RECURSIVE MODELS FOR THREE-VALUED PROPOSITIONAL CALCULI WITH CLASSICAL IMPLICATION

VLADETA VUČKOVIĆ

1. Introduction. The aim of this paper is to complete the author's paper [1], exhibiting various systems of propositional calculi which have models inside the recursive arithmetic of words. We limit our exposition to three-valued case; nevertheless, the method can be applied to the calculi with more than 3 truth-values.

In the elaboration of this paper we considered first four such systems, which raised naturally in an attempt to eliminate an error in our paper [1], which was remarked by B. Sobociński in [2] and [3], and we gave the proofs of their completeness along the lines of the well-known Kalmar proof for the completeness of the classical propositional calculus. Later discussions with I. Thomas ([6]) contributed to look for models of general three-valued propositional fragments with classical implication. As now the paper [6] provides the proof of completeness we restrict ourself to the construction of models only.

2. Recursive arithmetic of words. Recursive arithmetic of words (short: RAW) is an equation calculus over the words of an alphabet

(2.1)
$$\mathcal{J}_n = \{S_0, S_1, \dots, S_{n-1}\}$$

with more than one letter, which is built up as follows.

Denote the empty word by θ .

Introduce n + 2 initial functions

$$(2.2) Z(X) = 0,$$

$$I(X) = X$$

and

(2.4)
$$S_i(X) = S_iX, i = 0, 1, ..., (n-1)$$

where $S_i X$ is the word obtained from the word X by writing the letter S_i on its beginning. All variables X, Y, Z (with possible indices) run over the set $\Omega(\mathcal{J}_n)$ of all words written by letters of \mathcal{J}_n (and also over the empty word, which is supposed to be a member of $\Omega(\mathcal{J}_n)$). Formation rules are the

Received March 11, 1965.

substitution of functions and words for variables and the definitions by primitive recursion.

A function $f(X_1, \ldots, X_m, Y)$ is defined by simple primitive recursion by the following (n + 1) equations:

$$f(X_1, \ldots, X_m, 0) = a(X_1, \ldots, X_m)$$

$$f(X_1, \ldots, X_m, S_i Y) = b_i(X_1, \ldots, X_m, Y, f(X_1, \ldots, X_m, Y)), i = 0, \ldots, n-1$$

where a and all b_i are or initial functions or previously defined by the scheme (2.5). A function f(X,Y) is defined by double primitive recursion by the following $n^2 + n + 1$ equations:

(2.6)
$$f(X, 0) = a(X),$$

$$f(0, S_i Y) = b_i(Y), i = 0, ..., n-1,$$

$$f(S_i X, S_j Y) = c_{ij}(X, Y, f(X, Y)), i, j = 0, ..., n-1$$

where a, all b_i and all c_{ij} are or initial function or previously defined by (2.5) or (2.6). A function is primitive recursive if it is an initial function, or if it is defined by primitive recursion (of both types), or if it is obtained from such a function by substitution with such functions. We note that (2.6) can be reduced to (2.5) (see f.i. [4]). We introduce (2.6) in order to simplify the exposition.

The only expressions which form **RAW** are equations between primitive recursive functions. We admit only proved equations. An equation $f = \phi$ between two word-functions is proved, if and only if f and ϕ satisfy the same defining equations (2.5) or (2.6), or if f and ϕ are obtained from such functions by the same substitutions. It can be proved that **RAW** is non-contradictory in the following sense: if the equation

$$f(X_1,\ldots,X_m)=g(X_1,\ldots,X_m)$$

is proved and if A_1, \ldots, A_m are any words in $\Omega(\mathcal{G}_n)$, then $f(A_1, \ldots, A_m)$ and $g(A_1, \ldots, A_m)$ are one and the same word. A complete exposition of **RAW** is given in [5]. Here we present a very minor part of it, which is sufficient for our purposes. We need first n additive operations Xo_iY , which are defined by $(i = 0, \ldots, n-1)$

(2.7)
$$Xo_i O = X Xo_i S_i Y = S_{i+j} (Xo_i Y), \quad j = 0, ..., n-1.$$

The addition i + j of indices is modulo n.

