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THE EXISTENCE POSTULATE AND NON-REGULAR
SYSTEMS OF MODAL LOGIC
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The reader is advised to read section 6 [8, pp. 178-198] before
proceeding with this paper, and have the book in hand. If we refer to a
certain page number without indicating its source it always refers to [8].
In this paper we shall use such terms as existence, proposition, etc. rather
loosely. This is done on purpose to establish the continuity between
Lewis’s motivations and these investigations. In future we expect to give
precise definitions of these terms and present further results about the
systems described here. See also [6, pp. 290-292]. What follows has a
close connection with certain remarks made there although those remarks
are made in terms of models and ‘“worlds’’.

1. Preliminavies. As we all know the systems of strict implication of
Lewis are put forward as rivals to the system of material implication and
constructed with the specific purpose of removing the ‘““paradoxes’’ of the
latter system. One such paradox is the following thesis:

Pl ACpgCpNgq
As an immediate consequence we have:
P2 NKNCpgNCpNq

Consequently, ‘‘if we take ‘p is consistent with ¢’ to mean ‘p does not imply
the falsity of ¢’ and ‘g is independent of p’ to mean ‘p does not imply ¢°,
then in terms of material implication, no two propositions can be at once
consistent and independent [p. 122].”” This violates our intuitions; in other
words, is paradoxical. Lewis thus constructs his systems so that in none
of them the strict analogue of P1:

P3 AGCpqCpNgq

is provable. Having constructed his systems Lewis noticed, however, that
although P3 was not a theorem of any of his systems it could be added with
impunity to each of them, i.e., no inconsistency results on its addition.
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In fact if P3 is added even to his weakest system S1 (all systems in this
paper are to be thought of as having Lewis’s formulations or obtained by
the addition of axioms to these formulations), it coincides with the system
of material implication:

Z1 ANMKMNpNpGCMNpNp [P3, p/ MNP, q/p; S1°]
Z2  ANMNpGMNPNp [z1; s1]
Z3  ANMNpCMNPNp [z2; s1]
Z4  CPNMNp [z3; 81°]
Z5  CCpNMNpPNMNCpPpNMNp [Z4, p/CHNMNp]
Z6  GpLp [z4;25; 81°]

Hence nothing prevents our viewing his postulates ‘‘as an incomplete set
for material implication [p. 178].”? One can interpret this result by saying
that he had not proved the existence of even two consistent and independent
propositions in any of his systems; for, had he done so, addition of P3 to
the system would have resulted in an inconsistency. He therefore postu-
lates the existence of two such propositions:

B9  (3p, q) KNGpgNCpNq

and shows that B9 is consistent with his systems (p. 494, p. 498). A reason
is given why this existence postulate could not be proved (pp. 189-190). The
reader may with justification feel cheated. Bertrand Russell once said that
‘the method of ‘postulating’ what we want has many advantages; they are
the same as the advantages of theft over honest toil.”” Note, however, that
in subsequent studies of Lewis’s systems B9 has almost always been
ignored. One gets the impression that it is an embarrassment.

1.2. When Lewis constructed his systems he considered a postulate:
C13 MMp

He did not construct any systems containing it. He does point out, though,
that CI13 could be added consistently to S1, S2, or S3 (p. 498). His
motivation in considering it was to demonstrate an assumption that would
be ‘‘contrary [p. 499] to

C10 GSMMpMp

Subsequently the systems that are obtained by adding C13 to S2 and S3 have
been named S6 and S7. Another postulate stronger than C13 has also been
considered:

Cl14 LMMp

and the system obtained by its addition to S3 has been called S8. These
systems have not found favor with modal logicians and they have not been
studied for their own sake until very recently ([3], [4], [6]). C13 has been
described as a ‘‘peculiar postulate [10, p. 134],”’ and the systems contain-
ing it have been described as ‘‘oddities [7, p. 216].”’ I do not know why. No
reasons are put forward in either of these places.
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1.3. Sobociriski [13] noticed that C13 has a property not shared by the other
postulates that Lewis considered, viz., deletion of the modal functors from
it gives us a formula which is not a thesis of material implication. Such
formulae, he said, are non-regular (Sobociriski uses the term irregular—we
follow [6] instead and use the term non-regular) modal formulae. And if a
system contains a non-regular modal formula as a theorem, it is a
non-regular system; otherwise, regular. Consequently S6—S8 are non-
regular. He constructed a new non-regular system, T*, obtained by the
addition of

C15 MLp

to T°. He also pointed out that C15 could be consistently added to S2°, S3°,
and S4°. Let us call these systems S2%, S3*, and S4*. Other non-regular
systems are S9 of Aqvist [2] (named S7.5 by him but renamed S9 in [6]),
S7.5 of Anderson [1], and the systems S2” of McKinsey [9]. As far as I
know these are all the non-regular systems in the literature.

