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EQUATIONAL CHARACTERIZATION OF NELSON ALGEBRA

DIANA BRIGNOLE

1. INTRODUCTION. H. Rasiowa in [8] and [9] has introduced the notion of
N-lattice which plays a rdle in the study of the constructive logics with
strong negation considered by David Nelson [7] and A Markov [4]. Not all
axioms used by H. Rasiowa to characterize N-lattices, here called Nelson
algebras, are equations. A paper published in collaboration with A.
Monteiro, [3], gives a characterization of these algebras by equations but
the proofs are heavily based on results indicated in [6] which have been
obtained using transfinite induction. The purpose of this work, done under
the guidance of Dr. A. Monteiro, is to indicate a purely arithmetical proof
of that result. We reproduce here known results with the object of making
this paper self-contained.

2. THE DEFINITION OF H. RASIOWA. Let us consider, in first place, the
following definition;

2.1. DEFINITION. A system (A, 1,~, a,v) constituted by 1°) a non empty set
A, 2° an element 1€ A 3° a unary opervator ~ defined on A, 4°) two binary
operations, n and v, defined on A, will be called a quasi-boolean algebra,
[1], or @ Movgan algebra, (5], if the following conditions are verified:

N1l. xvl1l=1

N2, xa(xvy)=x

N3. xa(yva)=(@Eax)v(yax)
N4, ~~x=x

N5. (xAy)=~xv-~y

A system (A, a, v) verifying axioms N2 and N3 is, according to M.
Scholander [10], a distributive lattice, from N1 we deduce that 1 is the last
element of A. We can prove:

N'2. av(aab)=a

N'3. av(bac)=(cva)alcvbd)

N'5. ~(@av b)=~anar~b

and that 0 = ~1 is the first element of A.
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We shall use the following properties of a distirbutive lattice with last
element 1.

(@)anra=a
B)1lra=a
(Y)aan(anabd)=anrbd
b)av(avd)=avbd

We shall write a < b to indicate that a = @ A b. Let us consider now the
definition of N-lattice introduced by H. Rasiowa in [8] and [9]:

2.2. DEFINITION. A system (A, 1,~, 1, —, A, v) constituted by 1°) a non
empty set A. 2°) an element 1€ A. 3° two unary operators: ~, 1 defined
on A: 4°) thvee binary opevations: — ,a,v defined on A, will be called a
Nelson Algebra if the following axioms ave vevified:

Axiom Al. (We write a < b to indicate that a — b = 1)
(1a). a<a
and

(Ib). ifa<dbandb<cthena<c
Axioms A2, The system (A, 1,~, A, v) is a Morgan algebra, and on the
other hand the velation < defined by

(E) a < b if and only if a< b and ~b < ~a

coincides with the ovder relation of the lattice (A, a, v)
Axiom A3. Ifa<cand b <c then (av b) <c

Axiom A4, Ifc <aandc <bthenc <(anab)

Axiom A5. ~(a — b) < (a A ~b)

Axiom A6. (a A ~b) < ~(a— b)

Axiom AT. a <~Ta

Axiom A8. ~a<a

Axiom A9. (a A ~a) <b

Axiom A10. a < (b —¢) if and only if (a » b) <c
Axiom A1l, a=a— 0,where 0 =~1

In this definition, more than 11 axioms are really involved. Using the
compact definition 2.1 of Morgan algebras the axiom A2 is equivalent to 6
axioms.

3. THEOREM. If (A, 1, ~, 1, A, v, =) is a Nelson algebra then the following
properties are verified:

Nl. avl=1

N2, aarlavd)=a

N3. aan(dve)=(cara)v(baa)
N4, ~~a=a

N5. ~(@aarbd)=~av~D

N6. (@aa~a)ab v~d)=anr~a
N7. a—a=1
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N8. (@a—b)a(~avd)=~avd
N9. anrla—d)=anr(~avb)
N10. a—= (b ac)=(a —b) r(a—rc)
N1l. a—=(b—c)=(aarb)—c

PROOF: Properties N1-N5 are immediately verified since (4, 1, ~, a, v)
is a Morgan algebra, according to axiom A2.

