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ARITHMETIC AS A STUDY OF FORMAL SYSTEMS

JONATHAN P. SELDIN

The notion of formal system appearing in the works of Curry seems to
have been somewhat misunderstood. The purpose of this paper* is to help
clarify this notion. I shall do this by considering elementary, almost trivial
examples of formal systems of arithmetic and by showing how these
systems can be considered a natural result of the increasing need, as the
theory of arithmetic progressed, to find procedures for answering new
kinds of questions. I shall also discuss some details of some of these
examples, for example the difference between two kinds of metatheoretic
implication relative to a formal system.

1 Informal arithmetic and the need for increasing rigor The earliest
numbers were marks of some sort: notches in a stick or strokes on an
animal skin. The idea of numbers in the modern sense arose when it was
observed that no matter how many marks one has, it is always possible to
add another one, so that there are infinitely many (natural) numbers.

With the growth of the theory about these numbers, a need arose for a
more complete description of the nature of these numbers. This was
especially true when, in the last century, the theory of classical analysis
was developed entirely from the properties of natural numbers. Hence, at
the end of the century, several such descriptions appeared, of which the
best known is the set of axioms used by Peano. These axioms, in which the
primitive ideas are 0 (an obvious modification can be made to begin with 1
instead of 0), representing the empty sequence of marks, |, representing
the operation of adding one more mark, and =, a relation between numbers
meaning that the marks of the two numbers can be paired in a 1 - 1
manner, are the following:

*During part of the work on this paper, the author was a U.S. National Science
Foundation Graduate Fellow, and during another part of the work he was a temporary
Lecturer at the University College of Swansea, Wales. The author wishes to thank
Prof. H. B. Curry for reading several versions of the paper and making a number of
helpful suggestions.
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AXIOM PI. 0 is a number.
AXIOM P2. If X is a number, then there is a unique number x\. (The
uniqueness means that if X = Y, then x\ = Y\.)
AXIOM P3. Ifx\ = Y\, then X = Y.
AXIOM P4. There is no number X such that x\ = 0.
AXIOM P5. If A(X) is a statement whenever X is a number, and if

(i) A(0) is true, and
(ii) for each number X, if A(X) is true then A(x\) is true,

thenA(X) is true for every number X.

These axioms were supposed to be sufficient for arithmetic in the
sense that they served as a definition of number, or picked out of the set
of all things those that are numbers, and also in the sense that all true
theorems about arithmetic could be derived from them by means of logic.
However, the paradoxes of logic and set theory discovered at the very end
of the century showed (1) that the idea of a set of all things can lead to
difficulties and should be avoided, and (2) that the intuitive conception of
logic of nineteenth century mathematicians was faulty, and that, therefore,
the idea of deriving theorems from these axioms "by means of logic" is
not a sufficiently precise definition of a mathematical proof.

Thus, although the Peano axioms are a sufficient description of
numbers for some purposes, it is desirable to have a description that is
still more precise. In particular, we want one that will answer the
following questions:

Ql. What exactly is a proof?
Q2. How can we tell, for a given object, if it is one with which the theory
deals ?

Furthermore, we want the answers to these questions to be effective; i.e.,
we want a process which can be carried out by a machine (assuming no
limitations of space and time; the fact that such a machine might require
more space than the volume of our galaxy and more time than the life
expectancy of the universe is, for pure mathematics, only a minor incon-
venience) which will be able to distinguish a valid proof from an invalid
one (i.e., that will be able to tell, for any supposed proof, whether or not it
is valid), and which will be able to recognize the objects with which the
theory deals. In this paper, I shall present some descriptions of arithmetic
of a kind called formal systems, which answers these questions.

2 Formal numbers Let us begin with a simple case, which shows all the
principles involved, by considering statements of the form

(1) X is a number.

Axioms Pi and P2 suggest the following axiom and rule:

AXIOM. 0 is a number.
RULE. From "X is a number" to obtain "X\ is a number".

