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CERTAIN EXTENSIONS OF MODAL SYSTEM S4

BOLESEAW SOBOCINSKI

In this paper I present some investigations concerning certain new
proper, or probably proper, extensions of Lewis modal system S4. These
researches are mostly based on the results in the field of modal logic re~
cently obtained by Schumm, Thomas, Zeman and, indirectly, by Grzegorczyk.
There are several open problems connected with the deductions given
below, which I was unable to solve. On the other hand, several other of my
results related to the topic of this article will not be published here, but
will be discussed in a subsequent paper. An acquaintance with modal logic,
Lukasiewicz’s notation, my method of writing proofs and, especially, with
papers [15] and [14] is presupposed.

1 INTRODUCTION

1.1 In [16], [15]and [14] I introduced an enumeration of proper axioms of
systems which are the extensions of S4. Subsequently, this enumeration
was used by some other authors, but a development of this subject created
an inconvenient chaos. For instance, formula € LMpMLp which serves as a
base for a definition of family K of the non-Lewis modal systems has num-
ber K2 instead of the much more convenient number K1. For this reason I
decided to change this enumeration, as follows. The letter prefixed to the
proper axioms of the given system will remain the same, as in my previous
papers, but they will be bold. And, the bold numbers attached to such
letters will indicate the different formulas each of which can be adopted as
the proper axioms of the discussed system. The proper axiom of the fixed
system which for this or that reason I consider, as its principal proper ax-
iom,will always have number 1. Thus,e.g.,the formula K2 mentioned above
will have number K1, and McKinsey’s formula, cf, [5], and [16], p. 77, which
previously had number K1 will be K2. A list of this new enumeration is
given below:

1) Zeman’s system 54.04 (= {S4;L1}), cf. [18], p. 250:
L1 GLMLpCpLp
2) Systems S4.1 (= {S4;N1}) and 84.1.1 (= {84; M1}), cf. [15], p. 306.
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N1  GCCCpLppCMLpp
M1 GGG pLpLHpCMLpLp

3) System S4.2 (= {84;G1}):

Gl CMLpLMp
G2 GSMLpLMLp [In [16], pp. 73 - 74, formula LI]

It is observed by P. T. Geach, cf. [1], p. 252, that in the field of S4
these formulas G1 and G2 are equivalent.

4) System $4.3 (= {S4;D1});

D1 AGLpgGLgp [Previously D2]
D2 AGLpLqSLgLp [Previously D1]
D3 LAGLpgSLgp
D4 LAGCLpLgCLgLp
D5 GSKMpMgAMKpMqMKqMp
[D5is Hintikka’s axiom of S.4.3, cf. [10], p. 176]

The inferential equivalence of D1 - D4 in the field of S4is shown in [15],

p. 5.

5) System S4.3.2 (= {S4;F1}) of Zeman, cf. [18], pp. 296-298:

F1 AGLpgCMLgp [In [18], formula (34)]
F2 AGLpLgCLMLqLD [In [18], formula (35)]

Equivalence of F1 and F2 is proved in [18].
6) System S4.4 (= {S4;R1}), c¢f. [15], p. 305:

R1 ©MLpCpLp
R2 GCNpCMpLMp [Previously, RI*]

In [15] and [14] instead of RI I used its less convenient form SpCMLpLp.
An equivalence of this form, R1 and R2 is self evident.

7) System S5 (= {S4;C1}) of Lewis:

Cl cMpLMp [In [7], p. 497, axiom C11]
C2 GMLpLp
C3 GCLMLpLp [Previously P1]

Obviously, C1 is axiom C11 of Lewis system S5, and C2 is only another
form of C1. In [1], Dummett and Lemmon have proved metalogically, and
in [16], p. 74, it was shown logically, that in the field of S4 C3 is equivalent
to C1.

8) Brouwerian axiom:

B1 GCpLMp [In [7], p, 497, axiom C12]
B2 GCMLpp [B2 is only another form of B1]

Although in the field of S4 B1 and C1 are inferentially equivalent and,
therefore, B1 can be considered as the proper axiom of S5, I prefer to give
a special enumeration to it, because of the different properties which C1
and B1 have in the field of systems weaker than S4.
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9) System VI (= {84;V1}), cf. [15], pp. 306-307 and p. 309:
V1 ALpACHgCpNq
10) System K1 (= {S4;K1}):

K1 CLMpMLp [Previously K2]
K2 GKLMpLMgMKpq [Previously K1]
K3 LMCMpLp
K4 LMLCpLp
K5 LMLCMpp

Concerning the systems K1 - K4, cf. [5], [16], [14], [9] and [3], pp.
265-267. In [16], pp. 77-18, it was proved that in the field of S4 formulas
K1 - K5 are inferentially equivalent.

10) System K1.1 (= {S4;J1]):

J1 GCCpLppp
J2 GGCpLpLpLp

In [14], p. 316 and p. 314, system K1.1 is defined, and the equivalence
of J1 and J2 is proved.

11) System K1.2 (= {S4;H1}):

H1 ¢cpCMpp
H2 GLMpCpLp

In [14], p. 316, system K1.2 is defined. The equivalence of H1 and H2
in the field of S4 will be established in Section 2 of this paper.

12) System K4 (= {S4;P1} = {s4.4;K1}):
P1 SMLMpCpLp
In section 2 it will be shown that P1 is a proper axiom of K4.
13) Modal formula of Grzegorczyk:
T1 CCEpeqCEEENpgqq

While doing some researches unconnected with modal logic,
Grzegorczyk found formula T1 and recognized that it is a modal formula
unprovable in the field of Lewis modal systems. Clearly, T1 belongs to
family K of the non-Lewis modal systems. The investigations concerning
T1 will be given in Section 2.

14) Schumm’s system 4.7, cf. [12]:
Ql ASMLPpLpECMLMqCqLq

15) System S4.6
S1 ACMLpLpALgACqrCqNr

16) System $4.5
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E1 ACMLPpLPALqACqpEqNDp
E2 AGCMLpLPpALPAG pqGpNgq

The systems S4.5, S4.6 and S4.7 which are between S4.4 and S5 and the
formulas Q1, S1, E1 and E2 will be discussed in Section 3 of this paper.

1.2 An enumeration of the systems which are extensions of S4 is estab-
lished in [16], [15], [14], [18], [19] and [12]. And, although in the future
some modifications will be necessary, it remains unaltered in this paper.
Only, the numbers for the new systems will be added, and, since in [17]
Thomas has proved that systems K4 and K5, cf. [14], p. 316, are equivalent,
K5 will not be used any more in the old sense. A system which in [15],
pp. 306-307, is defined as {S5; V1} will be designated here, as system V2.