Consider now the systems S2”, 837, 847, and T? obtained by the addition
of the formula

Y1 CpMp

to the corresponding X-systems. Group IV (p. 494) shows that they are
consistent. Next consider the system S7.1 obtained by the addition of
MNMMKpPNp and MMKpPNp to S3. The consistency of S7.1 is established by
using the matrix described in [5, p. 233] but taking 1, 2, 3, and 7 as
designated values.

2. Proof of the Existence Postulate. We shall now show, by honest toil,
that the existence postulate can be proved in the systems S6-S9, S7.1, S7.5,
§2" and the Y -systems. We shall prove it in the same way that Lewis
proves 20.1-20.4 [pp. 184-186], using ‘‘converse substitution [p. 184].”” We
have been unable to prove it in the X-systems but a weakened form will be
established.

2.1, S6-S9, S7.1, S7.5. 1t is easy to see that each of these systems contain
S6. It is then enough to prove it in S6.

Z1 MMEKpNp [c13, p/KpND]
Z2 NMKpNp [s1°]
Z3  MKMMKpPNpNMKPNp [z1;22; s1]
Z4 NGCMMEKpNpMKPNp [23; 81°]
Z5 GMKpNpKMMKpNp MKPND [s1]
Z6  @MKpNpKMMKpNpMKpPNp [z5; S1°]
Z7  MEKMMKpNpMKpPNpD [z6;21; 81°)
Z8 NGMMKPNpNMKPNp [z7; s1°]
Z9 KNGCMMEKpNpMKpNpNCMMKpNpN MKpNp (z4; z8; S1°]
B9  (3p,q) KNCpgNGCpNq (29, p IMMKpND , q [MKpND ]

2.2. S2". McKinsey constructed the systems S2” to demonstrate that S2 has
infinitely many complete extensions. They are defined as follows. Add to
S2 the following axioms:
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Q'  NGKpNpMKpNp
Q@  NGMKpNpMMEPNp

Q" NGM™ 'KpNpM"KpNp
R" GM'KpNpM"'KpNp

where ‘“M"a’’ means the wff formed by putting » ‘M ’’ symbols in front of a.
A curious fact about these systems does not seem to have been noticed.
The system S$2', contrary to McKinsey’s assertion, is inconsistent.

Z1 AMKKpPNpN MKpNpMKMEpPNpNKpNp [@%; s1°]
Z2 GKKpNPNMKpPNPKpPNp [s1°]
Z3 @KMKpPNpNEKpNpMKpPNp [s1°]
Z4  AMKpPpNpMMEpPND [z1; z2; 23; 81°]
Z5 CNMEpNpMMKpPNp [Z4; s1°]
Z6  MMKpPNp [z5; 81°]
Z7  MKpNp [z6; RY; 81°]
Z8  NMKpNp [s1°]
zZ9 p [Z27; z8; 81°]

If we examine the proof which shows the consistency of $2”, the difficulty is
easy to find. The matrix which is supposed to verify S2” is not even a
matrix when # = 1: It has no designated elements. The proof that S2 has
infinitely many complete extensions, of course, remains perfectly good.
Next observe that the deduction above shows that MMKpNp follows from
{s2; @'}. Also note that @' follows from {S2; MMKpNp}. This is easily seen
by simply reversing the steps from Z1 to Z6. And it is well-known that
{s6} = {S2; MMKpNp}. Hence {S6} = {S2; @'}. 1t follows, by 2.1, that the
existence postulate can be proved in S2” (n = 2), and also that McKinsey
actually has proved a stronger result: S6 has infinitely many complete
extensions. Let us then abandon the axioms @' and R', view the systems as
extensions of S6, and rename them $6” (n = 1): S6” = S2"**, S6” is, there-
fore, the system obtained by adding to S6 the following axioms:

B' NGMKpPNpMMKpPNp
B®  NG@MMEKpNpMMMEKpNp

B"  NGM"KpNpM" ' KpNp
c* eM"P'KpNpM"PKpNp
We now give an alternative axiomatization of S6”. This will be useful later.

