Notre Dame Journal of Formal Logic Volume X, Number 3, July 1969

EQUATIONAL CHARACTERIZATION OF NELSON ALGEBRA

DIANA BRIGNOLE

1. *INTRODUCTION.* H. Rasiowa in [8] and [9] has introduced the notion of N -lattice which plays a rôle in the study of the constructive logics with strong negation considered by David Nelson [7] and A Markov [4]. Not all axioms used by H. Rasiowa to characterize N-lattices, here called Nelson algebras, are equations. A paper published in collaboration with A. Monteiro, [3], gives a characterization of these algebras by equations but the proofs are heavily based on results indicated in $[6]$ which have been obtained using transfinite induction. The purpose of this work, done under the guidance of Dr. A. Monteiro, is to indicate a purely arithmetical proof of that result. We reproduce here known results with the object of making this paper self-contained.

2. *THE DEFINITION OF H. RASIOWA.* Let us consider, in first place, the following definition;

2.1. DEFINITION. A system $\langle A, 1, \sim, \wedge, \vee \rangle$ constituted by 1° a non empty set *A*, 2° *an element* $1 \in A$ 3° *a unary operator* \sim *defined on* A, 4° *two binary operations,* Λ *and* v, *defined on A, will be called a quasi-boolean algebra,* [l], *or a Morgan algebra,* [δ], *if the following conditions are verified:*

N1. $x \vee 1 = 1$ N2. *x* Λ *(x* v *y) = x* N3. *x Λ (y v z) = (z Λ x) v (y Λ x)* N4. $\sim \sim x = x$ N5. $(x \wedge y) = \neg x \vee \neg y$

A system $\langle A, \lambda, \nu \rangle$ verifying axioms N2 and N3 is, according to M. Scholander [10], a distributive lattice, from N1 we deduce that 1 is the last element of *A.* We can prove:

N'2. $a \vee (a \wedge b) = a$ N T 3. *a* v *(b* Λ *c) = (c* v *a)* Λ (C V *b)* N'5. $\sim(a \vee b) = \sim a \wedge \sim b$

and that $0 = \sim 1$ is the first element of A.

Received February 9, 1969

We shall use the following properties of a distirbutive lattice with last element 1.

 $(α)$ *a* $α = a$ *(β)* 1 Λ *a* = *a (γ) a* Λ *(a* Λ *b)* = *a* Λ *b (δ) a v (a v b) = av b*

We shall write $a \leq b$ to indicate that $a = a \wedge b$. Let us consider now the definition of N-lattice introduced by H. Rasiowa in $[8]$ and $[9]$:

2.2. DEFINITION. A system $\langle A, 1, \sim, \neg, \rightarrow, \land, \lor \rangle$ constituted by 1^o) a non *empty set A. 2°) an element* le *A.* 3°) *two unary operators:* ~, Ί *defined on A:* 4^{\circ}*)* three binary operations: \rightarrow , \land , \lor defined on A, will be called a *Nelson Algebra if the following axioms are verified:*

Axiom A1. (We write $a < b$ to indicate that $a \rightarrow b = 1$)

(la), *a < a*

and

(1b). *if* $a < b$ and $b < c$ then $a < c$ *Axioms* A2. *The system* $\langle A, 1, \sim, \wedge, \vee \rangle$ *is a Morgan algebra, and on the other hand the relation* \leq *defined by*

(*E*) $a \leq b$ *if and only if* $a \leq b$ *and ~b* $\leq \sim a$

coincides with the order relation of the lattice $\langle A, \wedge, \vee \rangle$
Axiom A3. If $a < c$ and $b < c$ then $(a \vee b) < c$ *Axiom* **A4.** *If* $c < a$ *and* $c < b$ *then* $c < (a \wedge b)$ *Axiom* A5. $\sim (a \rightarrow b) \leq (a \land \sim b)$ *Axiom* A6. $(a \wedge \neg b) \leq \neg(a \rightarrow b)$ *Axiom* A7. $a < \sim a$ Axiom A8. $\sim a < a$ *Axiom* A9. $(a \wedge \neg a) \leq b$ Axiom A10. $a < (b \rightarrow c)$ if and only if $(a \land b) < c$ *Axiom* A10. *a < {b -*c) if and only if (a A b) < c Axiom* All. α = *a -** 0, *where* 0 = ~ 1

In this definition, more than 11 axioms are really involved. Using the compact definition 2.1 of Morgan algebras the axiom A2 is equivalent to 6 axioms.