1.3 An acquaintance with 4, 8 and 16 valued ordinary logical Boolean
matrices for functors C and N is presupposed. These matrices are given
explicitly in [15]. In this paper I shall use the following matrices which are
presented here only for functors M and L:

pl1]2]3]4 pl1]2]3]4
M Mp|1]2[1]4 Mz Mp|1|1[1]4
Ip 114l 34 Ipl1lalal4
pl1]2]3]4]5]/6]7]8 pl1]2]3]4|5[6]7]8
M3 Mp|1|1|1|1[1[1][1|8 ms Mp|1|1|3[4|1|1]|3]8
Lpl1lsl8lalslslsls Ip|1]6|8[8]|5|6]8]8
pl1]2]3]4]5]6]7]8 pl1]2]3]4|5]6]7]|8
M5 Mp|1|2[3|4[1|2][3[8 ms Mp|1|2|1|2]1][2]1]8
Lpl1lel 785l 6|78 Ipl1(8|7]8[7]8l7]8
pl1]2|3[4]5(6]|7]8 pl1]2]3|4]5]6]|7]|8
M7 Mp|1|1|1|1]5(5|5|8 M8 Mp|1|1|1|4|1|1]1]8
Ip|1l4l4l4l8l8|8[s Ip|1|8|8|8|5|8]8]8
p1]2]3[4(5[6]7(8|9]10|11[12[13 |14 |15]16

Mo Mp|1|1|1[1(5|6|7|8|1|1 1 ]1]5]6]7]16
Lp [ 1110(11[12[16]16]16]16[ 9 | 10 [11 [12 16 [ 16 [ 16 [ 16
pl1]2[3]4(5(6[7!8[9]10 |11 1213 |14 |15]16
Mo Mp 1114555811 |11 [13][13[13]16
Ip|1l4la 413161616 |9 12 [12 1213 |16 [16]16
p|1]2]3[4|5(6]7]8]|9[10][11[12]13[14|15]16
#11 Mp|1|1|1]4|5|5[5[8[1[ 1|1 [4]5]5]5]16
Ip | 1|12]12[12(13[16]16[16]9 | 12 [12 1213 [ 16 |16 16
pl1]2[3|4|5|6[7]8]9]10][11]12]13|14|15]16
M1z Mp|1|2|3|4[5|6|7[8]1|10[3 [12] 5 |14 7 |16
Lp|1]10] 3 (12 5[14]| 716|910 |11 [12]13 |14 [15] 16

In all these matrices 1 is the designated value. And, each of these
matrices verifies S4.
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Matrices M1 and M2 (in [15] they are M2 and M3) are familiar Groups
II and IIT of Lewis-Langford, cf. [7], p. 493. 3 and M4 (in [15] M5 and MB)
are mine. M5 (in [15] M7) is due to Parry, cf. [8], and also [9], §5§1-3. M6
was constructed by Zeman, cf. [18], p. 297. Matrices M7 and M8 (in [12] M’
and M'') were found by Schumm. M9 is defined by Prior in [9], but is pub-
lished explicitly, as M8, in [15], p. 310. M0 is mine. Matrix M1l isa
translation of a set-theoretical construction used by McKinsey and Tarski
in [6], p. 7, into a matrix form. Ifound an important matrix M12 checking
some matrices among several thousand 16 valued modal matrices which for
my researches Professor T. W. Scharle of West Virginia University (Mor-
gantown) kindly computed using Computer IBM System 360/75 of that
University.

2 FAMILY K

In this Section I shall give several proofs related to the structure of
family K. On the other hand, several open problems connected with formula
T1 of Grzegorczyk will be presented. A familiarity with the definition of
family K of the non-Lewis modal systems, c¢f. [14], is presupposed.

2.1 System K4. In [14] K4 is defined as a non-Lewis modal theory gener-
ated by an addition of K1 to S4.4. It will be shown that the following formula

P1 GMLMpCpLp
is a proper axiom of K4.

2.1.1 Assume system K4. Hence we have S4, R1 and K1. Then:

Z1 GSMLMpMMLp [K1; s2°]
Z2 CGMLMpMLp [Z1; s4°]
P1 GCMLMpCpLp [R1; Z2; s1°]

Whence, P1 is a thesis of K4.

2.1.2 Now, let us assume S4 and P1. Then:

Z1 €pMp [s1]
Z2 GMLpMLMp [z1; 82°]
R1 ©MLpCpLp [Z2; P1; s1°]
H2 GLMpCpLp [z1, p/ LMp; P1;8S1°]
Z3 G LMpSpLp [H2; s2°; s4]
Z4 G©LMpCLMpLMLD [23; s3°]
K1 GSLMpMLp [z4; s1]

Thus, S4 together with P1 implies R1 and K1. Therefore, it has been
proved that {K4}={S4.4; K1} = {s4; R1; K1} = {s4; P1}. Hence P1 is a
proper axiom of K4. By the way H2 is proved, cf. system K1.2,

2.2 {K4}={s3; P1}. Obviously, {K4}— {S3;P1}. Now, assume S3 and P1.
Then:
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Z1 CpCMLMpLp [P1; S1°]
Z2 CCMpLqGpq [S1; cf. [13], p. 156]
Z3 CpSLMpp [Z21; z2, p/LMp, q/p; S1°]
Z4 CCMpLqLLCpq [z2; s2°)
Z5 LLCpCLMMpMp [z4, q/CLMMpPMDP; Z3, p/Mp)

Since in [8], p. 148, Parry has proved that an addition of any formula of
the form LLa to S3 yields S4, the proof is completed.

2.3 System VI. In [17] Thomas has proved that system K5 which in [14]
was defined as {V1; K1} is inferentially equivalent to K4, i.e., he has shown
that formula

V1 ALpACpqCpNgq

is a consequence of K4. From this important result of Thomas it follows
that system V1 which in [15], p. 306, was defined as {S4; V1} is a subsystem
of K4. Below, I shall make some remarks which will be used in Section 3.

2.3.1 The deductions given below are a formalized version of Thomas’
proof that {K4}— {V1}. In Section 3, 3.4.1, a modification of this version,
but much more complicated and longer will be used for some purposes. Let
us assume system K4. Hence, we have S4, R1, K1 and, c¢f. [15], p. 307, G1.
Then:

Z1 GKpMLpLp [R1; s1°]
Z2 GMLpLMp [G1; K1; s1°]
Z3 GMCpqCLpMgq [s2°; cf. [16], p. T1]
Z4 CMLCpgqCMLpMLg [83° z3; z2; s4°]
Z5 CMLgMLCpq [s2°]
Z6 GMLNpMLCpq [s2°]
Z7 GNMLpMLCpq [z6; s1°; z3]
28 GCMLpMLgMLCpq [z7; z5; S19
Z9 GCMLpMLgMLCpq [z4; z8; s1°]
Z10 AKprAKCpqCrsKCpNgCrNs [s1°; cf. [17]]
Z11 ALPAKCpqMLCpgKCpNgCMLpNMLq [Z10,v/MLp, s/MLq; Z1; Z9; S1°|
Z12 ALpAGpgKCpNgCM LpM Lq [z11; z1, p/Cpq; S1°% Z2, p/Np)
Z13 ALpASpgKCpNgM LCpNq [z12;29, q/Nq; S1°]
V1 ALpAG pqC€pNq [Z13; Z1, p/CpNg; S1°]

Thus, {K4} — {V1}L

2.3.2 1In[15], p. 309, it was proved that in the field of S2 V1 yields R1 and,
therefore, S4.4 is a subsystem of V1. Schumm’s matrix #i8 which verifies
S4.4 falsifies V1 for p /2 and q/3: AL2AC2362N3 = A8AL3C26 = CNSCNSL5
= C1C15 = C15 = 5. Hence, system V1 is a proper extension of S4.4. Matrix
M3 verifies S5, but falsifies V1 for p/2 and ¢/3: AL2AG23C2N3 =
CN8CNL3L5 =C1CN85 =C1C15 =C15 = 5. Hence, system V1 is not con-
tained in S5. Matrix M1 verifies S5 and V1 which shows that V1 is a sub-
system of {V2}={S5; V1}. On the other hand, matrix M10 verifies V1, but
it falsifies the proper axioms of S5 and K4. Namely, C1 is rejected for
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p/8: €MBLMS8 = G8L8 = €816 = L9 = 9, and P1 for p/2: CMLM2C2L2 =
CML1C24 =LCM13 =LC13 = L3 = 4, Therefore, system V1 includes neither
S5 nor K4.