PROPERTY N6. (aar~a)a(bv~d)=ans~a

This was established by H. Rasiowa [9], p. 79, whose proof we reproduce
here:
Replacing b by (b v ~d) in axiom A9 we obtain

(1) (@ar~a)—Bv~d)=1
and using this result we can write
(2) ~Bv~d)—~@ar~a)=(bar~b)—(av~a)=1
From (1) and (2) we obtain by axiom A2, aa ~a < b v ~b.
PROPERTY N1, a —a =1
It follows from axiom Al.
PROPERTY NS8. (@ —=b) A(~avbd)=~avb

This formula has been established by H. Rasiowa in [9], 2.4 (d). From
axioms A5 and A7 we obtain

(1) ~@—d)<aar~b<~lar~b=~(1avb)

By axiom Al, ¢ — 0 < a — 0, from which we obtain, by A10,
anrfa—0)<o0, ie. aanl1a<o0

As 0 < b, by Al, a A 1a < b from which we obtain, by A10,

(2) T1a<a-—-bd

from b A a < b we obtain, applying again A10,

3) b<a—b

From (2), (3) and A3 it follows that

(4) tavd<a—b

From (1) and (4) we get, by A2,

(5) lavdb<a—bd

Now, we will prove that ~a < Ja. We have, by A9, (~aa a) <0, and then it
follows, by A10,

(6) ~a<a—0=1a

Now, considering axiom A8
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(M ~1a<a=~~a

From (6) and (7) we obtain, by A2,

(8) ~a<a

From (5) and (8) we finally obtain ~av b < a— b
PROPERTY N9. ar(@a—b)=ana (~av b)

This has been established in [3]. We shall now give a more direct proof.
Making use of property N8 we have:

(1) ar(~avd)<an(a—Db)
We now proceed to prove that
(2) anla—0d)<an (~avbd)
which is equivalent to the two following inequalities

(2a) aa(@a—0d)<a r (~av b)
(2b) ~(a A (~a v b)) = ~(an (@ — b))

By Al,a — b <a— b, by A10, a A (a — b) < b, and therefore
3) aanla—d)<~avbd

On the other hand a A (@ — b) < a, then we get, from (3) and A4
(22) anr(@a—0d)<ana(~avb)

From N3, N'3 and N4 we obtain
(4 ~(@al~avd)=~av~(avbd)=~av(anr~b)

By axiom A6,
(5) ar~b<~(a—b)
Froma A (@ — b) < a — b we obtain
(6) ~(a—bd)K~(an(@—0D)
From (5) and (6) we obtain
() anr~b<~(ans(a— b))
From g A (@ — b) < a we obtain
(8) ~a<~(aa(a—D)
Applying A3 to (7) and (8) we obtain

~av (@anr~b)<~(ana(a—0D))

and, therefore, by (4),
(2b) ~(aa (~a v b)) <~(ana (a — b))

which is what we wanted.



EQUATIONAL CHARACTERIZATION OF NELSON ALGEBRA

PROPERTY N10. a—(bac)=(@ — b) r(a— ¢)
This formula has been established in [3].
(A) ~((@a—=d) a(a—c) <~(a—(bnc)
Using A6, A2 and A5 we obtain
~@—b)<arn~b<san~barc)<~(a—(bnac)
Then, by Al, we can write
(1) ~(@a—=b)<~(a—(bac))
Replacing b for ¢ in (1) we obtain
(2) ~(@—=c)<~(@a—=(bnrc))
From (1) and (2), by axiom A3,
~((@a »b)rla —c))=~(a—d)v~(a—c)<~(a—(bnrc)
(B) ~(a— (b ac)) <~((a—Dd)a(a—c)
By axiom A5, we have:
(1) ~(@—= (B arc)<anr~(barc)
By axiom A6, we can write