Especially, the operation o_0 is called addition and denoted by +. We repeat its definition:

(2.8)
$$X + 0 = X X + S_j Y = S_j(X + Y), \quad j = 0, ..., n-1.$$

X + Y is the concatenation YX. Oo_iX , written simply as o_iX , is obtained from X by augmenting the indices of all letters of X for i, modulo n. We note a few proved equations; on the right side we refer to the corresponding equation of [5].

$$(2.9) Xo_i Y = X + o_i Y.$$

(2.10)
$$0 + X = X$$
.
(2.11) $X + (Y + Z) = (X + Y) + Z$.

The multiplication $X \cdot Y$ is defined by

(2.12)
$$X \cdot 0 = 0$$
$$X \cdot S_{i}Y = (X \cdot Y) + o_{i}X, \quad j = 0, \dots, n-1.$$

Note that

$$(2.13) S_0 \cdot X = X \cdot S_0 = X,$$

which suggests consideration of S_0 as the unit for multiplication. Therefore, we write sometimes I for S_0 .

The difference $X \doteq Y$ is defined by double primitive recursion:

(2.14)
$$X \doteq 0 = X, \\ 0 \doteq S_{j} Y = 0, j = 0, ..., n-1, \\ S_{i}X \doteq S_{j}Y = \begin{cases} X \doteq Y, & \text{if } i = j, \\ S_{i}(X \doteq Y) & \text{if } i \neq j \end{cases} i, j = 0, ..., n-1.$$

Some elementary properties of the difference are

$$(2.15) 0 \div X = 0, (5.10)$$

$$(2.16) Y \doteq (X+Y) = 0. (5.11)$$

$$(2.17) (Y+X) - X = Y. (5.12)$$

$$(2.18) X \doteq X = 0, (5.14)$$

Note that $1 \div S_i$ is 0 if and only if i = 0. In all other cases $1 \div S_i = 1$. The last function to be introduced is $\alpha(X)$:

(2.19)
$$\begin{array}{c} \alpha(0) = 0, \\ \alpha(S_i X) = 1, \ i = 0, \dots, n-1. \end{array}$$

We quote:

$$(2.20) (1 \div \alpha(X)) \cdot X = 0. (6.16)$$

If we define the absolute difference |X, Y| by

$$(2.21) |X, Y| = (X \div Y) + (Y \div X),$$

it can be proved that X = Y is equivalent with |X,Y| = 0 ([5], (7.3)). Therefore: every equation in **RAW** can be put in the form f = 0.

Finally, note the validity of the proof-schema:

(2.22)
$$X = 0$$

$$\underline{(1 - \alpha(X)) \cdot Y = 0}$$

$$Y = 0.$$

whose meaning is: if the first two rows are provable, then the third row is provable.

3. Fundamental equations: Here we present that part of RAW which is needed for the construction of models, limiting ourselves to a RAW over the alphabet $\mathcal{J}_2 = \{S_0, S_1\}$ with two letters.

Introduce two functions

(3.1)
$$N_i(X) = \alpha(S_i \div X), i = 0,1.$$

Remark that

(3.2)
$$N_i(X) = 0$$
 if and only if $X = S_i Y$; in other cases $N_i(X) = 1$.

The following set of equations is easily provable. There, i and j take the values 0 and 1.

$$(3.3) \quad \{1 \doteq \alpha \lceil (1 \doteq \alpha \lceil (1 \doteq \alpha(X)) \cdot Y \rceil) \cdot Z\} \cdot \{1 \doteq \alpha \lceil (1 \doteq \alpha(Z)) \cdot X \rceil\} \cdot \lceil 1 \doteq \alpha(V) \rceil \cdot X = 0;$$