Thus, system V1 is a proper subsystem of K4 and V2 and a proper ex-
tension of S4.4. And, moreover, it is entirely independent from S5. From
this it follows clearly that, although K4 contains V1, the latter system does
not belong to family K. In fact, it belongs to another family of the non-
Lewis modal systems which are extensions of S4. However, this family,
which I call family ¥, will not be discussed in this paper.

The following diagram explains the position of V1 in regard to V2, S5,
K4 and S4.4:

S5
v20 O/OS4.4
K4 0O \ O

V1

However, it will be proved in Section 3 that this diagram should be sub-
stituted by a much more complicated one.

2.4 System K3.2. In [18], pp. 296-298, Zeman has shown that there is an
extension of S4, which he called S4.3.2, such that it is a proper extension of
S4.3, and it is properly contained in S4.4. Moreover, it is neither contained
in nor does it contain S4.3.1. This new system which was unknown at the
time when [15] was published is generated by the addition of the following
formula

F1 ACGLpgCMLgp

as a new axiom, to S4. Zeman has also remarked that an addition of the
proper axiom of S4.1.1:

M1 CCEpLpLPCMLpPLp

to S4.3.2 yields S4.4. This means, since S4.3.2 contains S4.2, cf. [15],
p. 305, that an addition of the proper axiom of S4.1:

N1 CCCpLppCMLpp

to this system gives the same result. On the other hand, Zeman’s matrix
M6 which verifies S4.3.2 and rejects systems S4.4 and S4.3.1, and which
falsifies J1 for p/5: €CE5L555 = CELC5755 = §LCL355 = LCL15 = LC15 =
L5 =17 verifies K1. Hence, an addition of K1 to S4.3.2 generates a new
system which belongs to family K and which I call system K3.2. Matrix #4
which verifies system K3.1 and, therefore, also K3, falsifies formula F1 for
p/5 and q/2: AGL52CML25 = AG52CM65 = ALC52C15 = CNL25 = CN65 =
C35 = 5. Hence, system K3.2 is a proper extension of K3 and, since M&
rejects R1 for p/3: C€ML3C3L3 = €MTC37=LC15 = L5 =1, it is a proper
subsystem of K4. On the other hand, K3.2 neither contains nor is contained
in K3.1. Thus, system K3.2 is a fullfledged member of family K.

2.5 Systems K1.2 and S4.04. In [19], pp. 249-251, Zeman constructed
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another proper system, called S4.04, between S4 and S4.4 by adding to S4
the following formula:

L1 GLMLpCpLp

as a new axiom. It is obvious that L1 is a simple consequence of R1 and S2.
Therefore, S4.4 contains S4.04. As Zeman points out, S4.04 is a proper
subsystem of S4.4, because matrix M5 which, cf. [9], falsifies formula GI,
and, therefore, also R1 verifies L1. Matrix M9 which falsifies L1 for p/2:
C€LML2C2L2 = €LM10C210 = €L19 =LC19 =L9 =9 shows that S4.04 is a
proper extension of S4.

It is self evident that an addition of L1, as a new axiom to any extension
of S4 which contains the proper axiom of S4.2, viz.:

Gl SMLpLMp

yields S4.4. Hence, in the field of family K an addition of L1, as a new
axiom could be interesting only in regard to the systems K1, K1.1 and K1.2.
I shall prove that an addition of L1 to K1 or K1.1 gives K1.2, and that sys-
tem K1.2 contains L1. This last result is very important for some deduc-
tions which will be given in the next part 2.6. By the way, it will be proved
here, as mentioned in Section 1, that in the field of S4 the formulas H1 and
H2 are inferentially equivalent.

2.5.1 Obviously, S4.04 does not contain the proper axiom of K1, i.e. axiom
K1. And it is confirmed by M11 which verifies S4.04, but falsifies K1 for
p/2: CLM2ML2 = §L1M12 = LC14 = L4 = 12. On the other hand, matrix ma
which verifies systems K1 and K1.1 falsifies L1 for p/2: €LML2C2L2 =
€LM6C26 = CL15 = LC15 = L5 = 5. Thus, in the field of S4, L1is not a
consequence of K1 and even of Kl.1, Hence, S4.04 neither contains K1 or
K1.1, nor is contained in K1 or K1.1.

2.5.2 Assume K1.2. Hence, we have S4 and H1. Then:

Z1 GpCLMpLp [H1; s1°]
H2 GLMpCpLp [Z1; s1°]
2.5.3 Now, let us assume S4 and H2, Then:

Z1 GLMpGpLp [H2; S2°; s4]
Z2 GLMpCLMpLMLD [Zz1; 83°]
K1 GLMpMLp [z2; s1]
Z3 GCLpMqLMCpq [S2; ¢f. [16], pp. T1-12]
Z4 LMCMpLLp (23, p/Mp, q/Lp; K1; S4]
Z5 GLMCMpLqLMLCpq [S1, cf. [13], p. 156; S2°]
K4 LMLCpLp [Z5, q/Lp; Z4]
Z6 GLMLpLMp [s2]
L1 GLMLpCpLp [Z6; H2; s1°]

Thus, L1 follows from S4 and H2. Since, c¢f. 2.5.2, H2 is a consequence
‘of K1.2, it proves that K1.2 contains L1.

Z7 SCpLpLCpLp [L1, p/CpLp; K4; s4°]
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Z8 GNpCpq [s1°]
Z9 GNpSpLp (28, q/Lp; Z7; S1°)
H1 SpeMpp [29, p/Np; s1°)

Hence, it is shown that {K1.2} 2 {S4; H1} Z {S4; H2}, and that {K1.2} —
{s4.04}.
2.5.3. Now, assume K1 and L1. Then, we have axiom K1 and, therefore:

Z1 CLMpLMLp [K1; s4°]
H2 GLMpCpLp [Z1; L1, S1°]

Since K1.1 does not imply L1 it follows from 2.5.2 and 2.5.3 that
{K1.2} = {s4; H1} = {s4; H2} = {K1; L1} 2 {K1.1; L1},

2.6 Formula of Grzegorczyk. In [2], using reasonings analogous to
Cohen’s method of forcing, Grzegorczyk tried to construct models for such
propositional calculi which would correspond to methodological patterns of
scientific investigation. As far as I know, calculi obtained in this way are
not yet systematically investigated. One of the models constructed by
Grzegorczyk verifies a peculiar propositional calculus in which not all
classical propositional theorems are valid, but all modal theses of S4 are.
Moreover, this theory contains the following formula

{{(z - oY) - oY]al(~z - oY) - ay]}— oy

which, if we accept the symbols ¢“—"’, ‘00"’ ¢~’’ and ‘‘A’’ as the symbols
of strict implication, necessity, negation and conjunction respectively, in
Eukasiewicz’s notation would have the following form:

CKECpLgqLgCENpLgLgLg

And, it is self evident that in the field of S4 the latter form is inferentially
equivalent to:

T1 CE€CpgqCEENpqqq

As Grzegorczyk points out in his paper, T1 is a formula which does not
belong to S4. Here I shall not analyze the Grzegorczyk propositional
calculus, but only T1 and its connections with family K.

2.6.1 Lewis matrix M2 falsifies T1 for p/2 and ¢/4: CEC244CEEN2444 =
CCLC244CCLC3444 = CEL34CCL244 = C€LC44CLC444 = CL1CL14 = €1C14
= LC14 = L4 = 4. On the other hand, T1 is verified by Mil. Hence T1 is not
contained in the systems V2, V1 and S5, but its addition, as a new axiom, to
S4 does not reduce the latter system to the classical propositional calculus.
In fact, it can be proved at once that in the field of S4 T1 implies J1 which
is a proper axiom of K1.1 and, therefore, ¢f. [15], pp. 314-314, also K.
Namely:

Z1 SSNpLpLp [s2°]
J2 GCGEpLpLpLp [T1, q¢/Lp; Z1; S1°]
J1 CCCpLppp [J2; S4; cf. [14], p. 314]

K1 SLMpMLp [J1; s4; cf. [14], pp. 314-315]
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Since K1 follows from S4 and T1, system {S4; T1} clearly belongs to
family K.

