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A NOTE ON THESES OF THE FIRST-ORDER
FUNCTIONAL CALCULUS

JULIUSZ REICHBACH

In paper [4]1 have presented some generalization of the usual definition
of satisfiability and as a conclusion a possibility of approximation of the
first-order functional calculus by many valued propositional calculi,
see [3].

In the following I am describing another way of obtaining such conclu-
sions which I proved in 1957/8.

We are using the notation given in [2] and in particular:

(01)
(02)
(03)
(04)

(09)
(06)

(07
(08)
(09)

(010)

(011)

(012)

variables: (1') free: xi, ... (simply x); (2') apparent: a, .
(simply a)
relation signs: fi, . .., fJ,

logical constants: ', +, II,

w(E)—the number of free (p(E)—apparent)variables occurring in the
expression E,

{im}—the sequence iy, . . . , im,

{isey} or {jum} or {lyg}—different indices of all free variable
occurring in E,

n(E) = max {w(E) + p(E), {iue)}},

Sg—the set of all symbols occurring in E,

E(u/z)—the expression resulting from E by the substitution of u for
each z in E with knowing conditions,

Skt—the set of all Skolem normal forms Za;. .. Za; 1 a;+;. . . IaF,
where F is quantifier, and free variable, free and Za;G = (Ilg;G"),
j=1,...14,

C(E)—the set of significant parts of E: HeC(E) .=. h = E or there
exist F, G and G, such that FeC(E) and: (3i) {H = G(x;/a)} A {(F =
aG) v (F = ZaG)}v {(H = G)}v(H = G} A (F = G + Gy)

M, M,, .. .—models; T, T,, .. .—tables of given rank; @, @i, . . .—
non-empty sets of tables of the same rank.

It is known that if E is normal form or in an alternation of such forms,

Received February 6, 1962



336 JULIUSZ REICHBACH

then E is a thesis if and only if it may be obtained from theses of the
propositional calculus by means of the following proof rules:

(11) If (F + G) + H is a thesis, then (F + H) + G is a thesis.

(12) If (F + G) + G is a thesis, then F + G is a thesis.

(I13) If (F+E)+G is a thesis, xESp, g and F is a quantifierless formula,
then (F + E + llaG(a/x) is a thesis.

(14) IfF + Gx,/a) is a thesis and ZaGeC(F) then F + ZaG is a thesis.

In the above rules F may not occur, see [1], Of course:

L.1. If the length of a formal proof of the formula E is k, then the length of
some formal proof of E(x/x;) also is k.

The sequence <D, Ff, . . . , F§"> denotes a model, i.e. that the domain D
is an arbitrary non-empty set and Fi, ..., F{ is an arbitrary finite
sequence of relations on D such that F,-’ is a j-ary relation, i=1,...,¢q
and j=c¢, ..., m. A table of the rank 2 is a model whose domain has
exactly % elements which are numbers =k.

For each model M =<D, F§, ..., F/> by M/s,, . . ., s;/—or briefly
M/{s,}—we shall denote a table <D, ¢5, ..., ¢Z> of the rank % such that
foreach 7y, ...,7; =k

¢Jryy ... 1) = Flry, ..., 7),i=1,...,qandj=1,...,m
Therefore M/{s,} = <D, ¢, . . ., ¢7>; if s is empty then it holds for

all models. M/{s;} is a submodel of M in the sense of homomorphism.
Of course:

L.2. M/{s}/{in} = M/{sj}-

D.0. TeM[E] .=. 3{s,P {T = M/{s;}}.

M[z] is the set of all M/{s,}. We assume:
1. M{E} = 0i.e. E' is true in the model M.

2. M(E{s}) = 0i.e. {si} are elements of the domain of M, x; are names
s;j,t=1,...,kand s, ..., s;donot satisfy E in the model M.

It is known:
T.1. A formula is a thesis if and only if it is true.

D.1. Rk, Q, T, T2, {i,}, 1) .=, (@ is non-empty set of talbes of the rank k) A
(T1, T26Q) a (T/{is} = To/{is}) A (if {is}, i are different natural numbers
=k, then for each j, if {i,}, j are different natural numbers =k, then
there exists TseQ such that Ts/1,...,j-1,j+1,...,k/ =Ti/1,
ceesi=1,5+1, ...,k and Ts/{ii}, i/ = To/fir}, i),

We note that T's in D.1. is a common extension of T, and T.