$$\begin{array}{lll} (3.4.i) & [1 \doteq \alpha(X)] \cdot N_0 \left(N_i(X) \right) = 0; \\ (3.5.i,j) & \{1 \doteq \alpha \left[N_i(X) \right] \right\} \cdot N_0 \left(N_j(X) \right) = 0, & i \neq j; \\ (3.6.i) & \{1 \doteq \alpha \left\{ \left(N_i(X) \right\} \cdot \left[1 \doteq \alpha(X) \right] \cdot Y = 0; \\ (3.7.i) & [1 \doteq \alpha(X)] \cdot \left\{ 1 \doteq \alpha \left[N_i(Y) \right] \right\} \cdot N_i \left\{ \left[1 \doteq \alpha(X) \right] \cdot Y \right\} = 0; \\ (3.8) & \{1 \doteq \alpha \left[\left\{ 1 \doteq \alpha \left[N_1(X) \right] \right\} \cdot X \right] \right\} \\ & \quad \cdot \left\{ 1 \doteq \alpha \left[\left\{ 1 \doteq \alpha \left[N_0(X) \right] \right\} \cdot X \right] \right\} \cdot X = 0. \end{array}$$

F.i. to prove (3.3) denote its left side by f(X,Y,Z,V). Then f(0,Y,Z,V)=0 and $f(S_kX,Y,Z,V)=[1 \div \alpha(Z)]\cdot [1 \div \alpha(Z)]\cdot [1 \div \alpha(V)]=0$, as easily seen by recursion in Z. To prove (3.4.i) it suffices to show that the left side is 0 for X=0. As $N_i(0)=1$ and $N_0(1)=0$ (by (3.2)), the result follows. Remaining equations are provable in a similar way. To shorten the exposition we write $N_2(X)$ for X and by $X=S_2Z$ we mean X=0.

Call a word function \tilde{f} , whose range is in $\{0, S_0, S_1\}$ regular if from

(3.9)
$$\widetilde{f}(S_{i_1}, S_{i_2}, \dots, S_{i_n}) = S_{i_{n-1}},$$

where every i_k is or o, or 1 or 2 (in the last case S_2 means 0), follows

(3.10)
$$\widetilde{f}(S_{i_1}^T Z_1, S_{i_2} Z_2, \dots, S_{i_n} Z_n) = S_{i_{n-1}},$$

for any $Z_1, Z_2, \ldots, Z_n \in \Omega(S_2)$.

Every regular function can be defined in the following way. First, by "truth tables" we define a mapping f of the set $\{0, S_0, S_1\}$ into $\{0, S_0, S_1\}$. The truth table has 3^n rows and n+1 columns: (we write italics for variables running only over letters and the empty word)

Then define \widetilde{f} by

(3.12)
$$\widetilde{f}(S_{i_1}Z_1, S_{i_2}Z_2, \dots, S_{i_n}Z_n) = f(S_{i_1}, S_{i_2}, \dots, S_{i_n}),$$

for any Z_1, \ldots, Z_n .

 \widetilde{f} is defined by 3" conditions, so it is primitive recursive. Let \widetilde{f} be a regular function. To every row of the truth table for the corresponding f, say to j-th row, we assign the function

$$(3.13) \quad \psi_j(X_1,\ldots,X_n) = [1 \div \alpha(X_1^{\dagger})] \cdot \ldots \cdot [1 \div \alpha(X_n^{\dagger})] \cdot \widetilde{f}^{\dagger}(X_1,\ldots,X_n),$$

where

$$X_i! = \begin{cases} X_i & \text{, if in the i-th column of j-th row stands S_2 (i.e. θ)} \\ N_0(X_i) & \text{if in the i-th column of j-th row stands S_0} \\ N_1(X_i) & \text{if in the i-th column of j-th row stands S_1} \end{cases}$$

and where

$$\widetilde{f}' = \begin{cases} \widetilde{f} & \text{, if in the } (n+1)\text{-th column of } j\text{-th row stands } S_2 \\ N_0(\widetilde{f}) & \text{, if in the } (n+1)\text{-th column of } j\text{-th row stands } S_0 \\ N_1(f) & \text{, if in the } (n+1)\text{-th column of } j\text{-th row stands } S_1 \end{cases}.$$