2.6.2 Let us assume K1.2, whence we have at our disposal S4, H1, K1 and
L1. Then:

Z1 GNMLpCNNLMpq [K1; s1°]
Z2 GNMLpCNMLNpq [z1; s1°]
Z3 €pCqq [s1°]
Z4 CNMLpCCMLNpqq [Z3, p/NMLp; Z2; S1°]
Z5 €pCqp [s1°]
Z6 GCMLpqCCMLNpqq [z5, p/a, q/CMLNpq; Z4; S1°]
27 GCpqCMLpMLgq [s3°]
Z8 €S LpgCMLpMLg [z7, p/Lp; s4°]
Z9 &G LpgCCMLNpMLgMLq [zs8; z6, q/M Lg; S1°]
210 CCLpqCCLNpgM Lg [z8, p/Np; Z9; S1°]
Z11 SMLgMLCpq [s2°]
Z12 SMLNpMLCpq [s2°]
Z13 CSNLMpM LCpq [Z12; s1°]
Z14 €CLMpM LgM LCpq [z11; Z13; s1°]
Z15 §CCpqvCCpvCCuvqr [s1°]
Z16 €CMLpMLgMLCpq [Z15, p/LMp, q/MLq, v/MLCpq, v/MLD;
Z14; K1; s1°]

Z17 88 LpqCCLNpgCrMLq [Z10; 81°]
Z18 §C LpqCC LNpgM LCrq (217, v/MLy; Z16, p/v; S1°]
Z19 CC LpqgCCLNpgLMLCrq [Z18; S3°; 84°]
Z20 §pCNpq [s1°]
Z21 €CpCqrCCsCupCCtqCsCvCNrCtw [s1°]
Z22 G€ LpqgCCLNpgCNENpqCpq [Z21, p/LMLCNpq, q/CNpq, v/CNpq,
s/€Lpg, v/CLNpq, t/p, w/q; L1, p/CNpq; Z19, v/Np; Z20; S1°]

Z23 CCpCqrCCsCvpCCsCvCtqCsCvCtCNyw [s1°]

Z24 €€ LpgCE LNpgCNENpqCNE€ pgq
[Z23, p/LMLCpq, q/Cpq, v/Spq, s/CLpq, v/SLNpq, t/NENpq, w/q;
L1, p/Cbg; Z19, v/p; Z22; S1°]
Z25 €pCrCsCqq [s1°]
226 €€ LpqCE LNpqgCNENpqCCEpqqq
[Z25, p/CLpg, v/CLNpq, s/NENpq; Z29; S1°]
Z27 §pCrCqCsq [s1°]
228 €6 LpgCS LNpgCCE NpgqCCC pgqq
[Z27, p/€ Lpq, v/C LNpq, s/CCpqq; Z26; S1°]

Z29 € LNpCpq [s2°]
Z30 §8G pqvC LNpr [Z29; s2°]
Z31 €CC Npgr S Lpr [Z30; p/Np; 52°]
T1 €&CpgqCEENpgqq (z28; 231, v/q; Z30, v/q; 4°)

Thus, it is proved that T1 is a consequence of K1.2. It should be
noticed that the given proof is based upon the availability of L1 in the field
of K1.2.

Matrix M4 verifies T1, and, cf. [14], p. 316, falsifies H1. Hence,
{S4; T1} is a proper subsystem of K1.2. Matrix M5 which verifies {S4; T1}



CERTAIN EXTENSIONS OF MODAL SYSTEM S4 357

falsifies, as it is well known, cf. [9]and [14], p. 316, formula G1. Hence,
{S4; T1} does not contain S4.2. On the other hand, as Schumm has proved
in [12], M7 verifies K2 and K3, but rejects K2.1 and K3.1. This matrix also
falsifies T1 for p/2 and gq/4: €EE244CCEN2444 = CELC244CCLCT444 =
CEL34CEL244 = §LC44CLC444 = CL1CL14 = €1C14 = LC14 = L4 = 4. This
proves that neither K1, nor K2, nor even K3 imply T1. Moreover, matrix
M9 which verifies K2.1, but rejects K3, cf. [9], and [14], pp. 316-317, also
verifies T1.

These matrix calculations suggest that between K1.1 and K1.2 there is
a proper system {S4; T1} which I call K1.1.1, and that between K2.1 and
K3.1 there is another proper system, called K2.2, namely {S4.2; T1}. Un-
fortunately, although it is very probable, I do not have yet the proofs that
K1.1 does not imply T1, and that T1 is not a consequence of K2.1

2.6.3 In{11] Schumm has proved that system D* established by Makinson
in [4] by the way of defining its characteristic matrix is inferentially
equivalent to my system K3.1. Therefore, Makinson’s matrix is also a
characteristic matrix of the latter system, and {D*} = (K3.1} Z {S4.3; J1}L
Below, in 2.7 I shall prove that Makinson’s matrix B* verifies T1, and,
therefore, there is a metalogical proof that T1 is a consequence of K3.1,
i.e., that {K3.1} = {s4.3; T1}. But, as yet I was unable to find a logical proof
of this fact, i.e., to deduce T1 from the axioms of K3.1. Maybe, a very
tedious proof could be obtained by an application of an idea which is in-
cluded in Schumm’s Lemma 1, cf. [11], p. 263.

2.7 Makinson defines system D* as the non-Lewis modal system whose
characteristic matrix:

\B* = <V} d, =, 0, P*)
satisfies the following four conditions:

i) Vis a set of all w sequences {¥n}n<wof 0’s and 1’s.
ii) d is the designated element: {1,},<0.
iii) - and N are the operations in V defined in pointwise fashion from
the familiar Boolean operations - and N in {0, 1},

iv) P* is the operation in V such that if {x¢ x1,...}¢ V, then
P*{xo, 15021 ={¥0, ¥1,...} where, for each i, y; =1 iff x; =1 for some
j<i.

It should be noticed that Makinson’s matrix B* is a modification of a
characteristic matrix B introduced by Prior in order to define his
Diodorian system D. In both matrices the first three conditions are the
same, but in Prior’s matrix the last condition is formulated as follows:

iv) P is the operation in V such that if {xo %:,...} ¢ V, then
P{xo X1 ...t = {yo 31,...} where, for some i, y; = 1 iff x; = 1 for some j <i.
Cf. [4), pp. 406-407, and [11], p. 263.

A Diodorian system of Prior is identical with my system S4.3.1,
cf. [10], p. 176, [3], pp. 262-264, and [14], p. 316.
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It follows from the definition of B* that if for arbitrary well formed
propositional formula p we shall assign a sequence ¢(p)e V such that ¢(p) =
{%ntn<w in which for some j, 0 <j<w, x =1, then for the formula Np there
is one and only one sequence corresponding to ¢(p), Y(Np)e V such that
U(ND) = {¥ntn<o in which term y; =0. And, vice versa, if for some
i, 0 <i<w, in ¢(p) term x; = 0, then in Y(Np) term y; = 1.

Moreover, since in B* for an arbitrary element « ¢ V we have:

(1) an {On}n<w = {On}n<w Na= {On}n<w )

an assignment of {Os}n<e for p which occurs in the formulas Kqp or Kpq
gives for both these formulas the corresponding assignment {0,},<,, regard-
less of the assignment given for gq.