(2) ar~b<~@ —Db)
3) aa~c<~(a—c)

From (2) and (3) we obtain, using A3,
(4) an(~b v~c)<~(@a—b)v~(a—rc)
ie.
(5) aa~(Bac)<~(a—b)ala—rc)
From (1) and (5) we finally obtain
~(@a—=(barc) <~(a—0)rl@—c)

(C) a—= B arc)<(a—bdb)ar(a—c)

In first place let us prove that:
(1) fx<ythena—x<a—y
which is equivalent, by A10, to:
(1Y fx<y,thenan(a—x) <y

From N9 and N3 we obtain

anrn@—x)=anrn(~avx)=@ns~a)v(anx)

By A9, (a a ~a) < (a A x), so we can write

anr(a—x)<anr x<x

289
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Then, if x <y: aa (@ —»x)<y. Frombdbac <bd and bac < ¢ we obtain,
using (1),

(2) a—=(brc)<a—b>
38) a—-(brc)<a—c

From (2), (3) and A4 we obtain
a—®Gac)<(a—b) arla—rc)
D) (a—d)a(a—c)<a—(bac)
By Al, a— b < a— b; then, by A10,
(1) arnf@—-0b<b
In the same way:
(2) aar(a—o)<c
Applying A4 to (1) and (2) we obtain
arnfa—>b)aa—c)<bac
which is equivalent, by A10, to
(a—=b)ala—c)<a—(bac)
From (A), (B), (C) and (D) we obtain N10.
PROPERTY N11. (aab)— c=a — (b — c)

This formula has been established by A. Monteiro [6], using transfinite
induction. We give here an arithmetical proof:

(A) (@ard)—c<a—(b—rc)
By axioms Al and A10, we can write

1=(anrnd)—c)— ({(a rbd—c)
=(arbaf{anrd)—c))—c
=(ar((@and)—c)—(b— ¢
=((@aand)—c)—(a—(b—c)

which proves (A).

(B) (= (@~ )< ((a—0d)—¢)

By N8, (~bv ¢) <b— c, then

(1) aa(~dbve)<b—c

By axiom A9, we can write

(2) an~a<b-oc

From (1) and (2) we obtain, applying A3,

anr(~av~bvel=(arn~a)vi(ian(~bve)<b—c
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Then, by axiom A10,
B) baaasr(~av~bve)<c
From N3 and N9 we obtain:

bran(~av~bvc)=(baanr~a)v(baanr (~bvc))
=(baraanr~a)v(branr (b—c))
=baran(~av(b—c))
=baan(a—(b—c))

which, using (3) gives:
braarnfa—-(d—c)<c
Then, applying A10
a—(b—-c)<(arb)—c
(C) ~(@arbd) —c)<~@a—(b—rc))
By axiom Al:
(1) ~(@rbd)—c)<(arnbdr~c=anr~(~bvec)
and, by axiom A6:
(2) aa~(bve)<~@—=(~bv o)
From (1) and (2) we obtain
(3) ~(l@aabd)—c)<~(@—(~bvc)
Let us prove
(4) If ~x <~y, then ~(g —=x) <~ — )

Surely, by A5, ~(z — x) < z2a~x; from the hypothesis we obtain:
zAa ~x<za~y. Then, we can write ~(z = x) < z A ~y. Besides, by axiom
A5 za~y<~( — ). So we can write ~(z = x) <~(z —y), and property
(4) is proved. From axiom A6 and (4) we deduce:

(5) ~(a—(~bv ) <~@—0®~—0)

(D) ~(a—(b— ) <~((arb)—c)

By axiom A5, we have

(1) ~(a— 0B —=c)<anr~b—rc)

Also, by A5, we have: ~(b— ¢) <b a~c, from which we obtain:
(2) aa~(b—=c)<anr(®ar~c)

From (1) and (2) we obtain:

3) ~@—(b—c)<aabna~c

By axiom A5, we have:

(4) (aad)r~c<~(anrbd)—c)
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From (3) and (4) we obtain
~a—=(b—c) <~((ard)— 0
From (A), (B), (C) and (D) we obtain property N11.