A proof is then a sequence of statements each of which is either an
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axiom or else is obtained from a previous statement by the rule. Then it is
clear that there is an effective process for deciding, for a given sequence
of statements (each of the form (1)), whether or not it is a proof. A
statement (of the form (1)) is a theorem if there is a proof of which it is the
last statement, and in this case the proof is said to be a proof of the
theorem. For example, the sequence

0 is a number, 01 is a number, 011 is a number

is a proof of

θ | | is a number,

but

0 is a number, 011 is a number

is not a proof at all. Thus, we have an answer for Ql.
To answer Q2, we want an effective procedure for recognizing objects

which can be substituted for X in (1). Let us call the objects which can be
substituted for X formal objects. Then an examination of the Axiom and
Rule suggests the following conditions:

(i) 0 is a formal object;

and

(ii) If X is a formal object, then so is x\.

Clearly, any definition of formal objects that can be used with this Axiom
and Rule must satisfy these two conditions. We may as well begin with the
most restricted such definition; this amounts to adding to the above
conditions the following:

(iii) Nothing is a formal object unless its being one follows from conditions
(i) and (ii).

If this restricted definition is adopted, then it follows that X is a
formal object if and only if there is a sequence of things of which the last is
X and such that each thing of the sequence is either 0 or else is obtained
from a previous thing in the sequence by adding a | (on the right). Such a
sequence is called a construction of X from 0 by | or, when there is no
confusion, a construction of X, and X is said to be constructed from 0 by |.
As for proofs defined above, there is an effective procedure for deciding
whether any sequence of things (of a suitable universe) is a construction.

Now, suppose we consider only those constructions in which there are
no repetitions. Thus, we consider the construction

0,01,011,0111,01111,

but not

o,o|, oi l , o, o l . o l l l , o l l l l .

Then, for each formal object, there is exactly one construction of it. Then
we can identify the formal objects with their constructions, and hence
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regard as distinct any formal objects with distinct constructions. Since
there is an effective procedure for deciding whether or not a sequence is a
construction (and it is easy to see that there is an effective procedure for
picking out the restricted constructions considered here), we have an
effective process for picking out the formal objects.

We can now define a formal system, called 7i/0, which puts all this
systemmatically. It consists of a set E of elementary statements, which
are all those of form (1) where X is a formal object, and a subset T c E of
theorems, which are those defined above. For convenience, I will write

N(X)

in place of (1). Furthermore, if X and Y are the same formal object, i.e.,
if they have the same construction, then I will write

X = Y.

(I use the word "set" here in a purely informal way to denote collec-
tions of things that we already have. Hence, no higher set theory is
assumed. See [FML, §2A5] under the heading "Conceptual Classes". For
an explanation of the letters in brackets, see the Bibliography.)

Now it is easy to see that if the informal relation = of Axioms P2-P4
above is identified with the relation = defined above, then these axioms are
satisfied. For if X and Y have the same construction, then by adding one
step we get a construction of both x\ and Y\; conversely, if x\ and Y\ have
the same construction, then dropping the last step results in a construction
of both X and Y. Furthermore, no formal object x\ has the same construc-
tion as 0, since the latter construction has only one step whereas the
former has more than one.

As for Axiom P5, it is a special case of the general principle that if
anything is true of the initial elements of a construction and if its truth is
preserved by the construction operations, then it is true of anything
constructed from these initial elements by these operations. This principle
is part of the definition of a construction.

I noted above that it is decidable whether a given thing is a formal
object. In many formal systems, it is not decidable whether or not a given
elementary statement is a theorem, but in^0> this is decidable.

THEOREM 1. N{X) is a theorem of Tu^if and only if X is a formal object of
-fro-

Proof: Suppose X is a formal object of 7i/0, and consider its construction.
Replace each step U of this construction by the statement N(U). The result
is a proof of N(X). Conversely, given a proof of N(X), each step is a
statement of the form N(U), and if each of these steps is replaced by U, the
result is a construction of X.

