
405
Notre Dame Journal of Formal Logic
Volume XIX, Number 3, July 1978
NDJFAM

HYPERENUMERATION REDUCIBILITY

LUIS E. SANCHIS

There are several ways of reducing a set B to a set A and the
differences are mostly related to the basic procedures allowed in the
reduction (recursive, arithmetical, etc.) but also to the manner in which
the input set A enters in the reduction. In some cases both inputs from A
and the complement A are allowed in the reduction (as in Turing re-
ducibility) and in other cases the reduction operates only on positive
information about A (as in enumeration reducibility). It is important to see
that in some cases the positive reduction is actually a generalization of the
positive-negative reduction with the same basic procedures. For instance
the Turing reduction B ^j A can be in fact defined as Cβ ^ e C^ where CΛ is
(the graph of) the characteristic function of A. This does not mean that the
structures induced by the reductions (the so-called degrees) are similar.
In fact it is well known there are important differences between the
ordering of Turing degrees and partial degrees.

In this paper we present a form, a positive reduction, which we call
hyperenumeration reducibility. It is related to hyperarithmetical reduction
exactly as enumeration reducibility is related to Turing reducibility. The
basic procedures in hyperenumeration reducibility are analytical involving
function quantifiers. Since any form of positive reduction is essentially
weak this strengthening of the basic procedures seems to be a desirable
feature. We attempt, in this paper, a classification of sets of natural
numbers in terms of hyperenumeration reducibility. The basic ideas have
been first applied to enumeration reducibility and in Section 1 we give the
fundamental definitions. The ideas and results in this section are intro-
duced mainly as a motivation for the material in the remaining sections.
Hyperenumeration reducibility is defined in Section 2, and in Section 3 we
introduce the fundamental notion of pseudo hyperarithmetical set. The
structure of degrees containing such sets is discussed. Finally, we prove
there are sets of degrees in which there is no pseudo hyperarithmetical
set. The construction here follows a forcing technique which was first
introduced by Thomason in [6]. We shall use the notation of Rogers [5].
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The operation (x y) produces the concatenation of the sequence numbers
by adding y as a new element. Hence (f(v) f(v)) = f(v + 1). We shall
assume /(0) = 1. The recursive function l(u) is such that l(f(v)) = v.

1 Enumeration reducibility We recall that B is enumeration reducible
to A in case there is a recursively enumerable set (RE set) PFsuch that

xe B iff (3y)((x, y)eW& Dy<zA)

where Dy is the canonical enumeration of finite sets. This relation is
written B ^eA and Wis called the basis of the reduction. This relation is a
partial order and the degrees induced by this order we shall call e-
degrees. The least upperbound of sets A and B is given by the set

A\/B = {2 x: xe A}\J {2-X + 1: xe B}

Clearly we have

AvA^CA ^eA'

where CA is the characteristic function of A and Ar is the jump of A.

Proposition 1 B ^ e A' iff B ^ A'.

The implication from right to left is clear. From left to right note
that since A' is recursively enumerable in A from B ^ e A

r we get that B is
recursively enumerable in A, hence B ^ιA\

We shall identify a function F (total or partial) with its graph. This
means that F = {(x, F(x)): x in the domain of F}m Note that if F is a total
function then F ^ e F.

We shall say that a set A is pseudo recursive (PR) in case A^eA.
Note that in case A is RE set then A is recursive if and only if A is PR.

Proposition 2 The following conditions are equivalent:

(i) A is PR
(ii) A^eCA

(iii)A=eA'

If A is PR then clearly CA ^eA so (ii) follows. We have already
mentioned the equivalence of (ii) and (iii). Now (ii) implies (i) since

A listing of a set A is a total function F such that A is the range of F.
If F is a listing of A then A ^ e F If A is infinite then A has a unique
strictly increasing listing FA. Clearly A is PR if and only if FA ^ e A.

Proposition 3 If A ^ τ B ^ e A and B is PR then A is PR.

Since A **j B is equivalent to CA ̂ e Cβ we have

^ ^e CA ^e Cβ ^ e ^ ^ e ^

Corollary If B is PR and A =m B then A is PR.
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Note that in the corollary we can replace =m by any relation that
implies both =j and ^ e. For instance, the relation =p in [4], It is easy to
show that retraceable sets and almost recursive sets are PR sets. Note
also that for any set A, A ^γ Ar and A ^ A* hence A' ^eA

r, so A1 is always
PR. But then Ar is never PR since otherwise we should have

Hence A" ^ A1 what is impossible.