For an arbitrary non-empty set @ of tables of the rank %, for an
arbitrary table T = <Dy, FY, . .., F{> €D and for an arbitrary formula E
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whose indices of free variables occurring in it are =k we introduce the
following inductive definition of the functional V:

(1d) Vb, @ T,flxry .., %)t =1 .= 7y, . . ., %),

(2d) Vik, Q, T, F'}=1.=~V{k, Q T Ft=1.=V{k Q, T, F} =0,

(3d) Vik, Q, T, F+Gt=1.=. Vk, Q, T, F}=1v Wk, Q T, Gt =1,

4d) Vik, @, T, NaF}=1.=. (3) (T) {(i =k) AR, Q T, Ty {iwr}, i) —
Ve, @ Ty, Flxi/a)} = 1}.

D.2. FeP(k, Q) .=. (T){(Te Q) — Vik, @, T, F} = 1I}.

D.3. N(k, Q, E) = (Tl) (Tz) {( T,, T,e Q) A (T1/{iw(E)} = Tz/{iw(E)}) A
Vik, Q Ty, E}=1— Vik, Q, T, E} = I}.

D.4. FeP[F, k] .=. (Q) (N(k, Q, E) — {Fe P(%, Q)}).

D.5. FeP|E| = (3k) ({k = n(F)} r {Fe P[E, E]}).

D.7. EgP =. EcP|E|.

{1l

We may read:

Wik, Q, T, E} = 1as: T satisfies E relative to Q'.
EcP(k, @) as: E is true relative to Q.

N(%, @, E) is an invariant relation.

EeP as: Eis P-true.

N W N~

Of course:

(3d) V{e, Q, T, F+ Gt=0.=. |k Q T, F} = 0aV{k, @, T, G} = 0,

(4d') Vik, @ T, NaF} = 0.=. (39 (3T)) {¢ =k) aR(R, Q, T, Ty {luwe}, ?) A
V{k, Q> Tl-’ F(xl/a)} 0}’

(5d") Vik, @, T, zaF}=0 .=. @) (T) {(i =k) ARk, Q, T, Ty, {iwm}, ¢) —
Vik, @, Ty, F(x;/a)} = 0}.

T.2. If EeSkt, FeC(E), n(E) < k, M{E} = 0, Q = M[E], then:

(1)  FM/siym} = THiwe), TeQ and M(F{s;, )} =0, then Vik, Q, T, F}= 0.
(2) E'ePlk, Q] and EEP.

I

Proof: First of all we note that (2) follows from (I). We shall prove
(1) by induction on the number of quantifiers occurring in F. If Fe C(E) and
F is a quantifierless formula, then (I) holds. It remains to verify that if
() holds for F(x;/a) eG(E), then it also holds for formulas belonging to
C(E) of the form:

(1) HaF
and
(') =zaF.

In the case (I') by virtue of the definition of satisfiability, of the
assumption L.2. and (4d') we have:

If M(IIaF {si,p)) = 0, then (37) (3s;) {(wESp) A ¢ = &) A M(F(x;/a)

{Siw(eyh» si) = 0}; hence (37) (3s;) (AT)) {(x,ESE) A (0 = k) A M/{s1yp}, Si/ =
T /{iwm} i) AR(B, Q, T, Ty, i, i) A MF&;/a) {sur }, Si) = 0}; hence
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(3D 3T){(xESp) ali =R)AR(R, Q, T, Ty, {iwr)}, 0) a ViR, Q, Ty, Flx;/a)} = 0}
and therefore V&, @, T, MlaF} = 0.

In the case (2') by virtue of ZaF e C(F), EcSkt, of the satisfiability
definition, M{E} =0 and of the assumption we obtain that for an arbitrary
i =k and for each T,eQ we have Wk, Q, Ty, F(x;/a)} = 0 and so by (5d') for
each TeQ: Vi, @, T, zaF} = 0; q.e.d.

T.3. If EeSkt, E =Za, ... Za;lla; F and E is a thesis, then EcP.

Proof: Let E , ..., E, be a formal proof of the formula E by rules
(11)-(14). We shall prove by induction on # that: (*) E;e P|E|, i=1, ... n.
If E; is a thesis of the propositional calculus, then it is obviously that ()
holds; therefore (*) holds for 7 = 1. Let (*) hold for i < #; we shall prove it
for ». In view of the rules (11)-(14) it suffices to verify:

(1") If(F +E)+GeP|E|, x,ESpyg and F, G are quantifierless formulas,
then F + E + llaGla/x;) e P|E|.

and
(2) If F + G(x/a) eP|E|, £aG £C(F), then F + £aG eP|E|.