This theorem shows that the system 71/0 is rather trivial, for there are
too few formal objects for the predicate, N, to pick anything out. This
triviality can be avoided by introducing some new formal objects into the
system.



ARITHMETIC AS A STUDY OF FORMAL SYSTEMS 453

One interesting way of introducing these new formal objects is to
change the definition of formal object from that given above to the
following; a formal object is a word (finite string of letters) on the alphabet
{0, I}. That is, instead of clauses (i)-(iii) which were used above to define a
formal object, we use the following clauses:

(i) 0 and | are formal objects;
(ii) If X and Y are formal objects, then XY is a formal object;

and

(iii) Nothing is a formal object unless its being one follows from conditions
(i) and (ii).

Call the system with this definition of formal object 7i/'Q. Then Theorem 1
must be replaced by the following theorem.

THEOREM l f . N(X) is a theorem of 7i/f

Q if and only if X is a formal object of

Furthermore, this theorem fails, because 010 is a formal object of %Ί>
but N(0 |θ) is not a theorem.

On the other hand, it is not true that each formal obj ect of %>[ has only
one construction; the formal object 010 has two constructions, one obtained
by forming first 01 and then adding 0 on the right, the other obtained by
forming first |θ and then adding 0 on the left. Hence, in 71/^ it is not
possible to identify formal objects with constructions.

3 Formal systems We are now in a position to define a formal system in
general. (For a more thorough treatment of this definition, see [FML,
§3C].) A formal system is a set E of statements, called elementary
statements, together with a subset T c E of theorems such that the
following conditions are fulfilled:

(i) The set T is inductive) i.e., it is generated from a definite set of axioms
by a set of rules in such a way that there is an effective procedure for
deciding, given a sequence of elementary statements (possibly with the
name of an axiom or rule associated with each), whether the sequence is a
proof. (A definite set is one for which there is an effective procedure for
deciding whether or not a given object (of a suitable universe) is an element
of the set. See [FML, §2A5] and [ETD, footnote 2, p. 14].)

(ii) The set E is formed from a definite set O of formal objects and a
definite set of elementary predicates requiring various members of
arguments as follows: a statement is in E if and only if it asserts that a
predicate of n arguments applies to an n-tuple of formal objects.

In both ^o and TP'Q, there is only one elementary predicate, which we
have called N and which means "is a number", and this predicate has one
argument. Note that the set E is definite in both systems. In fact, it
follows from the general definition that E is definite.

The only difference between 7ί/Q and 9i/'o is the difference in the set 0 of



454 JONATHAN P. SELDIN

formal objects in each case. These different sets of formal objects
correspond to different ways of looking at a formal system. In 7Z/r

0, the set
of formal objects consisted of the set of all words of the alphabet consisting
of the symbols 0 and |. If all formal objects of a formal system are words
of some alphabet, then the formal system is called a syntactical system
([FML, §2C2]). As mentioned above, it is possible for a formal object of a
syntactical system to have more than one construction. In 7i/0, in which
each formal object has only one construction, we took the formal objects to
be those objects which can be constructed from an atom, 0, by the primitive
operation, |; it followed that every formal object has a unique construction.
Furthermore, we did not care whether or not the formal objects also
happened to be words on some alphabet. A formal system in which the set
of formal objects is taken to be an inductive set, generated from a definite
set of atoms by a definite set of primitive operations in such a way that
formal objects with different constructions are regarded as distinct, is
called an ob system ([FML, §2C3]), and the formal objects of such a system
are called obs.

