar by
β2r^ and - iar by βir (1 $ r 4 N), then for 1 < / < 2N, \\β.\\ < A. N e x t l e t

γs (1 ζ s ^ 22^ - 1 = M) consist of all possible sums of the numbers β taken
k at a time (1 <$ k 4 2N) so that the γs will be the roots of a polynomial

Aί

δ(*)=Σ ^ / (integral^)

and | | y s | | < β ( i < s < M ) .

L e t ^w-^^iewί"
pM+p-ί

(?-J) ' 4 ^ r

where p is a prime exceeding both |^ o | and | ^ | .

Again write L(ψ(x)) = Y^ ^ r ^ (x), then L(ψ(0)) is an integer not di-
r=o

visible by p. Further, if x i s a root of Q(x) then i/r̂ r^ (x) = 0 for r ζ p-1;
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Λi
and V* \jλτ' iym) is an integer divisible by p, for r ^ p.

Let Γ = II (I + E(«,β )) so that
n r=i r

M

r=i

2/2—2

where \\ϋn\\ < 2 M J^ (E(n,A)r Bn+1/(n + 1)\
r=o

= 2 M* Bn+1/(n + 1)1 , s a y .

pM+p~i n~r

But L((A (0)) E (n,γ) = L(ιA (y)) + ^ iA(r) (^) yr ^ γs/(r + s)!

for n>pM + p - l = μ , s a y .

Now, | | J ] ^ ^ ( r ) ( 0 ) y ; Σγt

s/(r+ s)l\\ <ME(n,B) J^ \cf\Br/(p-l)l
t—o r—o 5=1 r—p~l

Bm — L - y | c | B r = MIL\bp.M\\T] \b,\Bk\ρ

-> 0 as p -» ex)

Λl M
Therefore L(ι/r(0)) ^ E ^ ^ ) = L ( ^ i/r(yz)) + 6̂ ,

t=o ' t-o

M

where e •> 0 as f» -> oo and L ( \ * ψ(yt)) 1S a n integer divisible by p.
t=o

M

Hence L (ψ(0))Tn = L (ψ(0)) + L ( ^ ^(y^) + ί^ + l/πl L (^(0)).
ί=o

Choose p so that | | ^ | | < ί/3, then for n <>6\L (ψ(0))\M*BB+x/Bl

we have 2\L(ψ(0))\M* Bn+1/(n + 1)\ < 1/3 and therefore

\\L(ψ(0))Tn\\ > 1-1/3-1/3.

However

| | Γ J | < II2 + E(n,ia)\\4(2N-ι)A <\\1 + E(n,ia)\\4B

whence \\1 + E(n,ia)\\ > l/3L(ψ(0))4B•
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Now for n^ 14 (see Goodstein [2]),

||1 + E(2n + 1, i πn)\\ < l/lOn~x < 1/l2\L(ψ(0))\4B

if n^\L(φ(0))\4B'¥ι . Therefore

\\E(2n + 1, ί α ) - E ( 2 * + 2, ιιr n) | | > l/\L(ψ(0))\4B^

for n > c = maxί|L (^(0)) |4 β + 1 , 3\L (ψ(0))\M BB+ί/B\\.

Since ||z πn\\ < 4 and ||iθί|| < Λ, taking C to be max {4,Ai, we see that

| |E(2»+ 1), ί α ) - E ( 2 n + I, i ί r | I ) | |< | |α-ίr | I | |E(2ι i , C)

< l l « - * Λ l | 3 C

and therefore \\ct - πn\\ > 1/\L (ψ(0))\4B 3C for n>c.

It then follows that

> ||αN||/|L(τ/τ(0))|N 2^B+l)N 3NC for n > c.

6. Having proved the p.r. transcendence of E (n, 1) and πn, we must show
that any other p.r. real numbers with classical limit e or π are also p.r.
transcendental. This follows from:

6.1 Any two p.r. numbers which are classically equal are also p.r. equal;
and

6.2 if ίct£i and \βn\ are p.r. equal and ίtf^! is p.r. transcendental, then
\βn\ is p.r. transcendental.

Proof of (6.1) Classical equality of \(*n\ and \βn\ is expressed by (k)( ] N)
(n){n >/N -> | | α π - βn\\ < 2~k~*\. There Is a p.r. Z{k) such that

n>v{k)-* \\an- av \\ < 2~k~3 &

Wβn~βV(k)W<Γk'~i

Then it follows that ||ceμ(jfe) - βv{k) \\ <3.2~k~*,

whence n > v{k) -> \\*n - βn\\ < 2Γk.

Proof of (6.2) For some p.r. Nr? kf> in the notation of para. 1

n>,Nr+ \\Pτ{*n)\\ >2~k' . . . (i)



ON RECURSIVE TRANSCENDENCE 137

There is a p.r. eq(&) such that

n^eq(A)-||αB-j8J|<2^.

\\Pr(an)-Pτφn)\\4\\an-βn\\P;{S)

wheie S i s an upper bound for | |ot w | | and | | β j | , and if 2Cγ i s the least power
of 2 to exceed P* (S), then

n >,eq(kr + cr+l)+ \\Pr(*n) - Pr(βn)\\ < 2"k^1.

From this and (i) follows

n>max\Nr, eq(Af + cγ + 1)\ + \\Pr(βn) | | > 2"k^\
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