2.7.1 Written in the primitive functors of modal logic formula T1 has the
following form:

T1* NMKNMKNMKpNgNgKNMKNMEKNpNgNqNq

which, obviously, in the field of S4 is inferentially equivalent to:

T NMKNMKNMKpqqK NMKNMKNpqqq [T*, g/Ng; s1°]
Whence, instead of T1 or T1* it is sufficient to investigate formula T.

2.7.2 Let us assume that formula T is falsified by matrix B*. Then, there
must exist sequences a and § belonging to V such that for a= alp) and
8 = B(g) the corresponding sequence p(T) # {1}, <o

From the properties of B* observed above it clearly follows that it
cannot be g = {0,},<w, because in such a case p(T) would be {1,},<,. Hence,
B =p(p) should be a sequence belonging to V in which, for certain
Jjy 0 <j<w, term xj = 1. Let us assume that in 8 x; is the first term which
is equal to 1. Since in the assignment for p: a = a(p) = {yaln<wterm y; is
either 1 or 0, we have two and only two possible cases:

Case I The assignments « and B for p and g determine for formula Kpq a
sequence in Vy=y(Kpq) = a N B =1{2:}ncw such z; =1 and, for 0 <i< j,
z; = 0. And, therefore, due to the properties of @*, mentioned above, for
formula KNpq there is, determined by @ and B8, a sequence b = 5(KNpq) =
-a N B = {va}n<ew such that its term v; = 0, and, for 0 <i <j, v; = 0.

or

Case II The assignments @ and 3 for p and g determine for formula Kpg a
sequence in V y'= y'(Kpqg) = @ N B = {2n}nce such that that z; = 0 and for 0 <1
<j, zi = 0. And,therefore,due to the properties of B* mentioned above, for
formula KNpg there is, determined o and 8, a sequence &' =8'(KNpq) =
-a N B = {v,}uce such that its term »; = 0, and, for 0 <i <j, v; = 0.

2.7.3 Since, obviously, matrix B* verifies S4, B* verifies the rules of
procedure and thesis €pNNp of S4. From this remark and an inspection of
the structure of T (and even better of T1) it follows at once that cases I and
II are entirely analogous. Namely, if in the first case the assignments a
and B for p and ¢ induce assignments, say, p and v, for the formulas NMKpq
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and NMKNpq respectively and if u(NMKpq) and v(NMKNpq) possess certain
properties, say, a and b respectively, then in the second case the assign-
ments p' and v’ for the formulas NMKpq and NMKNpq are such that
v'(NMKNpq) has property a and u'(NMKpqg) has property b. And, it is self
evident that an inverse of the cases in this reasoning gives the same result.
Hence, it is quite sufficient for our end to investigate only one of these
case.

2.7T.4 Let us analyze Case I. Then, according to the definition of this case,
for formula KNpq there is, determined by « and 8, a sequence:

(2) 65=08 (KNP(]) = {vn}n<lo

such that its term v; =0, and, for 0 <7 <j,»; = 0. Hence, for formula
NMKNpq there is a sequence:

(3) &=&(NMKNpqg) = -P(-a NB) = -P0) = ulnco

such that, for 0 <i<j, its term 7;=1. Therefore, since in B the first
term which is equal to 1 is y;, for formula KNMKNpqq we have a sequence:

(4)  n=nENMKNpqq) =0 B =1s,}rco

such that its term s; =1 and, for 0 <7<}, s; =0, whence, for formula
NMKNMKNpqq there is a sequence:

(5) k= kK(NMKNMKNpqq) = -P(n) = {t}n<o

such that,for 0 < i<j,its terms# =1, and, forj <k < w, # = 0. Therefore
since in B the first term which is equal to 1isy;, and in «, forj <k < w,
% = 0, a sequence A which is an assignment for formula KNMKNMKNpqqq is
such that:

(6) A =XKNMKNMKNpqqq) = kN B = {0}, <o

which gives at once p(T) = {1,}r<o

Therefore, there are no assignments for p and ¢ in T such that for
them formula T would be falsified by matrix B*. This completes the proof
that T1 is a consequence of K3.1. Since in the field of S4 T1 implies J1, we
have: {K3.1}={S4.3; J1} = {s4.3; T1}. But this result is proved metalogi-
cally.

2.8 Two new proper axioms of system K1. It will be shown that the
following two formulas:

K6 CCCpgpMLp
and
KT GCCpLppMLp

whose structure is very akin to the structures of J1 and J2, are such that
each of them can serve as a proper axiom of K1.

2.8.1 Assume K1. Hence, we have S4 and

K1 GLMpMLp
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and, therefore, McKinsey’s theorem

K2 GCKLMpLMgMKpq [S4; K1; ¢f. [16], p. 76, point y]
Then:
Z1 GMLNpMGpq [s2°]
Z2 € LMNpMGpq [K1, p/Np; Z1; S1°]
Z3 GLMNpLM Gpq [23; s4°]
Z4 Gpp [s1°]
Z5 GCpqCCprCCKqrsCps [s1°]
Z6 SLMNpMK SpgNp [z5, p/LMNp, q/LMGpq, v/LMNp, s/MKGCpqNq;
Z3; Z4, p/LMNp; K2, p/Cpq, q /Np; S1°]
K6 GCCEpgpMLp [z6; S1°]
2.8.2 Obviously, K6 implies:
K7 GCSpLppMLp [K6, p/ Lp]
Now, let us assume S4 and K7. Then:
Z1 GGG pqrSLNpr [s2°]
Z2 GLNGpLpMLp 21, p/CpLp, q/p, v /MLp; KT]
Z3 GLMNpMGEpLp [z2; s1]
Z4 CLMNpMCMpMLp [z3; 83°]
Z5 GLMNpCLMpMMLp [Z4; 83; cf. [16], pp. T1-72]
K1 ©LMpMLp [25; s4°]

Thus, {K1} 2 {S4; K1} 2 {s4; K6} = {s4; K7}

2.9 The known members of family K of the non-Lewis modal systems can
be arranged in the following diagram:

K4QO ©) O O O Os4
\ / K2.2 K2.1/
O O o
K3.1 l
O O ©)
K1.2 K111 Ki.1

in which the bold horizontal line indicates that, although system V1 is a
proper subsystem of K4, and only of K4 among the known members of
family K, it really does not belong to this family. Comparing this diagram
with that which was published in [16], p. 317, we see that:

1. In the present diagram there is no K5, since Thomas reduced this sys-

tem to K4, cf. [17] and 2.3. Instead, V1 is added, as a proper subsystem of

K4.

2. On the other hand, three new systems which are not occurring in the
former diagram are added, namely, K3.2, K2.2 and K1.1.
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There is no problem concerning K3.2, since in 2.4 it has been proved
that K3.2 is a proper extension of K3 and a proper subsystem of K4. But,
in connection with K2.2 and K1.1.1 there are two open problems, viz.:

a) Whether K2.2 is a proper subsystem of K3.1?
b) Whether K1.1.1 is a proper extension of K1.1?

To these problems, obviously, a third one has to be added, viz.:

¢) To obtain a logical proof that K3.1 implies T1.
3 SYSTEMS BETWEEN S4 AND S5

In [16], p. 311, I put, as an open problem, a question whether there
exists or does not exist a system being a proper extension of S4.4 and in the
same time being a proper subsystem of S5. In [12] Schumm has solved this
problem positively proving that the addition of the following formula:

Al ASMpLMpSLMqMLq

as a new axiom, to S4.4 generates a new system, called by him S4.7, which
satisfies the properties which I required: namely, S4.7 properly contains
S4.4 and is a proper subsystem of S5. In this Section I shall show that there
is a proper axiom of S4.7, and, moreover, it will be proved that besides
S4.7 there are other systems which are probably weaker than S4.7 and at
the same time are intermediate systems between S4.4 and S5.