3. THEOREM. If $\langle A, 1, \sim, \neg, \wedge, \vee, \rightarrow \rangle$ is a Nelson algebra then the following *properties are verified:*

N1. $a \vee 1 = 1$ N2. *a* Λ *{a* v *b) = a* N3. $a \wedge (b \vee c) = (c \wedge a) \vee (b \wedge a)$ N4. $\sim \sim a = a$ N5. $\sim(a \wedge b) = \sim a \vee \sim b$ N6. $(a \wedge \neg a) \wedge (b \vee \neg b) = a \wedge \neg a$ N7. $a \rightarrow a = 1$

N8. $(a \rightarrow b) \land (\sim a \lor b) = \sim a \lor b$ N9. $a \wedge (a \rightarrow b) = a \wedge (\sim a \vee b)$ N10. $a \rightarrow (b \land c) = (a \rightarrow b) \land (a \rightarrow c)$ N11. $a \rightarrow (b \rightarrow c) = (a \land b) \rightarrow c$

PROOF: Properties N1-N5 are immediately verified since $\langle A, 1, \sim, \wedge, \vee \rangle$ is a Morgan algebra, according to axiom A2.

PROPERTY N6. $(a \land \sim a) \land (b \lor \sim b) = a \land \sim a$

This was established by H. Rasiowa [9], p. 79, whose proof we reproduce here:

Replacing *b* by $(b \vee \neg b)$ in axiom A9 we obtain

 (1) $(a \wedge \neg a) \rightarrow (b \vee \neg b) = 1$

and using this result we can write

$$
(2) \quad \sim(b \lor \sim b) \rightarrow \sim(a \land \sim a) = (b \land \sim b) \rightarrow (a \lor \sim a) = 1
$$

From (1) and (2) we obtain by axiom A2, $a \wedge a \leq b \vee \neg b$.

PROPERTY N7. $a \rightarrow a = 1$

It follows from axiom Al.

PROPERTY N8. $(a \rightarrow b) \land (\sim a \lor b) = \sim a \lor b$

This formula has been established by H. Rasiowa in $[9]$, 2.4 (d). From axioms A5 and A7 we obtain

(1) $\sim(a \rightarrow b) < a \land \sim b < \sim \exists a \land \sim b = \sim(\exists a \lor b)$

By axiom Al, $a \rightarrow 0 < a \rightarrow 0$, from which we obtain, by A10,

 $a \wedge (a \rightarrow 0) < 0$, i.e. $a \wedge \exists a < 0$

As $0 < b$, by Al, $a \wedge a < b$ from which we obtain, by A10,

(2) $\exists a \leq a \rightarrow b$

from $b \wedge a < b$ we obtain, applying again A10,

 (3) $b < a \rightarrow b$

From (2), (3) and A3 it follows that

(4) $\exists a \lor b \leq a \rightarrow b$

From (1) and (4) we get, by A2,

 (5) $\exists a \vee b \leq a \rightarrow b$

Now, we will prove that $\neg a \leq \neg a$. We have, by A9, $(\neg a \land a) < 0$, and then it follows, by A10,

(6) $\sim a \lt a \rightarrow 0 = \exists a$

Now, considering axiom A8

(7) $\sim \exists a \leq a = \sim \sim a$

From (6) and (7) we obtain, by A2,

 $(8) \sim a \leq \exists a$

From (5) and (8) we finally obtain $\sim a \vee b \leq a \rightarrow b$

PROPERTY N9. $a \wedge (a \rightarrow b) = a \wedge (\sim a \vee b)$

This has been established in [3]. We shall now give a more direct proof. Making use of property N8 we have:

(1) $a \wedge (\sim a \vee b) \leq a \wedge (a \rightarrow b)$

We now proceed to prove that

 (a) $a \wedge (a \rightarrow b) \leq a \wedge (\sim a \vee b)$

which is equivalent to the two following inequalities

 $(2a)$ $a \wedge (a \rightarrow b) < a \wedge (\sim a \vee b)$ $(2b) \sim (a \wedge (\sim a \vee b)) \rightarrow \sim (a \wedge (a \rightarrow b))$