Most of the standard systems of symbolic logic can be considered as
being both syntactical and ob systems: They are essentially syntactic
because the formal objects are words on an alphabet; but those words which
are formal objects, usually called well formed formulas, are constructed
from a definite set of atomic formulas by the operations representing the
logical connectives and quantifiers, and since each of these well formed
formulas has a unique construction, these systems can be considered to be
ob systems as well. Note that although the definitions of these systems
specify that the well formed formulas are words on an alphabet, this fact is
never used, and often the symbols of the alphabet are only referred to and
not listed. In any case, these systems usually have only one elementary
predicate, of one argument, denoted by *h' or 'is provable' or else left
unexpressed.

In working with formal systems, we rarely just derive theorems one
after the other. Instead, we consider the system as a whole and make
statements about it. These statements, which are not a part of the formal
system (i.e., they are not elements of E), are called metastatements, and
those which are true are called metatheorems. (I am using the prefix
'meta-' the way Curry now uses the prefix 'epi-' ([FML, chapter 3]); this is
Curry's own original usage.) For example, the statements about 7i/Q and
71/1 in relation to Axioms P2-P5 are metastatements, and so is Theorem 1.
The proofs of metatheorems are, of course, informal. Hence, to avoid the
problems that arose in deriving theorems informally from Axioms P1-P5,
we often restrict our methods of proof to those which are constructive.
This means, essentially, that any proof should indicate an effective process
for reaching the conclusion; most important, a proof that something exists
must either exhibit it or else give an effective process for constructing it.
I shall not try to completely define constructive methods of proof, but shall
rather try to indicate what they are by using them. To help explain the
idea, I will list some metatheoretical connectives and their meaning; in this
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list, A and B are statements constructed from the elementary statements
by these connectives and any others that may be in use at the time (used as
operations);

A & B means that there is a proof of A and a proof of B;

A or B means that there is a proof of A or a proof of B, and that there is an
effective process for deciding which;

A —* B means that there is an effective process for converting any proof of
A into a proof of B, and is regarded as vacuously true if it can be con-
structively shown that there is no proof of A;

and

A τ=* B means (A -* B) & (B -> A).

Of these connectives, —* is the most important. It is related to the idea
of admissibility of Lorenzen ([BBD]), which is that if A —> B is added to the
system as a rule, no new theorems are introduced. If A —> B can be
constructively shown to be admissible, then it is true in the sense given
above. (Thus, the answer to a question in [FML, p. 97] is now known.) As
an example, we can prove both

(2) N(X\\)->N(X)

and

(3) N(X)-*N(X\\)

in 7is0; for (2) follows by removing the last two steps from the proof of
N(x\\), and (3) follows by adding these same two steps to the proof oίN(X).

Actually, (3) is an example of a stronger kind of implication, for we
can actually start with N(X) and use the rule of the system to obtain N(X11).
Thus, we will also consider as an implication the following:

A ==^B means that if A is adjoined to the system as an axiom, then B is a
theorem;

and

A<==>B means (A =#> B) & (B =#> A).

Thus, considering the above examples, we have

N(X)=ΦN(X\\)

in %/0, but not

N(X\\)=ΦN0ί).

I will give further examples of the difference between these two kinds of
implication below.

4 Equality Since Axioms P1-P5 are metatheorems of the system %>0, this
system is a sufficient system on which to base arithmetic. However, these
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metatheorems, and many other statements of arithmetic in which we are
interested, involve equality between numbers, or statements which we have
interpreted as having the form

(4) X = Y

and if arithmetic is based on 7i/0, then the truth of these statements must
be decided informally. In this section, I shall define a formal system in
which there is a formal predicate corresponding to ^.

The system will be called 7i/x. (This is the system introduced by
Curry in [FML, p. 256]. I have numbered Rules 1-5 to correspond to
Curry's rules. Many of the results proved here are stated there without
proof.) Its obs are the same as those of 7uQ\ hence, by Theorem 1, we do
not need the predicate N. The primitive predicate is a binary predicate,
written '='. Hence, the elementary statements are all statements of the
form

(5) X=Y.

The theorems of the system are obtained from the following axiom and
rule:

AXIOM. 0 = 0

RULEI. X= Y==>x\ = Y\.

