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A NOTE ON THESES OF THE FIRST-ORDER
FUNCTIONAL CALCULUS

JULIUSZ REICHBACH

In paper [4] I have presented some generalization of the usual definition
of satisfiability and as a conclusion a possibility of approximation of the
first-order functional calculus by many valued propositional calculi,
see [3].

In the following I am describing another way of obtaining such conclu-
sions which I proved in 1957/8.

We are using the notation given in [2] and in particular:

(01) variables: (Γ) free: Xi, . . . (simply x); (2T) apparent: «i, . . .
(simply a)

(02) relation signs: fc

h . . . ,/*,
(03) logical constants: \ +, Π,
(04) w(E)—the number of free(p(E)—apparent)variables occurring in the

expression E,
(05) {z»}— the sequence il9 . . . , ίm,

(06) {iw(E)} or {jw(E)}> o r fc(£)}~different indices of all free variable
occurring in E,

(Of) n(E) = max {w(E) + p(E), {4,(E)}},

(08) SE—the set of all symbols occurring in Ey

(09) E(u/z)—the expression resulting from E by the substitution of u for
each z in E with knowing conditions,

(010) Skt— the set of all Skolem normal forms Σ«!. . . Σα; Π «,•+!. . . Π α ^ ,
where F is quantifier, and free variable, free and ΣajG = (Πα/Gτ),
j = 1, . . . i,

(011) C(E)-the set of significant parts of E: HεC(E) .=. h = E or there
exist F, G and Gx such that FεC(E) and: (3i) {H = GU, /α)} Λ {(F =
ΠαG) v (.F = ΣαG)} v {(H = G)}v(tf = d)} Λ (F = G + Gx)

(012) M, Mx, . . .-models; Γ, Γ1? . .-tables of given rank; Q, Ql9 . . . -
non-empty sets of tables of the same rank.

It is known that if E is normal form or in an alternation of such forms,
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then E is a thesis if and only if it may be obtained from theses of the
propositional calculus by means of the following proof rules:

(11) If (F + G) +H is a thesis, then (F + H) + G is a thesis.
(12) If (F + G) + G is a thesis, then F + G is a thesis.
(13) If (F + E) +G is a thesis, xεSF+Eand F is a quantifierless formula,

then (F + E + UaG(a/x) is a thesis.
(14) IfF + G(xt/a) is a thesis and ΣaGεC(F) then F + ΣaG is a thesis.

In the above rules F may not occur, see [1], Of course:

L.I. If the length of a formal proof of the formula E is k, then the length of
some formal proof of E(x/x{) also is k.

The sequence <D, F{, . . . , F™> denotes a model, i.e. that the domain D
is an arbitrary non-empty set and F\, . . . , F™ is an arbitrary finite
sequence of relations on D such that Fj is a j-ary relation, i = i, . . . , q
and j = c, . . . , m. A table of the rank k is a model whose domain has
exactly k elements which are numbers =̂ &.

For each model M = <D, F{, . . . , Ff> by M/slf . . . , sk/—or briefly
M/{sfe}—we shall denote a table <Dk, φί, . . . , ψf > of the rank k such that
for each rlf . . . , r7- < k:

φ/(ri, . . . , rf) .=. F (rl9 . . . , r ; ), i = 1, . . . , q and j = 1 , . . . , m

Therefore M/{sA} = <Dk> φξ, . . . , φq>; if sk is empty then it holds for
all models. M/jŝ } is a submodel of M in the sense of homomorphism.

Of course:

L.2. M/{sύ/{ju} = hA/{sfJ.

D.O. Tε M[k] ̂  (3 {sk}) {T = M/{sk}}.

M[&] is the set of all M/{s&}. We assume:

1. M{E} = 0 i.e. £' is true in the model M.
2, M(E{ŝ }) = 0 i.e. {sk} are elements of the domain of M, Xi are names

S{9 ί = 1, . . . , k and slf . . . , Sk do not satisfy E in the model M.

It is known:

T.I. A formula is a thesis if and only if it is true.

D.I. R(fc, Q, Ti, T2, {it}, i) Ξ . (Q is non-empty set of talbes of the rank k) Λ
(Ti, T2εQ) Λ (Tι/{it) = T2/{it}) Λ (if {it}, i are different natural numbers
^k, then for each j , if {it}, j are different natural numbers ^k, then
there exists T3εQ such that TzJl, . . . , j - 1, j +1, . . . , k/ = Tjl,
. . . ,j - l,j +1, . . . ,k/ and Tj{it},j/ = T2/{it}, i/).