By A1, $a \rightarrow b \le a \rightarrow b$, by A10, $a \wedge (a \rightarrow b) \le b$, and therefore

$$
(3) \quad a \wedge (a \rightarrow b) < \sim a \vee b
$$

On the other hand $a \wedge (a \rightarrow b) < a$, then we get, from (3) and A4

 $(2a)$ $a \wedge (a \rightarrow b) < a \wedge (\sim a \vee b)$

From N3, N^f 3 and N4 we obtain

(4) $\sim (a \wedge (\sim a \vee b)) = \sim a \vee (\sim a \vee b) = \sim a \vee (a \wedge \sim b)$

By axiom A6,

$$
(5) \quad a \wedge \sim b \lt \sim (a \to b)
$$

From $a \wedge (a \rightarrow b) \leq a \rightarrow b$ **we obtain**

$$
(6) \quad \sim(a \to b) \lt \sim(a \land (a \to b))
$$

From (5) and (6) we obtain

$$
(7) \quad a \wedge \sim b \lt \sim (a \wedge (a \rightarrow b))
$$

From $a \wedge (a \rightarrow b) \leq a$ we obtain

$$
(8) \quad \sim a \; < \; \sim (a \; \wedge \; (a \rightarrow b))
$$

Applying A3 to (7) and (8) we obtain

$$
\sim a \vee (a \wedge \sim b) \leq \sim (a \wedge (a \rightarrow b))
$$

and, therefore, by (4),

 $(2b) \sim (a \wedge (\sim a \vee b)) \lt \sim (a \wedge (a \rightarrow b))$

which is what we wanted.

PROPERTY N10. $a \rightarrow (b \land c) = (a \rightarrow b) \land (a \rightarrow c)$ This formula has been established in [3], (A) \sim ((a \rightarrow b) \land (a \rightarrow c)) $\lt \sim$ (a \rightarrow (b \land c)) Using A6, A2 and A5 we obtain $\sim(a \rightarrow b) < a \land \sim b \leq a \land \sim(b \land c) < \sim(a \rightarrow (b \land c))$ Then, by Al, we can write (1) $\sim(a \rightarrow b) < \sim(a \rightarrow (b \land c))$ Replacing b for c in (1) we obtain (2) $\sim(a \rightarrow c) < \sim(a \rightarrow (b \land c))$ From (1) and (2) , by axiom A3, $\sim((a \rightarrow b) \land (a \rightarrow c)) = \sim(a \rightarrow b) \lor \sim(a \rightarrow c) < \sim(a \rightarrow (b \land c))$ (B) $\sim(a \rightarrow (b \land c)) \lt \sim ((a \rightarrow b) \land (a \rightarrow c))$ By axiom A5, we have: (1) $\sim(a \rightarrow (b \land c)) \leq a \land \sim (b \land c)$ By axiom A6, we can write (2) $a \wedge \neg b \leq \neg(a \rightarrow b)$ (3) $a \wedge \neg c < \neg (a \rightarrow c)$ From (2) and (3) we obtain, using A3, (4) $a \wedge (\neg b \vee \neg c) < \neg(a \rightarrow b) \vee \neg(a \rightarrow c)$ i.e. (5) $a \wedge \neg (b \wedge c) \leq \neg ((a \rightarrow b) \wedge (a \rightarrow c))$ From (1) and (5) we finally obtain $\sim(a \rightarrow (b \land c)) \lt \sim ((a \rightarrow b) \land (a \rightarrow c))$ (C) $a \rightarrow (b \land c) < (a \rightarrow b) \land (a \rightarrow c)$

In first place let us prove that:

(1) if $x < y$ then $a \rightarrow x < a \rightarrow y$

which is equivalent, by A10, to:

 $(1')$ *if* $x < y$, then $a \wedge (a \rightarrow x) < y$

From N9 and N3 we obtain

$$
a \wedge (a \rightarrow x) = a \wedge (\sim a \vee x) = (a \wedge \sim a) \vee (a \wedge x)
$$

By A9, $(a \wedge \neg a)$ $\lt (a \wedge x)$, so we can write

$$
a\wedge(a\rightarrow x)
$$

Then, if $x < y$: $a \wedge (a \rightarrow x) < y$. From $b \wedge c \leq b$ and $b \wedge c \leq c$ we obtain, **using (1),**

(2) $a \rightarrow (b \land c) \leq a \rightarrow b$ (3) $a \rightarrow (b \land c) < a \rightarrow c$

From (2), (3) and A4 we obtain

$$
a\rightarrow (b\land c)\lt(a\rightarrow b)\land (a\rightarrow c)
$$

(D)
$$
(a \rightarrow b) \land (a \rightarrow c) \leq a \rightarrow (b \land c)
$$

By Al, $a \rightarrow b < a \rightarrow b$; then, by A10,

(1) $a \wedge (a \rightarrow b) < b$

In the same way:

$$
(2) \quad a \wedge (a \rightarrow c) < c
$$

Applying A4 to (1) and (2) we obtain

 $a \wedge (a \rightarrow b) \wedge (a \rightarrow c) \leq b \wedge c$

which is equivalent, by A10, to

$$
(a \rightarrow b) \land (a \rightarrow c) < a \rightarrow (b \land c)
$$

From (A), (B), (C) and (D) we obtain N10.