By induction, first on the set of obs, then on the set of theorems, we can
prove

THEOREM 2. X = Y if and only if X = Y.

COROLLARY 2.1. %Ί is consistent and decidable.

The following are metatheorems of %Ί\

RULE 2. X= Y-+ Y = X.

RULE 3. X = Y& Y = Z -> X = Z.

RULE 4. x\ = γ\ -» X= Y.

RULE 5. 0 = x\ — 0 = X.

This shows that = has the important properties of Ξ . Rule 5 corresponds to
Axiom P4; it looks different because there is no negation in this system.
For a discussion between the form of Rule 5 and the general problem of
negation, see [FML, pp. 256-7].

Rules 2-5 do not hold if the single arrow is replaced by the double one.
This result is a corollary to the following theorem. First, note that Xhas
more \'s than F—i.e., X = Y\\ . . . I—if and only if in any construction of X,
Y occurs at a step preceding X. In this case, say that X follows Y, and call
the | ' s added to Fto construct X the \'sofX left out of Y.

THEOREM 3. X= Y=ΦZ = W if and only if Z = W or Z follows X and W
follows Y and the Vs of Z left out of X can be paired with the \'s of W left
out of Y.
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The proof is like that of Theorem 1.

5 Order In this section, I formalize the predicate "follows'\ A recursive
definition of this predicate, symbolized by <, is given by Lorenzen ([BBD,
p. 170]) as follows:

(6) X<X\,
(7) X< Y^X< Y\.

In what follows, suppose that J is any system with the same obs as 71/0.
Then s/(<) will be the system formed from J by adjoining < as a binary
predicate, (6) as an axiom scheme, and (7) as a rule. It is easy to prove

THEOREM 4. X< Y if and only if Y follows X.

From this theorem, it follows that */(<) is consistent and, if J is
decidable, so is J(<). In particular, 7i/0{<) and ?£Ί(<) are decidable. In
addition, the following hold in */(<):

(8) X< F& Y< Z— X< Z,
(9) X< Y-> X\< Y\,

(10) X\< Y\- X< Y.

But (8)-(10) do not hold if the single arrow is replaced by the double one
(Lorenzen [BBD, p. 173] makes this point about (9)), as the following
theorem proves.

THEOREM 5. X< Y=ΦZ < W if and only if Z < W or X = Z and Y < W.

If J has the predicate =, then it is easy to define ^. If J does not
contain =, then either X < Y\ can be used to express ^ or else < can be
defined as follows: let J(*ή be the system formed by adjoining to J the
binary predicate ^, the axiom scheme

(11) X^X

and the rule

(12) X*z Y=ΦX^ γ\.

J(^) is similar to J«). Note that if X< Y\ is used for X^ Y, then (11) is
just (6) and (12) follows easily by (7). Lorenzen ([BBD]) proposes, instead
of (12), the rule

X< Y=>X*Z Y

(p. 171). This rule, with the above interpretation, is just (7) itself.
However, in this case there is not a formulation of ^ independent of that
of <.

6 Definitional extensions The next step is to introduce the arithmetic
operations, such as addition and multiplication. These operations cannot be
taken simply as ordinary primitive operations because the result of
applying one of these operations to a suitable number of arguments is to be
identified with an ob of the old system: the sum of two numbers is again a
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number. Hence, a means must be found for assigning to each sum (product,
etc.) an ob already in the system.

Let us begin by considering the special case of addition. We introduce
a new primitive operation +, so that for any obs X and F, X + F will also be
an ob. In order to keep things straight, let us use letters from the
beginning of the alphabet, such as

A, B, C, . . .,

for obs we already have (i.e., obs of the system 7i/0), and let us call these
obs basic. Obs which are not basic (i.e., obs in which the operation +
actually occurs) will be called new. Then letters from the end of the
alphabet, such as

X, Y,Z,.. .,

will denote obs of the extended system (i.e., obs which are either old or
new). The problem we have to solve in this extended system is finding a
method of assigning to each ob of this extended system a basic ob, called
its value.