We prove: for every $j = 1, 2, ..., 3^n$

$$\psi_i(X_1,\ldots,X_n)=0.$$

Remark that

$$\psi_{j} = \left\{ \prod_{i=1}^{n} \left[1 \div \alpha(N_{j_{i}}(X_{i})) \right] \cdot N_{j_{n-1}}(\widetilde{f}(X_{1}, \ldots, X_{n})), \right\}$$

where $\prod_{i=1}^{n} \alpha_{i} = \alpha_{1}, \alpha_{2} \dots \alpha_{n}$. The expression in $\{\ \}$ is $\ \neq \ 0$ if and only if $N_{j_{i}}(X_{i}) = 0, \ i = 1, \dots, n$. By the definition of functions N_k , k = 0.1.2

$$N_{i,i}(X_i) = 0$$
 if and only if $X_i = S_{i,i}Z_i$.

As then

$$\widetilde{f}(X_1,\ldots,X_n)=\widetilde{f}(S_{j_1}Z_1,\ldots,S_{j_n}Z_n)=S_{j_{n+1}}$$

we have

$$N_{j_{n+1}}(\widetilde{f}(X_1,..,X_n)) = N_{j_{n+1}}(S_{j_{n+1}}) = 0.$$

This proves (3.14). We make the convention that (3.14) stands for all 3^n such equations.

4. Construction of models. To construct models for the propositional fragments of [6] interpret

(4.1)
$$Cpq$$
 as $[1 - \alpha(X)] \cdot Y$,
(4.2) $N_1 p$ as $N_0(X)$

$$(4.2)$$
 $N_1 p$ as $N_0(X)$

and

(4.3)
$$N_2 p$$
 as $N_1(X)$.

Every proposition involving C, N_1 and N_2 is interpreted in RAW as an equation, with θ on the right side and with the corresponding interpretation of its symbols by means of (4.1)-(4.3) on the left side. F.l. CpN_1N_ip becomes the equation

$$[1 - \alpha(X)] \cdot N_0(N_j(X)) = 0, j = 0,1.$$

If $\phi(x_1,\ldots,x_n)$ is any n-argument functor, as his representant we introduce the regular function $f(X_1, \ldots, X_n)$ defined as follows:

To the values 0,1,2 of arguments x_i and of $\phi(x_1,\ldots,x_n)$ for an assignment of those values in the truth table of ϕ , we correspond the words $0,S_0,S_1$ respectively. In this way, we define first a mapping f with domain $\{0,S_0,S_1\}$ and with the range in the same set. For \widetilde{f} we take then the regular extension of f, as defined by (3.12). With this, the first 6 rows of axioms in [6] become equations (3.3)-(3.8) of section 3 of this paper, and the 3^n axioms in the row 7 of the axiom list of [6] becomes 3^n equations (3.14). (2.22) becomes the detachment rule

$$\frac{\vdash \alpha}{\vdash C\alpha\beta}$$

and as a substitution rule, corresponding to the substitution rule of the propositional calculus, is valid in RAW we conclude: if any proposition is provable in the propositional fragment of [6], its corresponding equation in RAW is provable too.

Remark. To construct corresponding models for n-valued calculi we have to use an **RAW** over the alphabet with n-1 letters.

LITERATURE

- [1] V. Vučković: Rekurzivni modeli nekih neklasicnih iskaznih racuna. (Recursive models of some nonclassical propositional calculi). Filosofija, v. 4 (1960), 69-84. (Serbian, German summary).
- B. Sobociński: On the propositional system A of Vučković and its extension.
 I. Notre Dame Journal of Formal Logic, V (1964), 141-153.
- [3] B. Sobociński: Same title, II. Notre Dame Journal of Formal Logic V (1964), 223-235.
- [4] H. A. Pogorzelski: Commutative recursive word arithmetic in the alphabet of prime numbers. *Notre Dame Journal of Formal Logic*. V (1964), 13-23.
- [5] V. Vučković: Rekursive Wortarithmetik, Acad. Serbe Sci. Publ. Math. Inst. 14 (1960), 9-60.
- [6] I. Thomas: Three-valued propositional fragments with classical implication. *Notre Dame Journal of Formal Logic*, VIII (1967), 145-147.

University of Notre Dame Notre Dame, Indiana