3.1 It is easy to prove that in the field of S4.4 Schumm’s axiom A1 is in-
ferentially equivalent to:

Ql ACMLpLpEMLMqCqLgq

and, moreover, that the addition of Q1 to S4 gives S4.7 so that Q1 is a
proper axiom of the latter system.

3.1.1 Let us assume S4.7. Hence, we have Al and S4.4, and, therefore,
also S4 and

R1 GMLpCpLp

i.e., the proper axiom of S4.4. Then:

Z1 GG pqCMpMq [s1°]
Z2 GCLMpMLgqCMLMpMLg [Z1, p/LMp, q/MLg; S4°]
Z3 §CpgCCrCspCrCsq [s1°]

Z4 GELMgMLgCMLMqCqlLq
(23, p/MLq, q/CqLq, v/SLMgqMLq, s/MLMq; R1, p/q; Z2, p/q; S1°]

Z5 66 LMgMLgqSMLMqgCqLg [Z4; s4°]
26 GSSMNpLMNpSMLpLp [s2°]
Q1 AGCMLpLpEMLMqCqLq [A1, p/Np; z6; Z5; S1]

Thus, S4.7 implies Q1
3.1.2 Assume now S4 and Q1. Then:
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Z1 GCpMp [s1]
Z2 GMLpMLMp [Z1; s2°]
Z3 GCEMLMpqCMLpq [Z2; s2°]
Z4 GCMLpLpEMILpCpLp [s2°]
R1 GMLpCpLp [Q1, a/p; 24; Z3, q/CpLp; S1°)
Thus, {S4; Q1} implies R1
Z5 GCMpqCpq [Z1; s2°]
Z6 GCpqCLpLg [s3°]
Z7 GCLMqCqLqSLMqCqLq [z6, p/LMq, q/CqLq; S4]
Z8 G&&LMqCqLq€LMqCLMqLMLg [z7; s4]
Z9 &CLMqCqLq&LMqMLq [zs;s2]
Z10 €&MLMqgCqLqSLMgMLq [z5, p/LMq, q/CqLg; Z9; S1°]
Z11 SCMLNpLNpSMpLMp [s2°]
Al AGMpLMpGSLMgMLg [@1, p/Np; Z11; Z10; S1°]

Hence, {S4; Q1} yields Schumm’s axiom AI. Therefore, it follows from
3.1.1 and 3.1.2 that {S4.7} = {s4.4; A1} 2 {S4; Q1}. Hence, Q1 is a proper
axiom of S4.7

3.2 As Schumm has remarked in [12], his matrix M8 verifies S4.4, but
falsifies his axiom AI. Hence, S4.7 is a proper extension of S4.4. This
matrix, obviously, falsifies Q1 for p/5 and q/6: ACML5L5CMLM6C6L6 =
ACM556ML1C68 = ALC156M13 = CNL5LC13 =CN5L3 =C48 =5, 1t is self
evident that S4.7 is a subsystem of S5 and at the same time a subsystem of
K4, since C2 and P1 are proper axioms of S5 and K4 respectively. Matrix
M0 which verifies 54.7 falsifies C2 for p/9: CML9L9 = €M99 = LC19 = L9
=9, and, M10 falsifies P1 for p/2: CMLM2C2L2 = €ML1C24 = LCM13 =
LC13 = L3 = 4. This proves that S4.7 is a proper subsystem of S5 and at
the same time a proper subsystem of K4.

3.3 As an immediate consequence of Q1 we have:
R4 ACMLpLpCMLMpCpLp [a1, q/p]

It is clear that in the field of S4 applying deductions entirely analogous to
those which were given in 3.1.2 we can obtain R1 from R4, but, the addition
of R4 as a new axiom to S4 does not generate a new system, since R4 and,
even, a little stronger formula are provable in S4.4.

3.3.1 Let us assume S4.4. Hence we have S4 and R1. Then:

Gl SMLpLMp [S4.4; cf. [16], p. 307]
G2 GCMLpLMLp [G1, p/Lp; s4]
Z1 SLMLpLCpLp [R1; s2°]
Z2 GMLpLCpLp [z1; Gz2; s1°]
Z3 GMLpCyLCpLp [z2; s1°]
Z4 GCMpLqSpq [S1; cf. [13], p. 156]
Z5 SMLpEMLMpCpLp (23, v/MMLMp; Z4, p/MLMp, q/CpLp; S1°]
Z6 GNCpgp [s1°]

Z7 SNCMLpqSMLMpCpLp [26, p/MLp; Z5; S1°]
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Z8 CNCMMLpgSMLMpCpLp [Zz7; s4]
Z9 GNSpgNCMpLq [z4; s1°]
Z10 €NCEMLpgSMLMpCpLp [29, p/MLp; 28, q/Lq; S1°]
R3 ACMLpgCMLMpCpLp [Z10; s1]
R4 ACMLpLpCMLMpCpLp [R3, ¢/Lp]

Thus, it is proved that {S4.4} = {S4; R1} 2 {S4; R3} = {S4; R4}. There-
fore, formulas R3 and R4 can serve as proper axioms of S4.4, and their
addition to S4 does not generate a new system.

3.4 The following formula:
S1 ACMLpLPA LgACqrCqNr
which, evidently, is a consequence of S5 and of V1 follows from S4.7.

3.4.1 Let us assume S4.7. Hence, we have at our disposal S4 and Q1 and,
therefore, also, R1. Then:

Z1 GKpMLpLp [R1; s1°]
Z2 GCEMLMpCpLpELMpMLp [$4; cf. in 3.1.2 proof of Z10]
Z3 CCEMLMpCpLpENMLPNLMp [Z2; s2°]
Z4 GMLNpMLCpq [s2°]
Z5 GNLMpMLCpq [z4; s1°]
26 GMLgMLCpq [s2°]
27 GCpGqrCCrsCpCqs [s1]

Z8 GSMLMpCpLPCNMLPMLCpr
(27, p/SMLMpCPpLp, q/NMLp, v /NLMp, s /MLCpr; Z3; Z5; q /r; S1°]
Z9 €CqrCCsCNprCsCCpqr [s1°]
Z10 §SMLMpCpLpCCMLPMLGMLCpq
(29, p/MLp, q/MLq, v /MLCpq, s/SMLMpCpLp; Z6; Z8, v /q; S1°]
Z11 AKprAKCpqCrsKCpNqCr Ns [s1°]
Z12 SNMLpLMNp [s1°]
Z13 ALpAKCpqCM LpM LyKCpNqCM Lp LM Ny
[Z11,v/MLp,s/MLy; Z1; Z12, p /r; S1°]
Z14 €CpCqrCAsAKvqiCpAsAKuvrt [s1°]
Z15 SCEMLMpCpLpA LpAKCpgMLCprKCpNgCMLpLMNr
(214, p/SMLMpCpLp, q/CMLPM Ly, v/MLCpr, s/Lp, v /Cpq,
t/KCpNgCMLpLMNr; Z10, q /r; Z13; S1°]
216 SEMLMpCpLpCLMpMLp [22; s1]
Z17 SCpCqrCCsAtAuKv CwqCKpsAtAuKvCwr [s1°]
Z18 SKS&MLMNyCNyr LNySMLMpCpLpA LpAKCpgM LCprKCpNgCM LpM LNy
[Z17, p/SMLMNyCNyLNr, q/LMNr,v/MLNv, s/SMLMpCp LD,
t/Lp, u/KCpgMLCpr, v /[CpNq,w /MLp; Z16, p /Nr; Z15; S1°]
Z19 CCpCqr CCKspAtAvKwqCKspAtAvKwy [s1°]
Z20 SKSMLMNyCNr LNy &M LMpCpLpALPAKCprM LCprKCpNrMLCpNy
(219, p/CSMLMpCpLp, q/CMLPM LNy, v /MLCpNr, s/€MLMNyCNrLNr,
t/Lp, v/KCpgMLCpr, w/CpNq; Z10, q/Nr; Z18; S1°]
Z21 §CpqCCrsCCtAvAprCtAvAgs [S1°]
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Z22 §KSMLMNyCNy LNy &M LMpCpLpALPpACprCpNy
[z21, p/KCPYMLCPr, q/Cpr, v/KCONyMLCPHNr, s/CpNr,
t /KEM LMNyCNy LNy €MLMpCpLp, v/Lp; Z1, p/Cpr;
Z1, p/CpNr; Z220; S1°]