(1'): Let x,ESp4g, %,€S6, 2 =n(F + E + G) = n(F + E + NaGla/x,;)), F, G are
quantifierless formnlas, N(k, @ E) and V{¢, Q, T, F+ E+IlaG(a/x;)} = 0.
Hence by (3d'): V{¢,Q, T, F} = 0, V{¢,Q, T, E} = 0 and Vi, Q, T, laG(a/
x:)} = 0; therefore in view of (4d') there exist i <% and T,£Q such that
R(k5 Q$ T> Th {iw(G(a/xt))}, g a'nd V{k5 Q; Tl’ G(xt/a)} =0.

We consider two cases:

(1% = ij, for some j, 1 =j =w(Gla/x:)),
(2% i is different from 4y, . . . , fuw(G(a/xp)-

The case (1°): For the shortest writing we assume i = i,. By virtue of
D.1. we have T/{iwG(a/xs)} = To/{fwic(a/x)}. Because G(x;,/%;)is a quantifier-
less formula, then in view of the above V{k, @, T, G(x;,/x:)}= 0 and by (3d"):
Vi, Q, T, (F + E) + Glx;,/x:)} = 0. Because (F + E) + G(x;,/%;) is a substi-
tution of some formula occurring in the formal proof for which (*) holds,
therefore in view of L.1. and the induction hypothesis we have a contradic-
tion with the assumption of (1').

The case (2°): In view of the asuumption and D.I. there exists T3eQ
such that Ts/1, ..., ¢t-1,¢t+1,...,k/=T/1, ..., t-1,¢t+1,...,
k/ and Ts/{iwca/xn}s t/ = T1/liwtca/x)}, i/. Because Nk, Q, E), x,ESp+g
and F, G are quantifierless formulas and from the above: T3/{jw(5)}=
T/{jw(E)}; T/{lw(F)} = Ts/{lw(F)} and Ts/{iw(G(x“/xt)); t/ = T/{iw(G(xil/xt)); i/,
therefore V{¢, @, Ts, E} = 0, Vi, Q, Ts, F} = 0 and Vi, @, Ts, G} = 0. Hence
by (3d") V{, @, Ts, (F + E) + G} = 0 which is inconsistent with the assump-
tion of (1').

(2'): Let x,€S6(x,/a), ZaGEC(F), k = n(F + G(x, /a)) = n(F + ZaG), Nk, Q, E),
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TeQ and V{t, Q, T, F + TaG} = 0; hence and in view of (3d') we have
V{e, @, T, F} =0 and V{k, @, T, ZaG} = 0. We note that if {i,q)}, ¢, and
{iw)}, j are sequences of different natural numbers < %, then assuming
Ts=T/1,...,j-1,t j+ 1, ..., R/, in view of L.2. and D.I1. we obtain
R(k, Q, T, T, {iwc)}, t). Therefore by virtue of (5d') we have V{¢, @, T, G x/
a)} = 0; hence by (3d') Vi, Q, T, F + G(x,/a)} = 0 which is inconsistent with
the assumption of (2"); qg.e.d.

T.4. If E€Skt, E =Za, ... Za;_.11a;F, then E is a thesis if and only if
EgP.

T.4. is a simple conclusion from 7T.1-3. Of course, T.4. remains true,
if we replace E by an alternation of formulas considered in 7.4. Because it
is easy to show that the above class of theses is equivalent with the class of
all theses, therefore T7.4. gives a characterization of theses of the
first-order functional calculus, see [1]. We note that from the proof of T.4.
it follows that be suitable formulation of D.3. and D.4. we shall obtain T.4.
for normal forms.

T.4. gives a certain proof that the Kleene-Mostowski class of theses
is P and simultaneously a simple proof that it is possible to approximate
the first-order functional calculus by many-valued propositional calculi;
the Boolean many-valued propositional calculi are determined by the prod-
uct of tables belonging to @, see (Id)-(4d) and D.1.-6.

NOTES

1. f @ has one element, then V is the usual satisfiability function. Therefore the
above definitions are certain generalizations of the usual satisfiability definition.

2. If T =M/{xp}, wherezi; =s;,, . . .  Ziy(F) = Sig(py then Ty =M/{up}, where u;, =
Siy = Zi1s -+ - Uiy = Siy(p)= Ziy(py %i= Si» 1= s, for others 1, and if ),
i are different natural numbers =k, then Ty = M/{ve}, where v, =2,, ..., vj_, =

Zi_l, vj =S8y, 'l),’_,_l = Z,'_H, ce o, Up = Zk.
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