We show that {S6; B} = {S6; MKM""'KpNpNM"KpNp}. First we show that
{s6; B"} — {86; MKM "' KpNpNM"KpNp}.

Z1 AMKM"KPNpNM" ' KpNp MK M KpNpN M"KpNp [B™ 81°]
Z2  MAKM'KPpNpNM"PKpNpKM" T KpNpNM KpNp [z1; s2°]
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Z3 GAKPNgKqNpKApqANpNq [s1°]
Z4 GAKM'KpNPNM" M KpNpKM™ KpNPNM"KpNpKA M'KpNpM™+*
KpNPANMKpNpNM" ' KpNp [23, p/M"KpNp, q/M™ KpNp]
Z5 MKAM'KpNpM"PKpNpANM K pNpNM" ' KpNp (z2; z4; 81°]
Z6 GAM'KpNpM™T'KpNpM™P'KpNp [s1]
Z7  MEM"™MKpNpANMKpNpNM™F'KpNp [z5; z6; 51°]
Z8  GKM"KpNpANM KPNPNM" KpNpK M™  KpNpNM K pNp [s1°]
Z9  MEM"™MKpNpN M"KpNp [z7; z8; 81°]

Now to see {S6; MKM" " KpNpNM"KpNp}+ — {S6; B"}, again, reverse the steps
above. Our new axiomatization for S6” is then obtained by adding to S6 the
following axioms:

V' MKMMEKpNpNMEDPNp
V:  MKMMMEKpPNpNMMEKpNp

V" MKM'P'KpNpNM'KPNp
c"  GM"T'KpNpM"PKpNp

Observe further that V'is a theorem of S6. But for the sake of symmetry
we leave the axioms in the above form.

2.3, $2”-S47, TV. Evidently each of these systems contain s2”. We prove
the existence postulate in S27.

Z1  MLKAPNPKPND [c15, p/KAPNPKPND]
Z2  MKLApPNpLKDPNp [z1; s2°]
Z3 NGLApNpNLKpPNp [z2; s1°]
Z4  CNKpNpMNKpPNp {1, p/NKpNp]
Z5  MNKpNp [z4; 81°]
Z6 LApNp [s1°]
Z7  MKLApNpMNEKPNp (Y1, p/KLApNpMNKpNpD; Z5; Z6; S1°]
Z8 NGLApPNpLKPND [z7; 81°]
Z9 KNGLAPNpLKpNHPNGCLAPNPNLKPND [z3; zs8; 81°]
B9 (3p,q) KNCpgNCpNg (29, pJLAPND, q [LKpND]
2.4, S2*-S4*, T*. Our deductions proceed in S2*.

Z1 NGLApNPNLKpNp [As in 2.3.]
Z2 LApPNp [s17]
Z3  GNApPNpAPND (z2; s1°]
Z4 SKLApNpNApPpNPNAPNp [s1°]
Z5 GKLAPNpPNAPNpAPND [z3; z4; S1°]
Z6  GLAPNpAPND [z5; s1°]
Z7 CMLApPNpMAPND [z6; S2°]
Z8 MAPNp [Cc15, p/ApND; Zz7; S1°]
Z9 KLApPNpMAPND [z2; zs8; 51°]

Z10 NCLAPNpNMAPND [Z29; 81°]
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Z11 KNCLApPNpLKpNpNGLAPpNpNLKPND [z1; Zz10; 81°]
Z12 (3p, q) KNCpgNGpNgq [Z11,p[LAPND, q [LKpND]

This is the promised weakened form.

2.5. Let us say that a Lewis system is any system that contains S1°. Then,
given Lewis’s motivations, it is appropriate to define a Lewis system
proper as any Lewis system in which the existence postulate can be proved.
But it is unnecessary to introduce quantifiers into the syntax. Note that the
“proof’’ of the postulate simply consists of proving as a theorem any
substitution-instance of KNEpgNEpNgq. A Lewis system proper is then a
Lewis system in which some substitution-instance of KN€pgNEpNg can be
proved. The perversity of the most popular systems of modal logic: T, S4,
and S5, is now vividly brought to us by the results of McKinsey and
Sobociniski. McKinsey proved that S4 has only one complete extension and
Sobociniski pointed out that his proof was good for T also. And this
extension is material implication. Sobocirski also proved that any con-
sistent system which contains T must be regular. From this it follows that
not only is T (a fortiori, S4 and S5) an incomplete form of material impli-
cation but also that it is hopeless to try to extend it to a Lewis system
proper. S1, S2, and S3, although incomplete forms of material implication,
can at least be extended to Lewis systems proper. Observe that the same
is true of T° and S4°. We have extended them above to Lewis systems
proper: T”and S4%.