723 CApqCAprApKqr [s1°]
Z24 ASMLpLPKSEMLMNrCNy LNrGMLMqCqLq [z23, p/cMLpLp,

q/S€MLMNyCNyLNv, vr/S€MLMqCqLq; Q1, q/Nr; Q1; S1°]
S1 AGMLpLPA LgAGqrSqNy [z24; z22, p/q; s1°]

Thus, S4.7 yields formula S1.

3.5 As an immediate consequences of S1 we have the following two formu-

las:
E1 ASMLpLpALqAGqpSgNp [s1,r/p]
and
E2 AGMLpLpA LpASpqSpNg [s1,q9/p,7/q]

I shall show here that each of the systems {S4; E1} and {S4; E2} contains
S4.4 and, moreover, that in the field of S4 formulas E1 and E2 are inferen-
tially equivalent.

3.5.1 Let us assume S4 and E2. Then:

Z1 GALpALqLySNLrCNLqLp [s2°]
Z2 GNLCpNgMKpq [s2°]
Z3 GNLCpgMKpNg [s2°]
Z4 GCALpPACpgCpNgCMKpqCMKpNg Lp [Z1, q/Cpq,» /CpNq; Z2; Z3; S1°]
Z5 ACMLpLpSMKpqCMKpNgLp [E2; z4; S1°]
Z6 GMLpMKpLp [s2]
27 GpCqMKpg [s1]
Z8 GCNppp [s1°]
Z9 €CpgCCrCitsCCCtmuCCqCsuCpCru [s1°]

210 §CMKpLpCMKpNLpLpCMLpCpLp |29, p/MLp,q/MKpLp,v /p,t/NLp,
m/Lp, u/Lp, s/MKpNLp; Z6; Z7, q/NLp; Z8, p/Lp; S1°]

Z11 SEMEKpLpCMEPNLpLpSMLHCpLp [Z10; 82°]
Z12 €CpqCpCrq [s2°]
R1 CMLpCpLp (25, q/Lp; Z12, p/MLp, q/Lp, v/p; Z11; S1°]

Thus, R1 follows from {S4; E2} and, therefore, {S4; E2} — {S4.4}.
3.5.2 Letus assume S3 and E1. Then:

Z1 GCLpSqp [s2°]
Z2 GCpqCKpsArAqt [s1°]
Z3 GKLpsAvAGqpt (22, p/Lp, a/Sqp; Z1; S1°)
Z4 §CpArAsqCCqiCpArAst [s1°]
Z5 GKpgArAsq [s1°]

Z6 GCKtLNpArAsSqNp
[z4,p /KtLNp,q /LNp,t/SqNp; Z5,p /t, ¢/ LNp; Z1, p/Np; S1°]
Z7 GGCpqCENpqLq [s3°]
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Z8 &CpCqrCKpqArs [s1°]
Z9 GKGCpqCNpgALgs (28, p/Cpa, a/SNpq, v/Lg; Z7; S1°]
Z10 €E NpNqCqp [s2°]
Z11 €CpqCKspArAqt [S1°]
Z12 CKsCNpNgAvAGqgpt [Zz11, p/€NpNg, q/Cqp; Z10; S1°]
Z13 CEpNqgSqNp [s2°]
Z14 € pqCKpsArAtq [S1°]
215 CKCpNgsArAtSgNp [Z14, p/CpNq, q/CqNp; Z13; S1°]
216 §CKsptCCKsqtCCKsytCKsApAqrt [s1°]

Z17 CKG pgA LNPAG Npq€ NpNgA LgACqpEqNp

(216, s/Spq, p/LNp, t/ALqASqpSqNp, q/CNpq, r/CNpNg;
Z6, t/Cpq, v/Lq, s/Cqp; Z9, s/ACqpEqNp;
Z12, s/6pq, r/Lq, t/CqNp; S1°]
Z18 §CKpstCCKqstCCKrstCKApAqrst [s1°]

Z19 €KALPpACpq€pNgA LNpACNpqENpNgA LqACqpSqNp
[Z18, p/Lp, s/ALNpACNpqS NpNq, t/ALgACqpSqNp, q/Spq, v/CpNy;
23, s/ALNpACNpqCNpNq, v/Lq, t/CqNp; Z17;
Z15, s/ALNpAGNpqCNpNq, v/Lq, t/Cqp; S1°]
Z20 €CKpqr CAspCAsqAsy [s1°]
E2 ACMLpLpALpACHaCpNg [220, p/ALgASqpSqNp, q/ALNgAGCNgpSNgNp,
v/ALpASpqCpNq, s/SMLpLp; Z19, p/a, a/p; E1; E1, q/Ng; S1°]

Thus, {S3; E1} implies E2. Therefore, it follows from 3.5.1 that
{s4; E1} contains S4.4.

3.5.3 Let us assume S4 and E2. Hence, we have R1, c¢f. 3.5.1. Then:

Z1 G€pCqp [s1°]
Z2 CMLpMLCqp [z1; s2°]
Z3 Gpp [s1°]
Z4 G&CpqCCsrCCqCrvCpCsu [s1°]
Z5 GMLpCpGgp (24, p/MLp, q/MLCqp, s/p, v/Cqp, v/Cqp;
Z2; Z1; R1, p/Cqp; 81°]

Z6 SMLpCCqpGqp [24, p/MLp, ¢/MLCqp, s/Cap, r/Cap, v/Sqp ;
z2; Z3; p/Cap; R1,p /Caqp; S1°]

27 CCpgCMLpMLg [s3°]
Z8 GCpCqrCCrCstCKpqCNECsv [s1°]

Z9 GKGCpgM LpCNLqCqu

[ZS, P/@P(I; Q/MLP, V/MLq’ S/q’ t/Lq" Z7; R1, P/q, Slo]
Z10 €CpCqCrvCCvCNstCpCqCNtCrs [S1°]
Z11 SKSpgM LpCNLgCNSqNpCqp [Z10, p/KSpgMLp, q/NLq, v/q, v/MLNp,
s/p, t/€qNp; Z9, v/MLNp; Z5, p/Np; S1°]
Z12 C€CKpqCrCNstCCqCtvCKpqCrCNvs [s1°]

Z13 CKSpgMLpCNLGCNCqpEqNp
[Z12, p/Cpq, q/MLp, v/NLq, s/SqNp, t/Cqp, v/Cqp; Z11; Z6; S1°|

Z14 SKpqp [s1°]
Z15 €S pNgSqNp [s2°]
Z16 € CpqCCqrCpCsClr [s1°]