4. THEOREM. Let (A, 1, ~, —, A, v) be a system formed by 1°) a non empty
set A, 2°) an element 1€ A, 3°) a unary opevator ~ defined on A, 4°) three
binary opervations, —, A, v defined on A, and assume that properties N1-N11
are verified. If 1x =x — ~1, then the system (A, 1,~,1,—, A, v) is a
Nelson Algebra.

PROOF: Axiom All is verified by definition. The other axioms have to be
proved. Let us first prove the two following lemmas:

4.1, LEMMA.Ifa <bthena — b =1,
Leta =a ~ b. Applying N7, N10 and (8) we obtain:
l=a—a=a—(arb)=(@—a)ra(a—b)=1r(@a—b)=a—b

42, LEMMA. a —»b=1if and only ifa =a A (~a v b).
(A) Assume that
(1) a—b=1
Then, applying (1) and N9, we obtain

a=arl=anr(a—b)=an (~avDd)
(B) Assume that

a=aan(~a vb)
Applying N9 we obtain
arn(@—b)=anr(~avd)=a

i.e.: a<a—>b. Now by Lemma 4.1, N11 and (a)

l=a—(@a—b)=(@ra)—b=a—0b
Now, we shall prove axioms A1-A10 referred to, in definition 2.3.

Axiom Al. If we write a < b for a = b =1, we have (1a) a < a, and (1b) If
a<band b <c then a <c.

(1a). It is an immediate consequence of N1
(1b). Let us consider ¢ < b and b <c, i.e. a—b =1and b >c=1. By
lemma 4.2 we can write:

(1) a=anr(~avd)
(2) b=bA(~va)

From (1) we obtain, by N5 and N'5,
(8) ~a=~av(aa~D)

Applying successively (1) and (2); N3, N2 and (3); N3 and N3; N'2 and N'2;
N3, (2) and (1) we obtain:
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an(~ave=anr(~avbdb)a(~av(@nr ~b)vc)

=(~anrnan(~avbd))v((@anr~b)aan(~avd)v
(cran(~avd))

=(~anra)v ((anr~d)a(~avbd)v(lcaa)a(~avb))
=(~anra)v(braan~b)v(~arnc ra)v (b acnra)

(~rana)v@daran~b)v(bacaa)

anr(~av(ba~b)v(bvc))

an(~av ®a(~bvc))

=a A (~a vDd)

=a

1l

il

Then, by lemma 4.2, a— c=1,i.e.a <c.

Axiom A2. The system (A,1, ~,a,v) is a Morgan algebra, and a < b is
equivalent to a — b = 1 and ~b — ~a = 1,

(A) It is immediate, from N1-N5 that the system is a Morgan algebra.
(B) If as<bthena —b =1and ~b —~a =1.

Let us suppose ¢ < b. Then by lemma 4.1a — b = 1. On the other hand, if
a < b then ~b < ~a. So, by lemma 4.1, we can write ~b — ~a = 1.

(C) Ifa —b =1and ~b —~a =1, thena <b.
Let us suppose a > b=1and ~b —~a = 1. By lemma 4.2 we have

(1) a=aa(~a vb)
(2) ~b=~bar(dv~a)

Applying N3 to (1) and (2), we obtain:

(3) a=@@nr~a)v(aard)
(4) ~b =(~b A b) v (~b A ~a)

From N4, (4), N'5, N5 and N4 we obtain:
(5) =~~ph=~(~bab)A~(~ba~a)=(~~bD v~D)A(~~bv~~a) =
(bv~b)a(bva)

Applying successively (3) and (5); N3, N6, N2 and N2; N3, N3, (5) and (1),
we obtain:

arb={arn~a)v(@anrb)r(bv~b)ar(bva)
=(@r~a)yr(bv~b)a(bva)vlananbda(dv~d)a(bva)
=(@ar~a)r(®va)vianbd
=(an~a)v(anb)
=an(~av b)
=a

Then, we can write a < b.
Axiom A3. Ifa <cand b <c thena v b <c.