The fundamental intuition behind modal logic~whether we accept it or
not—is the distinction between actuality and necessity, the distinction
between propositions that are as a matter of fact true and those that are
necessarily so. Hence any decent modal logic ought to have propositions
that are true but not necessary, and its counterpart, false but not
impossible. Formally stated, there must be theorems which are substitu-
tion-instances of KpNLp. And this is a non-regular modal formula. So we
have theorems of the above form only in non-regular modal systems. In
86, for example, we have KNMKpNpNLNMKpPNP.

Finally observe that in those systems in which the existence postulate
can be proved the remaining theorems of section 6 (pp. 178-198), in
particular, 20.6 (p. 188), go through. Consider S6. Then the four distinct
propositions of 20.6 turn out to be MMKpNp, NMMKpNp, MKpNp, and
NMKpNp.

3. Finite model property. We shall now show that each of the systems
discussed above, with the exception of S9, has the finite model property
(f.m.p.). The question as to whether S9 has the property remains open.
For this section we presuppose acquaintance with [11] and [12], and we
shall use the terminology and notation of these papers. The f.m.p. for S6
has been established in [5], for S7 and S8 in [12]. That $7.1 has the f.m.p.
is implicit in [12]. The property for $7.5 can be established by a simple
modification of Theorem 6 [12]. We leave this to the reader. We treat then
the X-systems, the Y-systems, and S6”. It is easy to see that instead of



THE EXISTENCE POSTULATE 375

C15, MLp, we can use the postulate MNMApPNp. This is more convenient
for our purpose here. We shall, of course, use matrices #l = (M, D, N,
-, P), and as our stock of conditions on these matrices we list the following:

(A) (M, n, -, P) is a weak modal algebra;
(B) D is an additive ideal of M;

(C) . = 0if and only if ~P(x) e D;

(D) PO =Pux;

(E) P(PxN~-PO) = Px;

(F) PPx = Px;

(G) -PPOe D;
(H) x— PxeD;
()  x = Px;

(J) P - PleD;
(K) PPOeD;

(L) P(P™0N-P"0)eD (n=1);
(M) P10 = P00 (n = 1).

We omit the proofs of the two theorems that follow.

Theorem 1. # = (M, D,N, -, P) is a o-regular S2*(S3*, S4*, T*, S27, 837,
S47, T, 86")-matvix if and only if the following conditions hold for the
respectlive systems.

(1) (A) -- (D), (); [s27]
2 (4 --(@®), V) [s37]
(3) (4)--(F), V); [s47]
@) (4)-- D), (6), V) [T%]
(5) (A)-- (D), (H), ); [s2”]
(mn  (4)--(F), H), (); [s#]
8) (A4) -- (D), (G), (H), (J); [T%]
9 (4) -- (D), (D, (K) -- (M). [s6”]

Theorem 2. A is prowvable in each of the systems mentioned in Theovem 1
if and only if A is verified by all matricies M ={M, D, N, -, P) fulfilling
the vespective conditions fov each of the systems mentioned in Theovem 1.

Theorem 3. Let M =(M, D,N, -, P) be a o-regular S2°(S3%, etc.)-matrix,
and let a,, ..., a, be a finite sequence of elements of M. Then theve is a
finite o-regular S2*(S3*, etc.)-matrix M = (My, Dy, Ny, -1, Py) with at most
22" oloments such that

(i) for1=i=vy,a;,eM;

(i) forx,yeMy,x N y=x0Y;

(iii) for xe My, -.x = -x;

(iv) for x € M, such that Pxe M,, P .x = Px;
(v) forxeM,ifxeD, then xeD.

Proof. See Theorem IV.1 [11], Theorem IV.4 [11], and Theorem 6 [12].
For our theorem here M, is the set of elements of M obtained from
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PO, PPO, ..., P"™0(®m=1), P1, P - P1,a,,a,, ..., a, by any finite num-
ber of applications of the operations - and N. Evidently the only thing which
remains to be shown is that M, satisfies conditions (D) -- (M) given that #
satisfies the corresponding conditions. I should be noted that we do not
need all that many elements in M, for each individual system. But we treat
them all at once. The refinements in the statement of the theorem for the
various systems is left to the reader.

