Notre Dame Journal of Formal Logic Volume X, Number 3, July 1969

ON A MODAL SYSTEM OF D. C. MAKINSON AND B. SOBOCIŃSKI

G. F. SCHUMM

It is well-known that if N, K and M are taken as primitive, with C and L defined in the usual manner, the theses of Prior's Diodorean system $D = S4.3 + CLCLCpLppCMLpp^{1}$ can be characterized as those, and only those, formulas verified by the matrix $\mathfrak{P} = \langle V, d, -, \cap, P \rangle$, where:

- 1. V is the set of all ω sequences (x_0, x_1, \ldots) of 0's and 1's.
- 2. d is the designated element (1, 1, 1, ...) of V.
- 3. and \cap are operations in V defined in pointwise fashion from the familiar Boolean operations and \cap in $\{0, 1\}$.
- 4. P is the operation in V such that if $(x_0, x_1, \ldots) \in V$, then $P(x_0, x_1, \ldots) = (y_0, y_1, \ldots)$ where, for each $i, y_i = 1$ iff $x_j = 1$ for some $j \ge i$.
- In [2], Makinson observes that if 4. is replaced by
- 5. P^* is the operation in V such that if $(x_0, x_1, \ldots) \in V$, then $P^*(x_0, x_1, \ldots) = (y_0, y_1, \ldots)$ where, for each $i, y_i = 1$ iff $x_j = 1$ for some $j \le i$.

then D*, defined as the system for which the resulting matrix $\mathbb{P}^* = \langle V, d, -, \cap, P^* \rangle$ is characteristic, is a proper extension of D and, like D, admits of a very natural tense-logical interpretation.

We here show that D^* can be axiomatized and is equivalent to the system K3.1 = S4.3 + *CLCLCpLppp* discussed by Sobociński in [4]. To this end, let S = D + CLMpMLp. It is readily established that $S \subseteq K3.1 \subseteq D^*$ —use the known fact that *CLMpMLp* is a thesis of K3.1 and note that *CLCLCpLppp* and *CpCMLpp* yield *CLCLCpLppCMLpp*—and so it will suffice to show that $D^* \subseteq S$.

Suppose $\gamma_1, \ldots, \gamma_m$ are the subformulas of α . Then for each γ_i , we put $\beta_i = MKC \gamma_i L \gamma_i CN \gamma_i LN \gamma_i$ and let β be the conjunction of all β_i 's. Where μ is any assignment into \mathbb{P} or \mathbb{P}^* and $\mu(\delta) = (x_0, x_1, \ldots)$, we let $\mu_j(\delta) = x_j$.

Lemma 1. If $\vdash_{\mathbf{D}} C\beta \alpha$, then $\vdash_{\mathbf{S}} \alpha$.

Proof. Using the matrix \mathfrak{P} it is easily checked that CCLMpMLpMKCpLpCNpLNp is a thesis of D and therefore of S. Then since $\vdash_{S} CLMpMLp$, we have $\vdash_{S} MKCpLpCNpLNp$, from which it follows that $\vdash_{S} \beta$. And thus, if $\vdash_{D} C\beta\alpha$, $\vdash_{S} C\beta\alpha$ and hence $\vdash_{S} \alpha$.

Lemma 2. If α is verified by \mathbb{P}^* , then $C\beta\alpha$ is verified by \mathbb{P} .

Proof. Suppose $C\beta\alpha$ is falsified by A. Then there is an assignment μ into \oiint such that, for some j, $\mu_j(C\beta\alpha) = 0$; whence $\mu_j(\beta) = 1$ and $\mu_j(\alpha) = 0$. It follows that $\mu_j(\beta_i) = 1$ for all $i, 1 \le i \le m$. Then, for each γ_i , there exists some $k(i) \ge j$ such that $\mu_{k(i)}(C\gamma_i L\gamma_i) = \mu_{k(i)}(CN\gamma_i LN\gamma_i) = 1$. From this we clearly get $\mu_{k(i)}(\gamma_i) = 1$ iff $\mu_f(\gamma_i) = 1$ for all $f \ge k(i)$, and indeed, if we let $k = \max\{k(i): 1 \le i \le m\}$, then $\mu_k(\gamma_i) = 1$ iff $\mu_f(\gamma_i) = 1$ iff $\mu_f(\gamma_i) = 1$ for all $f \ge k$.

Now let μ^* be the assignment into \mathbb{P}^* such that, for each propositional variable p, $\mu_i^*(p) = \mu_{k-j}(p)$ when $0 \le j \le k$ and $\mu_i^*(p) = \mu_i(p)$ otherwise. We show by induction on the complexity of γ_i that $\mu_j^*(\gamma_i) = \mu_{k-j}(\gamma_i)$ for all j, $0 \le j \le k$. This is true by the definition of μ^* for complexity 1, so suppose γ_i is of complexity n + 1 and assume the hypothesis true for complexity $\le n$. We shall consider here only the case $\gamma_i = L\gamma_h$, the cases $\gamma_i = N\gamma_h$ and $\gamma_i = K\gamma_j\gamma_h$ being perfectly straightforward. If $\mu_{k-j}(L\gamma_h) = 1$, then $\mu_j(\gamma_h) = 1$ for all $f \ge k - j$ and in particular for those f such that $k - j \le f \le k$. But then, by hypothesis, $\mu_i^*(\gamma_h) = 1$ for all f such that $0 \le f \le j$. Hence, $\mu_i^*(L\gamma_h) = 1$. Conversely, if $\mu_i^*(L\gamma_h) = 1$, then $\mu_j^*(\gamma_h) = 1$ for all f such that $0 \le f \le j$, and so by hypothesis, $\mu_j(\gamma_h) = 1$ for all $f, k - j \le f \le k$. But now since $\mu_k(\gamma_h) = 1$, we also have $\mu_j(\gamma_h) = 1$ for all $f \ge k$; and hence $\mu_{k-j}(L\gamma_h) = 1$. This completes the induction.

To complete the proof of the lemma, we recall that $\mu_j(\alpha) = 0$ for some $j, 0 \le j \le k$. Therefore, by the result just established, $\mu_{k-j}^*(\alpha) = 0$, making μ^* an assignment into \mathbb{P}^* which falsifies α .

That $D^* \subseteq S$, and thus $S = K3.1 = D^*$, follows at once from Lemmas 1 and 2, together with the fact that \mathbb{P} is characteristic for D. In light of Makinson's result for D*, this means that the systems K1, K2, K3, K1.1, K2.1 and K3.1 of [4] all have infinitely many modal functions, i.e., nonequivalent formulas in a single propositional variable.

Finally, we remark that $D^*(K3.1)$ has no finite characteristic matrix; the proof is a simple adaptation of Dugundji's proof [1] that there are no finite characteristic matrices for S1-6.

NOTE

1. Cf. [3], p. 176, for this formulation of D. Throughout the present paper, we assume S4 and its extensions to be axiomatized with the rule to infer $\vdash L\alpha$ from $\vdash \alpha$.

REFERENCES

[1] Dugundji, J., "Note on a property of matrices for Lewis and Langford's calculi of propositions," *The Journal of Symbolic Logic*, vol. 5 (1940), pp. 150-151.

- Makinson, D. C., "There are infinitely many Diodorean modal functions," The Journal of Symbolic Logic, vol. 31 (1966), pp. 406-408.
- [3] Prior, A. N., Past, Present and Future, Oxford, 1967.
- [4] Sobociński, B., "Family K of the non-Lewis modal systems," Notre Dame Journal of Formal Logic, vol. 5 (1964), pp. 313-318.

University of Chicago Chicago, Illinois