We shall say that a set A is pseudo enumerable (PE) in case there is a
set B such that A =eB and B is PR. Since Ar =e CA it follows that Ar is
always PE. It is easy to show that regressive sets and almost recursively
enumerable sets ([1] and [2]) are also PE sets.

Theorem 1 The following conditions are equivalent:

(i) A is PE set.
(ii) There is a set B such that A =e B1.
(iii) There is a listing F of A such that F ^eA.

The proof of this theorem is given by Case in [3].

Examples of sets which are not PE have been constructed elsewhere,
for instance in [3]. Here we shall give a construction of a set B which is
not PE but the complement B is actually PR.

Theorem 2 Let A be any set. There is a set B such that:

(i) A<ΊB^JA;.

(ii) A' <e£<eJB^eA".

Furthermore if C is PE and C ^eB then C ^ e A\

We construct an infinite sequence of pairs of finite disjoints sets:
(Bo, B2o), (B\, B\), . . ., {Bn, B2

n), . . . and define B = \J Bl It will follow that
n

B = U B2

n. The construction will be such that xe B if and only if there is a
n

prime number p > 3 such that px+1 e B, hence B ^ e B . Furthermore xe A ii
and only if 2x+ι e B and xe A if and only if 3*+1 € B, so we have A <x B and
A **! B. We put BQ = {l}, B2

0 = {θ}. Suppose B\ and B2

n have been defined. We
put D = Bι

n U B2

n and consider four cases.

(a) n-A m. In this case we shall ensure that B Φ W^. Let k be the
smallest number greater than every number in D, k not a power of 2 and k
not a power of 3.

If 5*+1 e W* we put Bι

n+i = Bι

nU {k}, B2

n+ι = B2

n U {5*+1}
If 5k+ι / Wi; we put BUi =Bι

nU {5*+1}, B2

n+ι = B2

n

(b) In this case we shall ensure that every number will be eventually in
some pair. At the same time we put in B numbers of the form px+ι where
xeB and p is some prime different from 2 or 3. Let p be the smallest
prime number different from 2 and 3 and greater than every number in D;
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and let k be the smallest number not in D, k not a power of 2, k not a power
of 3. We put:

Bι

n+ι = B1

nU {k}
B2

n+1 = Bnu{px+1:xeB^}

(c) In this case we get A ^ B and A ^ B.

lime A we put Bι

n+ι = Bγ

n U {2 W + 1 }, £* + 1 = ̂  U {3 W + 1 }

If m iA we put 5 j + 1 = Bx

n U {3W + 1}> ^ « + I = *5 U {2W+1 j

(d) For this case we introduce the following notation:

Φm(X) = {x: (3y)((x, y) e Wm & Dy Q X)}

We shall ensure that whenever F is a total function and Φm(B) = F then
F ^T ̂ J hence F ^eA'. We consider two subcases:

(dl) There is a finite extension C of Bι

n such that:

(i) c n ^ = 0
(ii) If 2X+1 e C then x e A
(iii) If 3*+1eC then#/,4
(iv) There are numbers x, y, z such that y Φ z, (x, y) e Φm(C) and (x, z) e

Φ*(C).

Note that we can decide whether (dl) holds or not using A1. We assume
some effective procedure is given in advance (recursive on A) to generate
all C's satisfying conditions (i) to (iv). Let d be the first generated. We
put Bn+i = Cu Bξ+1 = Bl

(d2) There is no such C. In this case we put B^+i = Bι

m B*+1 = Bl.

Assume now that F is a total function and that F = Φm(B). Hence case
(dl) does not apply and we can compute F by generating the sets C
satisfying conditions (i) to (iii) and at the same time generating Φm(C) for
each such C. This makes F ^j A.

The whole construction is recursive in A' so both B and B are
recursively enumerable in Af, hence B^jAr. By construction B is not
recursively enumerable in A. Hence we have A < j B. Furthermore since
A ^ B and A ^ B we have Ar ^eB. But in fact we have Ar <eB because B
is not recursively enumerable in A. It follows that B is not PE, hence
B <eB. Since B <£j A', we have B ^eA".