D:  See[12].

E: See [12].

F: See [11, pp. 173-175].

s We pause now and prove by induction that P”0=P,”"0 (1 =m =n + 1).

Observe first that PO = P,0 (see [11, p. 170]). Next let P‘0 = P,?0 (1 =t =mn).

Then PP’0 = PP,'0, i.e., P**'0=PP,’0. Evidently P,’0¢ M,, and PP,’0 =

P!*0e M, by construction. Hence by condition (iv) of the theorem, P,P,%0 =

PP,’0, i.e., P,0 = PP,’0 = P'*0.

G: Let -PPOeD. Thenby (A) -P,P,0=-PP0eD. Also -P,P,0e M,. Hence

-P,P,0eD,.

H: See[12].

I. See [12].

J: Let P - Ple D. Since 1e¢ M, and Ple M,;, we get P;1 = P1. So -P1=

-P,1. Hence P - P1=P - P;1. Next note that -P;1eM,;and P - P;1=P -

Ple M,. Then P,-P,1=P-P;1=P-PleD. Also P, - P;1eM,. Hence

P, - P,1eD,.

K: Let PPOe D. Then arguing as in (G), P,P,0€e D,.

L: Let P(P"*0 N -P"0)e D. Then by (A), P(P,”'0 N -P,"0)e D. But

P(P,”*0 N -P,"0) =< P,(P70N -P,"0) (see Theorem IV.1(2) [1T] and the re-

mark that follows). By Theorem IIL.8(c) [11], P,(P,"**0 N -P,"0)eD. Also
P.(P,"*0N-P,"0)e M,. Hence P,(P,"*0 N -P,"0)e D,.

M: Let P"*0 = P"*20. Now P"*?0 = PP"*'0 = PP,"*'0 (by (1)). Also P,"*'0¢

M, and PP,"*'0 = P"*%0 = P"*0e M;,. Hence P,P,”"0 = PP,T0=p"*?0=
p*to = P,"*0 (by (). So P,"*'0 = P,"*?0.

This completes the proof.

4. Halldén-style results. We now presuppose acquaintance with [5] and
section 1 of [12]. Consider the systems S3, S3.1, $4, S7, S8, and S7.1. The
relation between these systems is visualised by the following diagram:

S8 S7 1 S4

\/\/
37\/831

Recall [12] that 83.1 = {83; MNMMKpr}, S4 = {S3; NMMKpNp}, ST = {S3;
MMEKpNp}, S8 = {S3; NUNMMEKPNp}, S7.1 = {S3; MMKpNp; MNMMEKpNp}.
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Hence the containments are obvious. The following matrices show that the
containments are proper: (1) Group I (p. 493) verifies S3 and S7 but
falsifies S3.1 and S7.1; (2) Group II (p. 493) verifies S3 but falsifies S7;
(3) Halldén’s matrix [5, p. 232] with 1 and 2 as designated values verifies
S3.1 but falsifies S7.1 and S4; (4) The same matrix with 1, 2, 3, and 7 as
designated values verifies S7 but falsifies S8.

Let us now denote the class of theorems of a system by writing the
name of the system in bold type. And let us say that a trio of distinct,
consistent systems S;, S,, S; are in Halldén-relation if and only if (1) §; =
S, N'S3; (2) the number of complete extensions of S, is equal to the sum of
the complete extensions of S, and S;. Halldén proved that S3, S7, S4 are in
Halldén-relation. Now note that we have ApNp, GKpNpKqNq, and the sub-
stitutability of strict equivalents in each of the systems of the previous
paragraph. And see [6, p. 244, n. 231]. Hence as a consequence of the
above axiomatizations and Theorems 2, 7, and 8 of [5] we have that the
following trios are in Halldén-relation: (1) S3, S8, S3.1; (2) S7, S8, S7.1;
(3) 83.1, S7.1, S4. 1t follows that the number of complete extensions of S3
is equal to the number of complete extensions of S8 plus the number of
complete extensions of S7.1 plus the number of complete extensions of S4.
This further refines Halldén’s partial solution to McKinsey’s open question
about the number of complete extensions of S3 [9, p. 42].
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