We note that Ts in D.I. is a common extension of Tx and Γ2.
For an arbitrary non-empty set Q of tables of the rank k, for an

arbitrary table T = <Dk, F{, . . . , Ff> ε D and for an arbitrary formula E
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whose indices of free variables occurring in it are ^k we introduce the
following inductive definition of the functional V:

(Id) V{k, Q, Tjl(xrv . . . , Xrm)} = 1 .=. F}(rh . . . , rm\
(20) V{k, Q, T, F'} = 1 =. ~V{k, Q, T, F}= 1 .s. V{k, Q, Γ, F} = 0,
(3d) V{k, Q, T, F+G}= 1 . = . V{fc, Q , Γ , F } = 2 v F{£, Q, Γ, G} = 1,

(40) V{k, Q, Γ, ΠαF} = I .=. (i) (Γx) {(f ^ fc) A β(fe, Q, Γ, Tx {MF)}, 0 -

F{̂ , Q, Th F(xi/a)} = 2}.

D.^. FεP(^, Q) . Ξ . (Γ) {(TεQ) - F{^, Q, Γ, F} = l}.

D.3. N(k, Q, E) . Ξ . (ΓJ (Γ2) {(Th T2εQ) ^.(TJiUE)} = T2/{iw(E)}) A
V{k, Q, Th E}=1-+ V{k, Q, T2, E} = I}.

D.4. FεP[F, k] .=. (Q) (N(k, Q, E) - {Fε P(k, Q)}).
D.5. FεP\E\ .=. (3fe) ({fe > ^(F)} A {Fε P[E, kf).
D.7. EεP .=. EεP\E\.

We may read:

1. V{k, Q, Γ, E} = 1 as: Γ satisfies E relative to Q1.
^ . EεP(k, Q) as: E is true relative to Q.
5. N(k, Q, E) is an invariant relation.
4. EεPas: E is P-true.

Of course:

(3d1) V{k, Q, Γ, F + G} = 0 . Ξ . F{^ Q, T, F}= θΛV{k, Q, Γ, G} = 0,
( « ' ) 7{^, Q, Γ, ΠαF} = 0 . S . (3 ί) (3 Γx) {(i < *) A β(*, Q, Γ, Γx {MF)}, ί) A

V{k, Q, Γi, F(^-/a)} = ό},
(ΛΓ) F{^, Q, Γ, ΣαF} = ί? .s. (i) (Γ j {(% * k) A Λ(^, Q, Γ, ΓX, { ^ F ) } , 0 -

F{^, Q, Tx, F(^f /α)} = 0}.

T.2. IfEεSkt, FεC(E), n(E) < k, hλ{E} = 0, Q = M[&], ί^en:

(1) // M/{siu<P)} = T/{iw{F)), Tε Q and M(F{siw{P)})= 0, then V{k, Q, Γ, F}= 0.
(2) E'εP[k, Q]and EεP.

Proof: First of all we note that (2) follows from (1). We shall prove
(I) by induction on the number of quantifiers occurring in F. If Fε C(JE) and
F is a quantifierless formula, then (1) holds. It remains to verify that if
(1) holds for F\Xi/a) εG(E)y then it also holds for formulas belonging to
C(E) of the form:

(1f) UaF

and

(2') ΣaF.

In the case (1') by virtue of the definition of satisfiability, of the
assumption L.2. and (4d') we have:

If M(KaF{siw{F)}) = 0, then (3f) (3s,) {(*f εSF) A (i < k) A M(F(x4/a)
{siw(F)h ̂ ) = 0}\ hence (3f) (3s,) (37\) {(*,εSF) A (Z < fe) A ( M / { S M F ) } , S,/ =
Γi/{W)}» z"/) A Λ(fe, Q, Γ, Γ1? iwiF), ί) A M(F(yf /α) { S ^ F ) } , S, ) = 4 2 ; hence
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(3i)(lTi){{xiZSP)A(i*k)AR{k9 Q, T, Tu {MF)}, i) A V{k, Q, Tί9 F(x{/a)} = θ}
and therefore V{k, Q, T, UaF} = 0.

In the case (2') by virtue of ΣaFεC(F), EεSkt, of the satisfiability
definition, M{#} = 0 and of the assumption we obtain that for an arbitrary
i =£ k and for each TλεQ we have V{k, Q, Th F{xi/a)} = 0 and so by (5dr) for
each TεQ: V{k, Q, T, ΣaF} = 0; q.e.d.

T.3. If EεSkt, E = Σa1 . . . Σα, Πα ί + 1 F and E is a thesis, then EεP.

Proof: Let E , . . . , En be a formal proof of the formula E by rules
(11)-(14). We shall prove by induction on n that: (*) EiεP\E\, i = 1, . . . , n.
If £*• is a thesis of the propositional calculus, then it is obviously that (*)
holds; therefore (*) holds for i = 1. Let (*) hold for i < r; we shall prove it
for r. In view of the rules (11)-(14) it suffices to verify:

(Γ) If (F +E) + GεP\E\, xtεSp+E and F, G are quantifierless formulas,
then F + E + UaG(a/xt) εP\E\.

and

(2') UF + G(x/ά) zP\E\, ΣaG εC(F)} then F + ΣaG εP\E\.