PROPERTY N11. $(a \wedge b) \rightarrow c = a \rightarrow (b \rightarrow c)$

This formula has been established by A. Monteiro [6], using transfinite induction. We give here an arithmetical proof:

$$
(A) (a \wedge b) \rightarrow c < a \rightarrow (b \rightarrow c)
$$

By axioms Al and A10, we can write

 $1 = ((a \wedge b) \rightarrow c) \rightarrow ((a \wedge b) \rightarrow c)$ $=(a \wedge b \wedge ((a \wedge b) \rightarrow c)) \rightarrow c$ $=(a \wedge ((a \wedge b) \rightarrow c)) \rightarrow (b \rightarrow c)$ $= ((a \land b) \rightarrow c) \rightarrow (a \rightarrow (b \rightarrow c))$

which proves (A).

(B)
$$
(a \rightarrow (b \rightarrow c)) < ((a \rightarrow b) \rightarrow c)
$$

By N8, $(\sim b \lor c) < b \rightarrow c$, then

$$
(1) \quad a \wedge (\sim b \vee c) < b \rightarrow c
$$

By axiom A9, we can write

$$
(2) \quad a \wedge \sim a \lt b \rightarrow c
$$

From (1) and (2) we obtain, applying A3,

 $a \wedge (\sim a \vee \sim b \vee c) = (a \wedge \sim a) \vee (a \wedge (\sim b \vee c)) \leq b \rightarrow c$

Then, by axiom A10,

(3) $b \wedge a \wedge (\sim a \vee \sim b \vee c) < c$

From N3 and N9 we obtain:

$$
b \land a \land (\sim a \lor \sim b \lor c) = (b \land a \land \sim a) \lor (b \land a \land (\sim b \lor c))
$$

= (b \land a \land \sim a) \lor (b \land a \land (\sim b \rightarrow c))
= b \land a \land (\sim a \lor (b \rightarrow c))
= b \land a \land (a \rightarrow (b \rightarrow c))

which, using (3) gives:

$$
b \wedge a \wedge (a \rightarrow (b \rightarrow c)) < c
$$

Then, applying A10

$$
a\rightarrow (b\rightarrow c)<(a\land b)\rightarrow c
$$

(C)
$$
\sim((a \land b) \to c) < \sim(a \to (b \to c))
$$

By axiom Al:

$$
(1) \quad \sim((a \land b) \to c) < (a \land b) \land \sim c = a \land \sim(\sim b \lor c)
$$

and, by axiom A6:

$$
(2) \quad a \land \sim (\sim b \lor c) \lt \sim (a \rightarrow (\sim b \lor c))
$$

From (1) and (2) we obtain

$$
(3) \quad \sim((a \land b) \to c) < \sim(a \to (\sim b \lor c))
$$

Let us prove

(4) If $\sim x \lt \sim y$, then $\sim (z \to x) \lt \sim (z \to y)$

Surely, by A5, $\sim (z \rightarrow x) < z \land \sim x$; from the hypothesis we obtain: $z \wedge \neg x \leq z \wedge \neg y$. Then, we can write $\neg (z \rightarrow x) \leq z \wedge \neg y$. Besides, by axiom A5, $z \wedge z \vee (z \rightarrow y)$. So we can write $\sim (z \rightarrow x) \lt \sim (z \rightarrow y)$, and property (4) is proved. From axiom A6 and (4) we deduce:

(5) $\sim (a \rightarrow (\sim b \lor c)) < \sim (a \rightarrow (b \rightarrow c))$

(D)
$$
\sim
$$
 $(a \rightarrow (b \rightarrow c)) < \sim ((a \land b) \rightarrow c)$

By axiom A5, we have

$$
(1) \quad \sim(a \rightarrow (b \rightarrow c)) < a \land \sim (b \rightarrow c)
$$

