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RECURSIVE MODELS FOR THREE-VALUED PROPOSITIONAL
CALCULI WITH CLASSICAL IMPLICATION

VLADETA VUCKOVIC

1. Introduction. The aim of this paper is to complete the author’s paper
[1], exhibiting various systems of propositional calculi which have models
inside the recursive arithmetic of words. We limit our exposition to three-
valued case; nevertheless, the method can be applied to the calculi with
more than 3 truth-values.

In the elaboration of this paper we considered first four such systems,
which raised naturally in an attempt to eliminate an error in our paper [1],
which was remarked by B. Sobocifiski in [2] and [3], and we gave the proofs
of their completeness along the lines of the well-known Kalmar proof for
the completeness of the classical propositional calculus. Later discussions
with I. Thomas ([6])) contributed to look for models of general three-valued
propositional fragments with classical implication. As now the paper [6]
provides the proof of completeness we restrict ourself to the construction
of models only.

2. Recursive arithmetic of words. Recursive arithmetic of words (short:
RAW) is an equation calculus over the words of an alphabet

(2.1) Jn={so; Sly°°:sn—1}’

with more than one letter, which is built up as follows.
Denote the empty word by 0.
Introduce » + 2 initial functions

(2.2) Z(X) =0,

(2.3) IX) =X

and

(2.4 S;(X) = SiX, i=0,1,..,@#-I)

where S; X is the word obtained from the word X by writing the letter S; on
its beginning. All variables X, ¥, Z (with possible indices) run over the set
Q(d,) of all words written by letters of ./, (and also over the empty word,
which is supposed to be a member of ©(4,)). Formation rules are the
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substitution of functions and words for variables and the definitions by
primitive recursion.

A function f(X,, ..., Xns,Y) is defined by simple primitive recursion by
the following (n + 1) equations:
(2-5) f(X11'-7X”ly 0) =a(X15'-)Xm)

F(X, ., Xn,SiV) = bi( Xy, .., X0, Y, f(X1,.0,Xm, V), i=0,.,n-1

where ¢ and all b; are or initial functions or previously defined by the
scheme (2.5). A function f(X,Y) is defined by double primitive recursion by
the following #® +n + 1 equations:

fX,0) = alXx),
(2-6) f(Oy S,'Y)=b,-(Y),i=0,..,n—l,
f(S,'X,S,'Y) = Cij (X,7,f(X,Y)),4,j=0,..,n-1

where a, all b; and all ¢;; are or initial function or previously defined by
(2.5) or (2.6). A function is primitive recursive if it is an initial function,
or if it is defined by primitive recursion (of both types), or if it is obtained
from such a function by substitution with such functions. We note that (2.6)
can be reduced to (2.5) (see f.i. [4]). We introduce (2.6) in order to simplify
the exposition.

The only expressions which form RAW are equations between primitive
recursive functions. We admit only proved equations. An equation f= ¢
between two word-functions is proved, if and only if f and ¢ satisfy the
same defining equations (2.5) or (2.6), or if f and ¢ are obtained from such
functions by the same substitutions. It can be proved that RAW is non-con-
tradictory in the following sense: if the equation

f(le'-aXﬂI) :g(Xla--yX”I)

is proved and if A,,..,A, are any words in Q(d,), then f(4,,..,A,) and
gA,.., A,) are one and the same word. A complete exposition of RAW is
given in [5]. Here we present a very minor part of it, which is sufficient
for our purposes. We need first n additive operations Xo;Y, which are de-
fined by (: =0,..,n-1)

Xo0i0=X

(2.7) X0;S; Y = SH_]'(XO,‘Y), j=o0,..,n-1.

The addition ¢ + j of indices is modulo #.
Especially, the operation o, is called addition and denoted by +. We
repeat its definition:

X+0=X

(2.8) X+S;Y=Sj(X+7Y), j=o,..,n-1.

X + Y is the concatenation YX. Oo;X, written simply as 0;X, is ob-
tained from X by augmenting the indices of all letters of X for ¢, modulo #.
We note a few proved equations; on the right side we refer to the corre-
sponding equation of [5].

(2.9) XO,'Y= X + 0;7Y.
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(2.10) 0 +X=2X.
(2.11) X+(Y+2)=(X+Y)+ Z.

The multiplication X-Y is defined by

X-0=0
2.12
( ) X -85;Y=(X-Y)+0;X, j=o0,..,n-1.
Note that
(2.13) S X=X-5 =X,

which suggests consideration of S, as the unit for multiplication. There-
fore, we write sometimes 1 for S,.
The difference X =~ Y is defined by double primitive recursion:

X0 =X,
(2.14) 0+SjY=0,j=o0,..,n-1,
XY if i=],
S$;i X ~S;Y= t,j=0,..,n-1.

Si(X=Y) if i%]

Some elementary properties of the difference are

(2.15) 0=X=0. (5.10)
(2.16) Y+ (X+Y)=0. (5.11)
(2.17) (Y+X) +X=7V. (5.12)
(2.18) X+X=0. (5.14)

Note that 1 = S; is 0 if and only if 7 = 0. In all other cases I = S; = I.
The last function to be introduced is a(X):

0(0) =0,

(2.19) a($;X)=1,i=o0,..,n-1.
We quote:

(2.20) 1reX)-X=o0. (6.16)
If we define the absolute difference |X, ¥|by

(2.21) X, Y| = (X=2Y)+ (Y~X),

it can be proved that X = Y is equivalent with |X, Y| =0 ([5], (7.3)). There-
fore: every equation in RAW can be put in the form f = 0.
Finally, note the validity of the proof-schema:

X=0

(2.22) (Ixa(X) Y=0
Y=0.

whose meaning is: if the first two rows are provable, then the third row is
provable.