A. Monteiro has proved that, in a Nelson algebra the equality (a v b) —
¢ =(a— c¢) A (b— c)holds: so that in particular, we have:
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(a—=c)a(d—=c)<s(avd)—c

from which we immediately obtain axiom A3.
This equation was proved by A. Monteiro in the following way:

(A) Ifx <y thena —-x <a—y,
From x= xay we obtain, applying N10,

a—x=a—(xary)=(@—x)a(a—)

iera—x<a-—y.

(B) Ifanx<~avbthenx <a—b.

Letaa x < ~av b. Then, by N9,

(1) arnx<aarl(~avd)=anr(@a—b)<a—0.

From (1) and (A) we obtain

(2) a—(arx)<a-—(a—Db)

From

8) a—(@rn)=@@=a)r@=x)=1n(@—2)=a —x

and

(4 a—(a—bd)=(@ra)— b=a—bd

we obtain ¢ > x <a—b. From x <a—x and a - x <a— b, we have

x<a—b.

(C) aala—c)a(db>c)s~bve

Applying successively N9, N3, N6, N3, N8, N3, N3 and N'2, and N'2 we

obtain:

arn(@a—=c)a(b—c)=anr(~avc)a(b—c)
=(@rn~anr(d—c)vianrca(b—rc))
=((@ar~a)a(b—c))v (a—c)
=((Bv~b)a(db—c))v(anc)
=bArab—-c)v(~ba(b—c))v(aac)
=(ba(dve))vdviaac)
={(anc)v(bac)v(ba~d)v~d
=((avd)ac)v~d
=cv~b,

D) ar(fa—c)ra(b—c)s~ave

Applying N9 we have aa (a —=c)a(b—c)=anr(~ave)a(b—c)S~ave
(E) an(a—c)ra(b—oc)s~(a@avbdve

From (C) and (D) we have

arn(a—=c)r(b—=c)<s(~ave)r(~bve)=~(avbd)ac
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(F) dbra(a—=)ad—c)<~@vd)ve
(F) is a consequence of E, replacing a by b.
(G) @ —c)a(®d —c)<s(aabd)—c
From (E) and (F) we obtain
@vd)al@—c)ad—-c)s~@vd)ve
Then, by (A)
@—=c)a®d—c)<s@vd)—c
Axiom A4. If a < band a <c thena <b ac.
Let a<b and a < c, that is

(1) a—b=1,
(2) a—c=1

From N10, (1), (2), and (@) we have
a—->Garcd)=@—>b)r(a—0)=1a1=1
ie: a<bac.
Axiom A5. ~(a — b) <a a ~b.
By axiom N8, ~a v b < a — b, and therefore
(1) ~@a—>b)s~(~avbdb)=aar~b
By lemma 4.4, we obtain from (1)
~a—-b)—@r~bp=1
Axiom A6. a r ~b < ~(a —Db)
We shall prove the equality
(1) ~(~avd)—>~@—>b)=1
i.e.:
(2) (@ar~b)—~@—->d)=1
which is equivalent, by lemma 4.2 to
(3) aa~b=(anr~b)a(~@nr ~b)v~(a— b))
Applying ~ to both members in (3) we have the equivalent equality:
(4) ~avb=~avbv(ana~ba(a—D))
which we can write, using N8,
(5) ~avb=~avbvi(ana (~avbd)a~Dd)
and since this equality is verified, the same occurs with (1)

Axiom AT. a <~Ta.
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This result is obtained replacing & by 0 in axiom A5 and observing that
~~a=qaand a — 0 =a.