Since + is a primitive recursive function, it is natural to take as this
method of assignment the usual primitive recursive definition of + together
with the usual machinery of recursive function theory. If we write

(13) XDY

to express that Y is assigned to X, then the usual primitive recursive
definition of addition consists of the statements

X + ODX,
K ' X+ Y\D(X+ Y)\.

To evaluate an ob X of the extended system, we take as axioms the
statements (14) and

(pD) XDX,

and then apply the rule

(15) XDY&A+BD C=ΦXD F',

where Yr is obtained from Y by replacing an occurrence of A + B by C.
(This system is equivalent to the system of Kleene ([IMM, p. 263f.]).
Kleene's system uses variables and axioms instead of axiom schemes, and
so he needs a rule of substituting basic obs for the variables; furthermore,
KLeene's other rule, which corresponds to (15), permits replacement in X
as well as F, and he has not postulated (pD), but since our concern is to
pick out those of his statements (13) for which the right-hand side is a
basic ob, this is not an important restriction.) For example, to evaluate
01 + 011 we can proceed as follows:

01 + 01 fl (01 + 0) 1 Ol+OflOl
ol + o l l p ( o l + ol)l ol + o l f l o l l

O| + O | | Λ O | | | .
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It now appears (and it can be proved) that for each ob X of the extended
system there is a unique basic ob A, which we call the value of X, such that

(16) XDA.

The extended system introduced in the last paragraph is an example of
what Curry has called a definitional extension, (See [CLg, pp. 62-74],
[DFS], and [FML, pp. 106-111].) Since definitional extensions offer a
generalization of recursive function theory to the case in which the basic
obs are not numbers, I will define a definitional extension in general.
First, however, let us consider a modification of the rule (15). Let us
rewrite this rule as

(15)' X D Y 8z A + B D Z ==> X D Y\

where A + B D Z is one of the statements (14) and Yτ is obtained from Y by
replacing an occurrence of A + B by Z. The modification is that the ob
replacing A + B need not be basic but the second premise must be an axiom
of the system. (Rule (15) is an example of the rule which Curry called Rd
in [CLg] and [DFS]. In [FML], Curry changed the rule Rd to designate the
rule called Rd below, of which (15) is an example. In my note [NDR], I show
that although these two rules are not precisely equivalent, they give the
same reductions to an ultimate definiens (value).) Then θ| + θ | | is evaluated
as follows:

o 1 + o 11 a (o 1 + o 1) 1 o I + o I a (o 1 + o) 1
o 1 + o 11 D (o 1 + o) 11 o\ + o D O \

ol + o l l p o l l l .
It is fairly easy to see that the rule (15)' gives derivations that have more
of an algorithmic character than rule (15), and that furthermore its deriva-
tions have a simpler structure, since their tree diagrams consist of one
long branch on the left from each node of which, except the top one, there is
a branch of length one node coming in from the right. Hence, rule (15)'
will be taken as the basis for the rule in the system of definitional
extensions.

Now, to state the definition, suppose that Jo is any formal system.
Call the atoms, operations, etc. of Jo basic. Let Jι be an extension of Jo;
call the atoms, etc. that are in J1 but not Jo new. I will use italic letters
from the beginning of the alphabet, such as Ά9, (B9, (C9, etc., possibly with
subscripts, for basic obs; letters from the end of the alphabet, such as
'X', tfF% and ζZ9, possibly with subscripts, for arbitrary obs, basic or new.
Then J1 is a definitional extension of Jo if and only if the following
conditions are satisfied:

a. The obs of WΊ are those of JQ together with those formed by means of
certain adjoined operations.
b. There is a new binary predicate D. Thus, the new elementary state-
ments are of the form (13). I will call X the left side (defίnίendum) and Y
the right side (definiens).
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c. The new axioms of J1 consist of the scheme

(pD) XDX

and a certain set E of defining axioms, each of which is of the form

φ(Au . . ., AJ D Z,

where 0 is a new operation of m arguments. Note that the arguments of φ
here must be basic obs.
d. There is one new rule, called the rule of definitional reduction, viz.