Z17 CKE€pNqrCsCilE€qNp
[Z16, p/KSpNgr , q /CpNq, v/CqNp; Z14, p/SpNq, q/v; Z15; S1°]
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Z18 S LpSqp [Z1; s2°]
Z19 €CpgCCqrCpCsCNrt [s1°]
Z20 SKLprCsCNGgpt [Z19, p/KLpr, q/Lp, v/Sqp; Z14, p/Lp, q/r; Z18; S1°]
Z21 CCKpsvCCKqsvCCKysvCKApAqrsv [s1°]

Z22 CKALDPAGpqCpNgMLPpALGACqpSqNp
[Z21, p/Lp, s/MLp, v/ALgACqpCqNp, q/Cpq, v/CpNg;
Z20,v MLp,s /NLq,t/SqNp; Z13; Z17, vr/MLp, s/NLq, t/NCgp; S1°]

Z23 GLpp [s1]
Z24 ACMLpLPpALPAGpqS pNg [E2; Z23, p/CMLpLp; S1°]
Z25 ACpqp [s1°]
226 CArpCArqAvKpq [s1°]

Z27 ACMLpLpKA LpAS pqCpNgMLp [z26, v/CMLpLp, p/ALPACpqCpNg;
q/MLp; Z24; Z25, p/MLp, q/Lp; S1°]

728 ACMMLPLLPpKA LpACpqSpNgMLp [z27; s4]
Z29 CCMpLqCpq [S1; ¢f. [13], p. 156]
Z30 ACMLpLPpKALPAGpqSpNgMLp [z28; 229, p/MLp, q/Lp; S1°]
El ACMLpLPALGAGqpSqgNp [z30; z22; s1°]

Thus, {S4; E2} implies E1. Therefore, it is proved that system {S4; E1}
(and {S4; E2}) contains S4.4 and that in the field of S4 E1 and E2 are in-
ferentially equivalent.

3.6 I call system {S4; E1} (and {S4; E2}) which is an extension of S4.4 sys-
tem S4.5. And, system {S4; S1} which is an extension of S4.5 system S4.6.
Matrix M8 which verifies S4.4, falsifies the proper axiom of S4.5 E1
(and, naturally, also E2) for p/5 and g¢/2: ACML5L5AL2AC25C2N5 =
ALCM55CNSALC25LC24 = ALC15C1AL5L3 = CNL5C1CN58 = CN5C1C48 =
C4C15 = C45 = 5. This proves that S4.5 is a proper extension of S4.4.

I have no proof that S4.5 is a proper subsystem of S4.6, but it is very
probable. Since it is self evident that S4.6 is not only a subsystem of S4.7,
but also a subsystem of V1, it should be proved that both these systems,
S4.7 and V1, are proper extension of S4.6. Matrix M3 verifies S4.6, but
falsifies a proper axiom of V1. Namely, V1 is valsified for p/2 and q/3, cf.
[15], p. 306. Thus, S4.6 is a proper subsystem of V1. It is an open problem
whether S4.7 is a proper extension of S4.6.

3.7 The following diagram:

S5 S4.7 54.6 S4.5

V20O O ©) O ©) O s4.4
©) O
K4 A

visualizes the relations among the systems which were discussed in this
Section. There are many, open problems connected with this diagram. I
mention here only two, namely:
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a) Whether S4.5 is a proper subsystem of S4.6,and whether S4.7 is a proper
extension of S4.6 ?

b) To prove that there exist or does not exist an intermediate system be-
tween S4.4 and S5 which at the same time is not a subsystem of K4.

Added in proof: 1. Concerning Grzegorczyk’s formula which was discussed
in Section 2, cf. [20] and [21]. 2. In a letter of 4/14/70, Professor J. Jay
Zeman informed the author that the systems S4.5,5S4.6 and S4.7 are infer-
entially equivalent.

(1]

[2]

(3]

4]

[5]

l6]

7

(8]

[o]

[10]
[11]

[12]

[13]

[14]

[15]

BIBLIOGRAPHY

Dummet, M. A., and E. J. Lemmon, ‘“Modal logics between S4 and S5,”’ Zeit-
schrift fiir mathematische Logik und Grundlagen dev Mathematik, vol, 5 (1959),
pp. 250-264.

Grzegorczyk, A., ‘‘Nieklasyczne rachunki zdafi a metogologiczne schematy
badania naukowego i definicje pejeé asertycznych,’”” (In Polish). ‘‘Non-classical
propositional calculi in relation to metodological patterns of scientific investi-
gation,”’ Studia Logica, vol. XX (1967), pp. 117-132,

Hughes, G. E., and M. J. Creswell, An introduction to modal logic, Methuen and
Co., Ltd., London (1968).

Makinson, D. C., ‘“‘There are infinitely many Diodorean Modal functions,”’ The
Journal of Symbolic Logic, vol. 31 (1966), pp. 406-408.

McKinsey, J. C. C., “On the syntactical construction of systems of modal
logic,”’ The Journal of Symbolic Logic, vol. 10 (1945), pp. 83-94.

McKinsey, J. C. C., and A. Tarski, ‘‘Some theorems about the sentential calculi
of Lewis and Langford,”’ The Journal of Symbolic Logic, vol. 13 (1948), pp. 1-15.

Lewis, C. L., and C. M. Langford, Symbolic Logic, Second Edition, 1959, New
York, Cevon Publication.

Parry, W. T., ‘““Modalities in the Survey system of strict implication,”’ The
Journal of Symbolic Logic, vol. 4 (1939), pp. 137-154,

Prior, A. N., “K1, K2 and related modal systems,’”’ Notve Dame Journal of
Formal Logic, vol. V (1964), pp. 299-304.

Prior, A. N., Past, Present and Future, Clarendon Press, Oxford (1967).

Schumm, G. F., ““On a modal system of D. C. Makinson and B. Sobocifiski,’
Notre Dame Journal of Formal Logic, vol. X (1969), pp. 263-265.

Schumm, G. F., “On some open questions of B. Sobocifiski,’’ Notre Dame
Journal of Formal Logic, vol. X (1969), pp. 261-262,

Sobocifiski, B., ‘‘A note on modal systems,'’ Notre Dame Journal of Formal
Logic, vol. IV (1963), pp. 155-157,

Sobocifiski, B., ‘‘Family K of the non-Lewis modal systems,”’ Notre Dame
Journal of Formal Logic, vol. V (1964), pp. 313-318.

Sobocifiski, B., ‘‘Modal system S4.4,”’ Notre Dame Journal of Formal Logic,
vol. V (1964), pp. 305-312.



368

(16]

[17]

[18]

[19]

{20}

[21]

BOLESEAW SOBOCINSKI

Sobocifiski, B., ‘‘Remarks about axiomatizations of certain modal systems,”’
Notre Dame Journal of Formal Logic, vol. V (1964), pp. 71-80.

Thomas, I., ‘““Decision for K4,”” Notve Dame Journal of Formal Logic, vol.
VIII (1967), pp. 337-338.

Zeman, J. J,, ‘““The propositional calculus MC and its modal analog,’’ Notre
Dame Journal of Formal Logic, vol, IX (1968), pp. 294-298.
Zeman, J. J., ‘“Modal systems in which necessity is ‘“factorable’’,’”’ Notre

Dame Journal of Formal Logic, vol. X (1969), pp. 247-256.

Grzegorczyk, A., ‘‘Some relational systems and the associated topological
spaces,’’ Fundamenta Mathematicae, vol. LX (1967), pp. 223-231

Bull, R. A., Review of 20 in The Journal of Symbolic Logic, vol. 34 (1969), pp.
652-653.

University of Notve Dame
Notre Dame, Indiana