Axiom A8. ~1a < a.
We obtain it replacing b by 0 in axiom A6.
Axiom A9. a A ~a < b.

By N8 ~a v b < a — b, and therefore ~a < a — b. Then, by lemma 4.1, we
obtain.

(1) "'a—)(a—"b):l
From (1) and N11 we obtain (~a ra) —» b=1,i.e.: aa~a<b.
Axiom A10. a < b — ¢ is equivalent to a A b < c.

It is enough to observe that, by property N11, @ — (b — ¢) = 1 is equivalent
to (@ A b) —c¢ = 1. This ends our proof.

5. CONCLUSION. From theorem 3 and 4 we obtain a definition of Nelson
algebra, which, cf. [3], is the following:

5.1. DEFINITION. Let (A, 1,~, A, v, =) be a system constituted by 1°) a
non-empty set A, 2°) an element 1cA, 3°) a unary operatov ~ defined on A,
4°) three binary opevations: a, v, — defined on A. Such a system will be
called a Nelson algebra if we define 1x =x — ~1, and if the following
axioms ave vevified:

N1l. avl =a

N2. aanf(@vd)=a

N3. aave)=(cnra)v(baa)
N4, ~~a =a

N5. ~(@abd)=~av~b

N6. (@ar~a)r(bv~b)=ana~a
N7. a—a-=1

N8. (@—b)a(~avd)=~avhd
N9. aarf@—bd)=an (~avb)
N10. a = barc)=@—0) (@ —c)
Nil. a = (® —c)=(@nr b)—c

BIBLIOGRAPHY

[1] Bialynicki-Birula, A. and Rasiowa, Helena, ‘‘On the representation of quasi-
Boolean algebras.’’ Bulletin de I’Académie Polonaise des Sciences, classe III,
v. 5 (1957), pp. 259-261.

[2] Birkhoff, Garrett, Lattice Theory, Revised Edition, Am. Math. Soc., Colloquium
Publications, 25 (1948), xiii, 283 p.

[38] Brignole, Diana and Monteiro, Antonio, Caracterisation des Algebres de Nelson
par des égalités. (To be published).



[4]

[5]

(6]

[7]

(8]

(9]

(10}

EQUATIONAL CHARACTERIZATION OF NELSON ALGEBRA 297

Markov, A. A., ‘‘A constructive Logic,’’ Uspehi Mathematiceskih Nauk, (N.S.),
v. 5 (1950), pp. 187-188.

Monteiro, Antonio, ‘‘Matrices de Morgan caracteristiques pour le calcul pro-
porsitionnel classique,’’ Anais da Academia Bvasileiva de Ciencias, v. 32
(1960), pp. 1-7.

Monteiro, Antonio, ‘‘Construction des algebres de Nelson finies,’’ Bulletin de
I’Académie Polonaise des Sciences, v. 11 (1963), pp. 359-362.

Nelson, David, ‘‘Constructible falsity,’’ The Journal of Symbolic Logic, v. 14
(1949), pp. 16-26.

Rasiowa, Helena, Algebraic Chavaktevisievung Intuitionistischen Logik wmit
Starker negation. Constructivity in Mathematics. (Proceedings of the Collo-
quium held at Amsterdam, 1957), edited by A. Heyting. Studies in Logic and the
foundation of Mathematics, Amsterdam, 1959.

Rasiowa, Helena, ‘‘N-lattices and constructive logic with strong negation,’’
Fundamenta Mathematicae, v. 46 (1958), pp. 61-80.

Scholander, Marlow, ‘‘Postulates for distributive lattices,’’ Canadian Journal of
Mathematics, v. 3 (1951), pp. 28-30.

Instituto de Matemdatica
Universidad Nacional del Suy
Bahia Blanca, Avgentina