Rd XDY& φ{Alf . . .,Am) D Z =>X D Y',

where the second premise is in E and where Yr is obtained from Y by
replacing an occurrence of φ(Alf . . ., Am) by Z.

A demonstration from the new axioms by Rd alone is called a
definitional reduction. It must begin with an instance of (pD) or a defining
axiom, and all the replacements are made on the right, the left side
remaining unchanged. Thus, a definitional reduction can be represented by
simply giving, in order, the right sides (and the left side first if the
beginning of the reduction is a defining axiom). If a basic ob occurs in this
sequence, then it must be the last element, for clearly (16) cannot be
reduced further by Rd. If (16) holds, then A is called the value {ultimate
definiens) of X.

It is not necessary that each new ob X have exactly one value: it may
have no value, or it may have more than one. (Clearly, each basic ob has
exactly one value.) How many values X has depends on the defining axioms.
If the axioms are such that each new ob has at most one value, then I will
call the new operation(s) defined by the axioms (a) (partial recursive)
function(s). Curry has shown (see [FML, p. 108]) that if no two distinct
defining axioms have the same left side, then the operation(s) defined is
(are) function(s). An extension with this property is called proper. Finally,
if each new ob X has at least one value, the operation(s) defined is (are)
called total.

The relation D is clearly transitive; i.e.,

(TD) X DY & YDZ — X D Z.

(This fails if the double arrow is used.) However, it is not symmetric. It
is therefore convenient to extend D to a symmetric relation =. This
relation has as axioms

(ps) X^X

and all the defining axioms with D replaced by =; its rules are Rd with D
replaced by = and

(ffs) X=Y=¥Y = X,
(TS) X= Y & y = z=>x = z.

Curry has proved (see [CLg, p. 67-8]) the following theorem.
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THEOREM 6. Let the definitional extension be proper and let

(17) X=Y.

Then if either X or Y has a value, the other does also and the values are

identical.

COROLLARY 6.1. If the definitional extension is proper, then X = A —+ X D A.

COROLLARY 6.2. If A = B, then A and B are the same ob.

This corollary justifies my previous use of =.

COROLLARY 6.3. If the definitional extension is proper and if, in addition,

each new operation is total, then (17) holds if and only if X and Y have the

same value.

COROLLARY 6.4. If all the new operations are total functions, then for each

operation φ of m arguments

(18) X, = Yx & . . . & Xm EE Ym -> φ(Xu . . ., Xm) = φ{γl9 . . ., YJ.

Thus, for total functions the predicate D can be eliminated. The

defining axioms and rule Rd can be stated in terms of =.

In general, it is not possible to tell for any given set of defining axioms

whether or not the operations it defines are total. However, it is possible

to prove for some specific kinds of sets E that they do define total

functions.

THEOREM 7. Suppose the atoms of Jo are al9 . . . (possibly an infinite

sequence), and suppose the basic operations are ωl9 . . ., where ω, has ni

arguments. Then, if all the other operations are total functions, an

operation φ defined by the primitive recursive scheme, viz.

φ{Xu . . ., Xm9 ad =ψ(Xu . . ., Xm, «,-), i = 1, 2, . . .,

φ(Xl9 . . ., Xm, ωk(Yu . . ., Ynk)) s χ(χu . . ., χm9 γl9 . . ., γnk,

φ(X19 . . ., Xm9 F J , . . ., φ{Xu . ., Xm, Ynk)), k=l,2 . . .,

where ψ and X are either basic operations or new total functions, is a total

function.

