Notre Dame Journal of Formal Logic Volume X, Number 3, July 1969

A THEORY OF CATEGORICAL SYLLOGISM

SETSUO SAITO

In this paper I shall try to present a theory which can take the place of the classical theory of categorical syllogism. It seems to me that this method has advantages, in particular for instructive purposes, that it is simpler and easier.

If we adapt the traditional interpretation of categorical propositions, Venn's diagrams must be modified as follows:

A bar indicates non-emptiness of a compound region in which the bar is contained.

Now we divide syllogisms into four cases where conclusions are respectively SaP, SeP, SiP, SoP, and in each case we search the necessary condition for the validity of the syllogisms, by means of modified Venn diagrams.

 The case where the conclusion is SaP: If the conclusion of a valid syllogism is SaP,

Received June 3, 1967

then (2) + (4) is empty. If (2) is empty, then the minor premise is SaM. If the minor premise is SaM and (4) is empty, then the major premise is MaP. A valid syllogism, therefore, whose conclusion is SaP, must be as follows:

MaP SaM $\therefore SaP$

2) The case where the conclusion is SeP:

If the conclusion of a valid syllogism is SeP, then (5) + (7) is empty. If (5) is empty, then either the major premise is PaM or the minor premise is SaM. If the former case holds, then the minor premise is either SeM or MeS, since (7) is empty. If the latter case holds, then the major premise is either PeM or MeP since (7) is empty. Therefore, a valid syllogism whose conclusion is SeP must be one of the following:

PaM	PaM	PeM	MeP
SeM	MeS	SaM	SaM
.SeP	∴ SeP	\therefore SeP	\therefore SeP

3) The case where the conclusion is SiP:

If the conclusion of a valid syllogism is SiP, then one of the premises must assert that X - ((5 + (7))) is empty. Here X is some region asserted to be not empty by the other premise.

For the case where the major premise asserts that X - ((5 + (7))) is empty, the following table is obtained:

X	X - (5) + (7)	The major premises which assert that X - ((5) + (7)) is empty.	The minor premises which assert that X is not empty.
<u>(1)</u> + <u>(6)</u>	1+6	none	
(4) + (7)	4	MaP	SaM, MaS, SiM, MiS
2+5	2	none	
(1) + (4) + (6) + (7)	1+4+6	none	
2+4+5+7	2+4	none	

Therefore, a valid syllogism in this case must be one of the following:

MaP	MaP	MaP	M a P
SaM	MaS	SiM	Mi S
. SiP	∴ SiP	∴ SiP	∴ SiP

Since the major premise and the minor premise are symmetrical in the above discussion, a valid syllogism whose minor premise asserts that X - ((5 + 7)) is empty must be the following:

PaM	MaP	Pi M	Mi P
MaS	MaS	MaS	MaS
. SiP	∴ SiP	SiP	∴ SiP

Therefore, a valid syllogism whose conclusion is SiP must be one of the following:

PaM	MaP	$P\mathbf{i}M$	Mi P	MaP	M a P	$M \mathtt{a} P$
MaS	MaS	MaS	MaS	SaM	Si M	Mi S
. SiP	$\therefore SiP$	∴ SiP	∴ SiP	SiP	\therefore SiP	\therefore SiP

4) The case where the conclusion is SoP:

Considering this case in the same way as in the case 3), the following table is obtained:

i) The case where the major premise asserts that X - (2 + 4) is empty.

X	X - (2) + (4))	The major premises which assert that X - ((2) + (4)) is empty	The minor premises which assert that X is not empty
1+6	1+6	none	
(4) + (7)	1	PeM, MeP	SaM, MaS, SiM, MiS
2+5	5	PaM	SoM, SeM, MeS
(1) + (4) + (6) + (7)	1+6+7	none	
2 + 4 + 5 + 7	(5) + (7)	none	

ii) The case where the minor premise asserts that X - (2 + 4) is empty.

X	X - (2) + 4)	The minor premises which assert that X - ((2) + (4)) is empty	The major premises which assert that X is not empty
1+4	1)	MaS	PeM, MeP, MoP
(6) + (7)	(6) + (7)	none	
3+5	3+5	none	
1+4+6+7	1+6+7	none	
3+5+6+7	3+5+6+7	none	

Therefore, a valid syllogism whose conclusion is SoP must be one of the following:

PeM	PeM	PeM	PeM	MeP	MeP
SaM	MaS	Si M	Mi S	SaM	MaS
∴ SoP	∴ SoP	∴ SoP	∴ SoP	$\therefore SoP$	∴ SoP
MeP	MeP	PaM	PaM	PaM	MoS
SiM	Mi S	So M	Se M	$M { m e} S$	Ma S
SoP	∴ SoP	∴ SoP	SoP	∴ SoP	∴ SoP

It is easy to show by means of the modified Venn diagrams that the above-stated 24 syllogisms are all valid.

Shibaura Institute of Technology Tokyo, Japan