Also, by A5, we have: $\sim(b \to c) < b \land \sim c$, from which we obtain:

$$
(2) \quad a \land \sim(b \to c) \leq a \land (b \land \sim c)
$$

From (1) and (2) we obtain:

$$
(3) \quad \sim(a \rightarrow (b \rightarrow c)) < a \land b \land \sim c
$$

By axiom A5, we have:

$$
(4) (a \wedge b) \wedge \sim c \lt \sim ((a \wedge b) \rightarrow c)
$$

From (3) and (4) we obtain

$$
\sim(a\rightarrow(b\rightarrow c))<\sim((a\land b)\rightarrow c)
$$

From (A) , (B) , (C) and (D) we obtain property N11.

4. THEOREM. Let $\langle A, 1, \sim, \rightarrow, \land, \lor \rangle$ be a system formed by 1^o) a non empty *set A,* 2°) an element $1 \in A$, 3°) a unary operator \sim *defined on A,* 4°) three *binary operations*, \rightarrow , \land , \lor *defined on A, and assume that properties* N1-N11 *are verified.* If $\exists x = x \rightarrow \neg 1$, then the system $\langle A, 1, \neg, \neg, \neg, \land, \lor \rangle$ is a *Nelson Algebra.*

PROOF: Axiom All is verified by definition. The other axioms have to be proved. Let us first prove the two following lemmas:

4.1. LEMMA. If $a \leq b$ then $a \rightarrow b = 1$.

Let $a = a \wedge b$. Applying N7, N10 and (β) we obtain:

$$
1 = a \rightarrow a = a \rightarrow (a \land b) = (a \rightarrow a) \land (a \rightarrow b) = 1 \land (a \rightarrow b) = a \rightarrow b
$$

4.2. *LEMMA,* $a \rightarrow b = 1$ *if and only if* $a = a \land (\sim a \lor b)$.

(A) Assume that

 (1) $a \rightarrow b = 1$

Then, applying (1) and N9, we obtain

 $a = a \wedge 1 = a \wedge (a \rightarrow b) = a \wedge (\sim a \vee b)$

 (B) Assume that

$$
a = a \wedge (\sim a \vee b)
$$

Applying N9 we obtain

$$
a \wedge (a \rightarrow b) = a \wedge (\sim a \vee b) = a
$$

i.e.: $a \leq a \rightarrow b$. Now by Lemma 4.1, N11 and *(a)*

 $1 = a \rightarrow (a \rightarrow b) = (a \land a) \rightarrow b = a \rightarrow b$

Now, we shall prove axioms A1-A10 referred to, in definition 2.3.

Axiom A1. If we write $a < b$ for $a \rightarrow b = 1$, we have (1a) $a < a$, and (1b) If $a < b$ and $b < c$ then $a < c$.

(la). It is an immediate consequence of Nl (1b). Let us consider $a < b$ and $b < c$, i.e. $a \rightarrow b = 1$ and $b \rightarrow c = 1$. By lemma 4.2 we can write:

(1) $a = a \land (\sim a \lor b)$ (2) $b = b \wedge (\sim b \vee c)$

From (1) we obtain, by N5 and N^T 5,

(3) $\sim a = \sim a \vee (a \wedge \sim b)$

Applying successively (1) and (2); N3, N2 and (3); N3 and N3; N'2 and N'2; $N3$, (2) and (1) we obtain:

$$
a \wedge (\sim a \vee c) = a \wedge (\sim a \vee b) \wedge (\sim a \vee (a \wedge \sim b) \vee c)
$$

\n
$$
= (\sim a \wedge a \wedge (\sim a \vee b)) \vee ((a \wedge \sim b) \wedge a \wedge (\sim a \vee b)) \vee
$$

\n
$$
(c \wedge a \wedge (\sim a \vee b))
$$

\n
$$
= (\sim a \wedge a) \vee ((a \wedge \sim b) \wedge (\sim a \vee b)) \vee ((c \wedge a) \wedge (\sim a \vee b))
$$

\n
$$
= (\sim a \wedge a) \vee (b \wedge a \wedge \sim b) \vee (\sim a \wedge c \wedge a) \vee (b \wedge c \wedge a)
$$

\n
$$
= a \wedge (\sim a \vee (b \wedge \sim b) \vee (b \vee c))
$$

\n
$$
= a \wedge (\sim a \vee (b \wedge (\sim b \vee c)))
$$

\n
$$
= a \wedge (\sim a \vee b)
$$

\n
$$
= a
$$

Then, by lemma 4.2, $a \rightarrow c = 1$, i.e. $a < c$.