(Γ): Let XtΈSp+E, xtεSG, k > n(F + E + G) > n(F + E + TlaG(a/xt)), F, G a r e

quantifierless formulas, N(k, Q, E) and F{ ,̂ Q, Γ, F+ E+UaG(a/xt)} = 0.
Hence by (3d<): V{k, Q, Γ, F} = 0, V{k, Q, T} E} = 0 and V{k, Q, Γ, Π«G(α/
^ί)} = 0; therefore in view of (4d1) there exist i ^k and TtεQ such that
Λ(fc, Q, Γ, Γx, {MGU/X,))}, i and V{k, Q, Γ1? G(^/α)} = 0.

We consider two cases:

(1°) i = if, for some j , 1 <j ^w(G(a/xt)),
(2°) i is different from il9 . . . , iw(G(a/xt)).

The case (1°): For the shortest writing we assume i = ix. By virtue of
D.I. we have 3Γ/{vc(β/χ/))} = 2i/{vG(β/x/))}. Because G(xil/xt) is a quantifier-
less formula, then in view of the above V{k, Q, Γ, G(xil/xt)}= 0 and by (5^0:
V{k, Q, T, (F +E) + G(xiι/xt)} = 0. Because (F + E) + G{ρciy/xt) is a substi-
tution of some formula occurring in the formal proof for which (*) holds,
therefore in view of L.I. and the induction hypothesis we have a contradic-
tion with the assumption of (V).

The case (2°): In view of the asuumption and D.I. there exists T$εQ
such that Γs/2, . . . , t - 1, t + Z, . . . , k/ = T/l, . . . , t - 2, t + 2, . . . ,
&/ and Γ3/{MG(β/χί))}, t/ = ΓI/{VG ( Λ/X /))}, z'/. Because N(k, Q, E), xtε~SF+E

and JF, G are quantifierless formulas and from the above: T3/{jw{E)} =
^/Uu;(E)}, ^/fc(F)} = Γ 3 /{UF)} and Γs/ίMGίxϋ/x,)), ί/ = T/{iw(G(xil/xt)), i/,
therefore V{k, Q, Γ3, £} = 0, F{ ,̂ Q, T3, F} = 0 and F{^, Q, Γ3, G} = 0. Hence
by (3df) F{fe, Q, Γ3, (F + JB) + G} = 0 which is inconsistent with the assump-
tion of (Γ).

(21): Let xtεSG{xt/a), ΣaGεC(F), k >n(F+G(xt/a)) >n(F + ΣαG), 2V(£, Q, JE),
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TεQ and F{&, Q, T, F + ΣaG} = 0; hence and in view of {3d') we have
V{k, Q, T, F} = 0 and V{k, Q, T, ΣaG} = 0. We note that if {iw(G)}> t, and
{ίw(G)}, j are sequences of different natural numbers ^ k, then assuming
T 3 = Til, . . . , j - 1, t, j + 1, . . . , kl, in view of L.2. and D.I. we obtain
R(k, Q, Γ, T, {iw(G)}> t). Therefore by virtue of (5d') we have V{k, Q, Γ, G ^ /
α)} = 0; hence by (3d') Yψ, Q, T, F + G(xt/a)} = 0 which is inconsistent with
the assumption of (2T); q.e.d.

TA. If EεSkt, E = Σa1 . . . Σαf _iΠα,\F, then E is a thesis if and only if
EεP.

TA. is a simple conclusion from T.l-3. Of course, TA. remains true,
if we replace E by an alternation of formulas considered in TA. Because it
is easy to show that the above class of theses is equivalent with the class of
all theses, therefore TA. gives a characterization of theses of the
first-order functional calculus, see [1]. We note that from the proof of TA.
it follows that be suitable formulation of D.3. and DA. we shall obtain TA.
for normal forms.

TA. gives a certain proof that the Kleene-Mostowski class of theses
is P\ and simultaneously a simple proof that it is possible to approximate
the first-order functional calculus by many-valued propositional calculi;
the Boolean many-valued propositional calculi are determined by the prod-
uct of tables belonging to Q, see (ld)-(4d) and D.I.-6.

NOTES

1. If Q has one element, then V is the usual satisfiability function. Therefore the
above definitions are certain generalizations of the usual satisfiability definition.

2. ΊiT =M/{xk], wherein =silf . . , ziw{P) = siw(F), then Tx =M/{uk}, where uh =

six = zii. , % , ( F )

= siw(F)= ziw(Fy
 ui = si> « i = si f o r o thers 1, and if {i^p},

ί a r e different na tura l n u m b e r s ^ k, then T 3 = M/{vk], w h e r e vx = zlf . . . , v j _ x =

*/-i» v i = si> vj+i = zi+i> • - > υk = zk-
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