3. Fundamental equations: Here we present that part of RAW which is
needed for the construction of models, limiting ourselves to a RAW over
the alphabet J, = {S,, S; } with two letters.



RECURSIVE MODELS 151

Introduce two functions
(3.1) Ni(X) = a(S; = X), i=0,1.
Remark that
(3.2) Ni{(X) = 0. if and only if X = S;Y; in other cases N;(X) = 1.

The following set of equations is easily provable. There, ¢ and j take
the values 0 and 1.

(3.3) {I=a[ ~o[(I ~a ) Y))-Z}-{1>a( >a(2)X]}[I+a(V)]*X=0;

(3.4.1) [1+a(X)]- N, (N;:(X)) = 0;

(3.5.1,j) {1 =a[N:OT} No(N;(X)) = 0, i%];
(3.6.1) {1 +a{;(x}-[1+a)]-Y=0;

(3.7.1) [1=aX)]-{1=a[NAV)]}-NA[I ~a(X)]- Y} =0;
(3.8) {1 +a[{1 ~a[MX)]} - X]}

A1 =e[{1+a[N, ]} X]} X =0.

F.i. to prove (3.3) denote its left side by f(X,Y,Z,V). Thenf(0,Y,Z,V)
=0 and f(SiX,Y,Z,V) =[1 = a(D}{1[1+a(Z)]}- [1 = a(V)]=0, as easily
seen by recursion in Z. To prove (3.4.i) it suffices to show that the left
side is 0 for X=0. As N;(0) =1 and Ny(1) =0 (by (3.2)), the result follows.
Remaining equations are provable in a similar way. To shorten the exposi-
tion we write N, (X) for Xand by X=S,Z we mean X = (.

Call a word function ?', whose range is in {0, So,S,} regular if from

(3~9) fN(Sil ) Si2 P ’Sin) = Si,n-l )
where every i, is oro, or1 or 2 (in the last case S, means 0), follows
(3.10) 7(51:1217 S,'ng,..,SinZn)=sin_1 ’

for any Z,, Z,, .., Zn € 2(S,).

Every regular function can be defined in the following way. First, by
“‘truth tables’’ we define a mapping f of the set {0, Sy, S,} into {0, Sy, S;}
The truth table has 3” rows and z + 1 columns: (we write italics for vari-
ables running only over letters and the empty word)

Xl X2 e oo tooan Xn f(xl,xz,' . 1x7l)
) o f@,0,..,0)
(3.11) 0 0 So f(0,0,..,S,)
Sl Sl Sl f(Sl,Sly .. 781)'
Then define f by
(3.12) F(8:20,8i,Z2,..,8:1,Z0) = f(Si}s Siyye -5 Sin),

forany Z,,..,Z,.

f is defined by 3” conditions, so it is primitive recursive. Let }' be a
regular function. To every row of the truth table for the corresponding f,
say to j-th row, we assign the function
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(3'13) lxl/] (le' . ;X") = [1 La(Xl')] ----- [1 La(X,:)] '?’(XI 3o yXﬂ),
where
X; , if in the ¢-th column of j-th row stands S, (i.e. 0)

X! = {Ny(X;) if in the ¢-th column of j-th row stands S,
N (X;) if in the ¢-th column of j-th row stands S,

and where

o~ 7 _ , if in the (n+1)-th column of j-th row stands S,
f' = {No(f), if in the (+1)~th column of j-th row stands S,
Ny(f), if in the (#+1)-th column of j-th row stands S, .

We prove: foreveryj=1,2,..,3"
(3.14) Y (Xy,.., Xn) = 0.
Remark that

”

Y, = {I—I [1+ Q(Nji(Xi)} "Ny (}I(Xl se s Xn)),

i=1
where I:Ia,- = 0y, Q... 0

The expression in {} is % 0 if and only if N;,(X;) =0, i=1,..,n. By
the definition of functions Ng, 2 = 0,1,2

le.(X,') =0 if and only if X; = Si;Zi.

As then

T, Xa) =781, 2000181 Z0) = S
we have
N, G, X)=N 6 )=
This proves (3.14). We make the convention that (3.14) stands for all
3” such equations.

4. Construction of models. To construct models for the propositional
fragments of [6] interpret

(4.1) Cpg as [1<aX)]" 7Y,
(4.2) N,p as N, (%)

and

(4.3) N,p as N, (X) .

Every proposition involving C, N, and N, is interpreted in RAW as an
equation, with 0 on the right side and with the corresponding interpretation
of its symbols by means of (4.1)-(4.3) on the left side. F.l. CpN,N;p be-
comes the equation

[1 =aX)] No(N;(X)) = 0, j = 0,1.

If ¢(x;,..,%,) is any n-argument functor, as his representant we intro-
duce the regular function f(X,, .., X,) defined as follows:
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To the values 0,1,2 of arguments x; and of ¢(x,,..,x,) for an assign-
ment of those values in the truth table of ¢, we correspond the words
0,5,,S, respectively. In this way, we define first a mapping f with domain
{0,S4,5:} and with the range in the same set. For?we take then the
regular extension of f, as defined by (3.12). With this, the first 6 rows of
axioms in [6] become equations (3.3)-(3.8) of section 3 of this paper, and
the 3” axioms in the row 7 of the axiom list of [6] becomes 3” equations
(3.14). (2.22) becomes the detachment rule

|-
Cap
[

and as a substitution rule, corresponding to the substitution rule of the
propositional calculus, is valid in RAW we conclude: if any proposition is
provable in the propositional fragment of [6], its corresponding equation in
RAW is provable too.

Remark. To construct corresponding models for n-valued calculi we
have to use an RAW over the alphabet with n-1 letters.
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