Axiom A2. The system $\langle A, 1, \sim, \wedge, \vee \rangle$ is a Morgan algebra, and $a \leq b$ is *equivalent to* $a \rightarrow b = 1$ *and* $\sim b \rightarrow \sim a = 1$.

(A) It is immediate, from N1-N5 that the system is a Morgan algebra.

(B) If $a \leq b$ then $a \rightarrow b = 1$ and $\sim b \rightarrow \sim a = 1$.

Let us suppose $a \leq b$. Then by lemma $4.1 a \rightarrow b = 1$. On the other hand, if $a \leq b$ then $\neg b \leq a$. So, by lemma 4.1, we can write $\neg b \rightarrow \neg a = 1$.

(C) If $a \rightarrow b = 1$ and $\sim b \rightarrow \sim a = 1$, then $a \leq b$.

Let us suppose $a \rightarrow b = 1$ and $\sim b \rightarrow \sim a = 1$. By lemma 4.2 we have

(1) $a = a \wedge (\sim a \vee b)$ $(2) \sim b = \sim b \wedge (b \vee \sim a)$

Applying N3 to (1) and (2), we obtain:

(3) $a = (a \land \sim a) \lor (a \land b)$
(4) $\sim b = (\sim b \land b) \lor (\sim b \land \sim a)$

 $From N4, (4), N'5, N5, and N4, we obtain:$

(5)
$$
b = \neg \neg b = \neg(\neg b \land b) \land \neg(\neg b \land \neg a) = (\neg \neg b \lor \neg b) \land (\neg \neg b \lor \neg a) = (b \lor \neg b) \land (b \lor a)
$$

 α *v* α α α β α β γ $\mathcal{L}_{\mathcal{A}}$ is successively (3) and (5); N6, N6, N2 and N2; N6, N6, (5) and (1), we obtain:

 $a \wedge b = ((a \wedge \neg a) \vee (a \wedge b)) \wedge (b \vee \neg b) \wedge (b \vee a)$ $= ((a \land \sim a) \land (b \lor \sim b) \land (b \lor a)) \lor ((a \land b) \land (b \lor \sim b) \land (b \lor a))$ $=(\n(a \land \neg a) \land (b \lor a)) \lor (a \land b)$ $=(a \land \neg a) \lor (a \land b)$ $= a \wedge (\sim a \vee b)$ *= a*

Then, we can write $a \leq b$.

Axiom A3. If $a < c$ and $b < c$ then $a \vee b < c$.

A. Monteiro has proved that, in a Nelson algebra the equality $(a \vee b) \rightarrow$ $c = (a \rightarrow c) \land (b \rightarrow c)$ holds: so that in particular, we have:

 $(a \rightarrow c) \land (b \rightarrow c) \leq (a \lor b) \rightarrow c$

from which we immediately obtain axiom A3.

This equation was proved by A. Monteiro in the following way:

(A) If $x \leq y$ then $a \rightarrow x \leq a \rightarrow y$.

From $x = x \wedge y$ we obtain, applying N10,

$$
a \rightarrow x = a \rightarrow (x \land y) = (a \rightarrow x) \land (a \rightarrow y)
$$

i.e.: $a \rightarrow x \leq a \rightarrow y$.

(B) If $a \wedge x \leq a \vee b$ then $x \leq a \rightarrow b$.

Let $a \wedge x \leq a \vee b$. Then, by N9,

(1) $a \wedge x \leq a \wedge (\sim a \vee b) = a \wedge (a \rightarrow b) \leq a \rightarrow b.$

From (1) and (A) we obtain

$$
(2) \quad a \to (a \land x) \leq a \to (a \to b)
$$

From

$$
(3) \quad a \rightarrow (a \land x) = (a \rightarrow a) \land (a \rightarrow x) = 1 \land (a \rightarrow x) = a \rightarrow x
$$

and

(4) $a \rightarrow (a \rightarrow b) = (a \land a) \rightarrow b = a \rightarrow b$

we obtain $a \rightarrow x \leq a \rightarrow b$. From $x \leq a \rightarrow x$ and $a \rightarrow x \leq a \rightarrow b$, we have $x \leq a \rightarrow b$.