Proof: Since this scheme is obviously proper, the uniqueness of the value

is proved, and it remains to prove that each new ob has a value. Since all

the new operations other than φ are total, it is enough to prove that

φ(Xu . . ., Xm, A) has a value for each basic ob A. If A is an atom, then

this has a value by the first axiom of the scheme. So suppose A is

ωk{Bl9 . . ., Bnk). By the induction hypothesis, each φ(Xλ, . . ., Xm, Bj), for

7 = 1 , . . . , rik, has a value, say Cj. Then, by the second axiom of the

scheme, applying Rd repeatedly, we get

ψ\X\i •> Xm> A) = X(Xι, . . ., Xm, 2>i, . ., Bnfe9 Ci, . , Cnfe),

and this has a value because X is total.
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7 The operations of arithmetic In what follows, I assume that Jo is 7l/lu

The basic obs will be called numerals.
The first thing to notice about this case is that an operation is a partial

recursive function in this sense if and only if it is a partial recursive
function in the usual sense. Thus, my use of the vocabulary of recursive
function theory coincides with the standard use, and the theory of recursive
functions applies to functions definable by a definitional extension.

Now let Φ = {φl9 . . ., φk}be a, finite set of total functions; let φ{ have w*
arguments and defining axioms &ι\ and suppose that all these extensions
are proper. Let & = &γ u . . . U && Let 7i/φbe the definitional extension of
71/x formed by taking & as the set of defining axioms and adding as a rule

RULEO X=Y=Φ>X=Y.

Since the axiom 0 = 0 is a special case of this rule, it is now redundant.
Thus, 7i/φ can be formulated as follows:

ATOM. 0.

OPERATIONS. | and φ{ for z = 1, . . ., fc.

PREDICATES. = and =.

AXIOMS. The elements of & and (pΞ).

RULES. For =, rules Rd, (p=)9 and (τ=); for =, rules 0-1.

Then, the following theorem can be proved much as the previous ones.

THEOREM 8. X = Y -* X = Y.

As a result of this theorem, we can eliminate the predicate = and
Rule 0 and replace = by = in all axioms and rules in which it occurs. Then
the axioms become the elements of & and the scheme

X =X,

and the rules are Rd and Rules 1-3 (using the double arrow, of course).
Hereafter, I assume that 7i/φ is formulated in this way.

As a result of Corollary 6.3,

THEOREM 9. In 92/φ, X = Y if and only if there is a numeral A such that X = A
and Y = A.

It follows from this theorem that 7Z/φ is consistent and decidable and
that for each i = 1, . . ., k, (18) holds with φk for φ and = for =.

All of the ordinary arithmetic operations can be defined by primitive
recursive schemes, and so these theorems apply to them. Thus, for
example, as we have seen, addition is defined by

X + 0 = X,
X+ Y\ = (X+Y)\,

and multiplication by

X 0 = 0,
X- (Y\) =X Y +X.
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Let 7i/2 be N^\ and 7i/3 be *n/\+.\, etc. All of these systems are consistent
and decidable.

Curry, in [FML, p. 106], suggests as an alternative for + the defining
equations

0 + Y = F,
x\+ γ= x+ γ\.

It is easy to see that this definition is equivalent to the one we have taken,
but it is not primitive recursive and so Theorem 7 does not apply.

By methods similar to those used above, it is possible to prove that +
is repeated | in the following way:

THEOREM 10. A + B - C if and only if C follows A and the \'s of C left out of

A can be paired with the \ys of B.

In order to have my definition of J{<) and J(^) apply to 7i/2, I modify
the requirement that J have the same obs as 7i/Q and instead allow the
possibility that it is a definitional extension whose basic obs are those of

COROLLARY 10.1. In 7i/2 (<)

A<Bτ±A + C\ = B,

and in 71/ 2(<),

A ^B τ=^A + C = B.

Furthermore, the C can be found effectively in each case.
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