(C) $a \wedge (a \rightarrow c) \wedge (b \rightarrow c) \le \sim b \vee c$

Applying successively N9, N3, N6, N3, N8, N3, N3 and N^f 2, and N^T 2 we obtain:

$$
a \wedge (a \rightarrow c) \wedge (b \rightarrow c) = a \wedge (\sim a \vee c) \wedge (b \rightarrow c)
$$

\n
$$
= (a \wedge \sim a \wedge (b \rightarrow c)) \vee (a \wedge c \wedge (b \rightarrow c))
$$

\n
$$
= ((a \wedge \sim a) \wedge (b \rightarrow c)) \vee (a \rightarrow c)
$$

\n
$$
= ((b \vee \sim b) \wedge (b \rightarrow c)) \vee (a \wedge c)
$$

\n
$$
= (b \wedge (b \rightarrow c)) \vee (\sim b \wedge (b \rightarrow c)) \vee (a \wedge c)
$$

\n
$$
= (b \wedge (b \vee c)) \vee b \vee (a \wedge c)
$$

\n
$$
= (a \wedge c) \vee (b \wedge c) \vee (b \wedge \sim b) \vee \sim b
$$

\n
$$
= (a \vee b) \wedge c) \vee \sim b
$$

\n
$$
= c \vee \sim b.
$$

(D) $a \wedge (a \rightarrow c) \wedge (b \rightarrow c) \leq \sim a \vee c$

Applying N9 we have $a \wedge (a \rightarrow c) \wedge (b \rightarrow c) = a \wedge (\sim a \vee c) \wedge (b \rightarrow c) \leq \sim a \vee c$ **(E)** $a \wedge (a \rightarrow c) \wedge (b \rightarrow c) \leq \sim (a \vee b) \vee c$

From (C) and (D) we have

$$
a \wedge (a \rightarrow c) \wedge (b \rightarrow c) \leq (\sim a \vee c) \wedge (\sim b \vee c) = \sim (a \vee b) \wedge c
$$

- (F) $b \wedge (a \rightarrow c) \wedge (b \rightarrow c) \leq \sim (a \vee b) \vee c$
- (F) is a consequence of E, replacing *a* by *b.*
- **(G)** $(a \rightarrow c) \land (b \rightarrow c) \leq (a \land b) \rightarrow c$

From (E) and (F) we obtain

$$
(a \vee b) \wedge (a \rightarrow c) \wedge (b \rightarrow c) \leq \sim (a \vee b) \vee c
$$

Then, by (A)

$$
(a \rightarrow c) \land (b \rightarrow c) \leq (a \lor b) \rightarrow c
$$

Axiom A4. If $a < b$ and $a < c$ then $a < b \wedge c$.

Let $a < b$ and $a < c$, that is

 (1) $a \rightarrow b = 1$, (2) $a \rightarrow c = 1$

From N10, (1), (2), and (α) we have

 $a \rightarrow (b \land c) = (a \rightarrow b) \land (a \rightarrow c) = 1 \land 1 = 1$

i.e.: $a < b \wedge c$.

Axiom A5. $\sim (a \rightarrow b) < a \land \sim b$.

By axiom N8, $\neg a \lor b \leq a \rightarrow b$, and therefore

 $(1) \sim (a \rightarrow b) \leq \sim (\sim a \vee b) = a \wedge \sim b$

By lemma 4.4, we obtain from (1)

 $\sim(a \rightarrow b) \rightarrow (a \land \sim b) = 1$

Axiom A6. $a \wedge \neg b \leq \neg (a \rightarrow b)$

We shall prove the equality

$$
(1) \sim (\sim a \lor b) \rightarrow \sim (a \rightarrow b) = 1
$$

i.e.:

(2) $(a \wedge \neg b) \rightarrow \neg(a \rightarrow b) = 1$

which is equivalent, by lemma 4.2 to

(3) $a \wedge \neg b = (a \wedge \neg b) \wedge (\neg (a \wedge \neg b) \vee \neg (a \rightarrow b))$

Applying \sim to both members in (3) we have the equivalent equality:

$$
(4) \quad \sim a \, \vee b = \sim a \, \vee b \, \vee (a \, \wedge \sim b \, \wedge (a \to b))
$$

which we can write, using N8,

(5) $\sim a \vee b = \sim a \vee b \vee (a \wedge (\sim a \vee b) \wedge \sim b)$

and since this equality is verified, the same occurs with (1)

Axiom A7. a $\lt \sim \text{7a}$.

This result is obtained replacing \bar{b} by 0 in axiom A5 and observing that $\sim \sim a = a$ and $a \to 0 = \exists a$.

 $Axiom$ A8. $\sim \exists a \leq a$.

We obtain it replacing b by 0 in axiom A6.

Axiom A9. $a \wedge \neg a \leq b$.

By N8 $\sim a \vee b \le a \rightarrow b$, and therefore $\sim a \le a \rightarrow b$. Then, by lemma 4.1, we obtain.

(1) $\sim a \rightarrow (a \rightarrow b) = 1$

From (1) and N11 we obtain $(\sim a \land a) \rightarrow b = 1$, i.e.: $a \land \sim a < b$.

Axiom A10. $a < b \rightarrow c$ *is equivalent to a* $\land b < c$.

It is enough to observe that, by property N11, $a \rightarrow (b \rightarrow c) = 1$ is equivalent to $(a \wedge b) \rightarrow c = 1$. This ends our proof.

5. *CONCLUSION.* From theorem 3 and 4 we obtain a definition of Nelson algebra, which, *cf.* [3], is the following:

5.1. DEFINITION. Let $\langle A, 1, \sim, \land, \lor, \rightarrow \rangle$ be a system constituted by 1° a *non-empty set A,* 2°) an element 1 ϵA , 3°) a unary operator ~ defined on A, 4°) three binary operations: λ , λ , \rightarrow defined on A. Such a system will be *called a Nelson algebra if we define* $\exists x = x \rightarrow \neg 1$, and if the following *axioms are verified:*

Nl. *a v 1 =a* N2. $a \wedge (a \vee b) = a$ N3. $a \wedge (b \vee c) = (c \wedge a) \vee (b \wedge a)$ N4. $\sim \sim a = a$ N5. $\sim (a \wedge b) = \sim a \vee \sim b$ N6. $(a \wedge \neg a) \wedge (b \vee \neg b) = a \wedge \neg a$ N7. $a \rightarrow a = 1$ N8. $(a \rightarrow b) \wedge (\sim a \vee b) = \sim a \vee b$ N9. $a \wedge (a \rightarrow b) = a \wedge (\sim a \vee b)$ N10. $a \rightarrow (b \land c) = (a \rightarrow b) \land (a \rightarrow c)$ N11. $a \rightarrow (b \rightarrow c) = (a \land b) \rightarrow c$

BIBLIOGRAPHY

- [1] Bialynicki-Birula, A. and Rasiowa, Helena, 'On the representation of quasi Boolean algebras." *Bulletin de VAcadέmie Polonaise des Sciences,* classe ΠI, v. 5 (1957), pp. 259-261.
- [2] Birkhoff, Garrett, *Lattice Theory,* Revised Edition, Am. Math. Soc, Colloquium Publications, 25 (1948), xiii, 283 p.
- [3] Brignole, Diana and Monteiro, Antonio, *Caracterisation des Algebres de Nelson par des egalitέs.* (To be published).
- [4] Markov, A. A., *'Ά* constructive Logic," *Uspehi Mathematiceskih Nauk,* (N.S.), v. 5 (1950), pp. 187-188.
- [5] Monteiro, Antonio, "Matrices de Morgan caracteristiques pour le calcul pro porsitionnel classique," *Anais da Academia Brasileira de Ciencίas,* v. 32 (1960), pp. 1-7.
- [6] Monteiro, Antonio, "Construction des algebres de Nelson finies," *Bulletin de VAcademie Polonaise des Sciences,* v. 11 (1963), pp. 359-362.
- [7] Nelson, David, "Construetible falsity," *The Journal of Symbolic Logic,* v. 14 (1949), pp. 16-26.
- [8] Rasiowa, Helena, *Algebraic Charakterisierung Intuίtionistischen Logik mit Starker negation.* Constructivity in Mathematics. (Proceedings of the Collo quium held at Amsterdam, 1957), edited by A. Heyting. Studies in Logic and the foundation of Mathematics, Amsterdam, 1959.
- [9] Rasiowa, Helena, "N-lattices and constructive logic with strong negation," *Fundamenta Mathematicae,* v. 46 (1958), pp. 61-80.
- [10] Scholander, Marlow, "Postulates for distributive lattices," *Canadian Journal of Mathematics,* v. 3 (1951), pp. 28-30.

Instituto de Matemάtica Universidad Nacional del Sur Bahia Blanca, Argentina