2 Hyperenumeration reducibility In this section we define hyperenum-
eration reducibility and prove some of the fundamental properties of this
relation. Let B and A be sets such that for some RE set W the following
relation holds:

xeBiίί W)(3υ)(3y)((f(v),x, y)eW&DyQA).

Then we say that B is hyperenumeration reducible to A and write this
relation: B %eA.
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Proposition 4 The following conditions are equivalent:

(i) There is a Tl\-set W such that the following holds:

xe B iff(Vf)(3v)(3y)((f(v), x, y) e W & Dy c A)

(ii) There is a primitive recursive predicate R(u, x) such that:

xeBiff (Vf)(3v)(R(f(v), x) & Div)ι c A)

(iii) B^heA.

The implication from (i) to (ii) is proved using the standard rules of
exportation, permutation, and contraction of quantifiers. The other impli-
cations are trivial.

Theorem 3 If B ^heA and C ^heB then C ^heA.

Using part (ii) of Proposition 4 we can find primitive recursive
predicates Rλ and R2 such that xe C iff:

(>/g)(3w)[R1(g(w), x) & (Vz)(zeDiw)ι - (Vf)(3υ)(R2(f(v), z) & D{v)ι c A))]

By exportation, permutation, and contraction of quantifiers we get
primitive recursive predicates R3 and R4 such that xe C iff:

(Vf)(3v)[R3(f(v), x) & (Vz)(zeDdιiv) - i?4(/M, z) & Dd2(VιX) c A))]

where ^(v) and a\{v9 z) are recursive functions. Define RE sets as follows:

Wγ = {(u, x,y): R3(u, x)}
W2 = {<w, Λ:, 3;>: (V^)Ue ^ l ( l ( « ) ) -> Λ 4 ( M , ^) & Ώ/2(i(«),z) c i)y))}

and we have

Λre Ciff (Vf)(3v)(3y)((f(v), x, y) e W& DyQA)

Theorem 4 If B ^eA then B ^ h e A and B ^he^

Assume that

xeBiίί (3y)((xf y)eW&DyQA)

It follows immediately that B ^he^ To prove B ^\^eA we note that

xe B iff (V;y)«#, 3;) e W-> Dy ^ A)

Define arithmetical set Wλ as follows:

W, = {{u, x, y): l(u) = I & «*, S(M)> ePF->3;^0&Z) yc Z>s(w))}

where s(w) is a recursive function with the property that for v > 0 s(f(v)) =
/(0). It follows that

ΛΓ€ 2? iff (Vf)(3v)(3y)((f(v), x , y ) e W γ & Dy<^ A)

hence by Proposition 4, (i) we have B ^he-^

Remark: The second part of Theorem 4 is actually a special case of the
following result: B ^ueA iff there is a RE set Wsuch that
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xe B iff (3f)(Vv)(3y)((f(v), x, y) e W & Dy c A).

The equivalence is still true if W is a Σ}-set.

Corollary Let F be a listing of the set A. Then CA ^heF.

Since A ^eF we have A ^ h e F and A ^heΨ ^eF. Hence CA ^UeF-

The degrees induced by the ordering ^heWe shall call he-degrees. Note
that AvB is again the least upper bound of A and B. If B ^eA and A is
Πί-set then B is also a Πj-set. On the other hand if B is a ϊlj-set then
B ^eA for every set A. From now on a Π}-set will be called a hyperenum-
erable (HE) set. The hyperjump of the set A will be written Ί(A). As usual
in place of T(0) we write just T.

Theorem 5 B is Πj in AiffB ^he CΛ.

If B ^ h e CΛ clearly B is Π} in A. To prove the converse assume that B
is π} in A. Then there is a primitive recursive predicate R(u, z, x) such
that

xe B iff (Vf)(Ξv)R(f(v), CA(υ), x)

and we may assume that whenever R{u, z, x) holds then z = CΛ(^) for some
set A and number v. Let d{u) be a recursive function such that whenever
d(f(v)) = y then Dy = {<#,/(#)): # < 0}. Define a RE set W as follows:

W = {(u, x, y): (3z)(R(u, z, x) & d(z) = y& l(z) = l(u)}

It follows then that

xeBUί (Vf)(Bυ)(3y)((f(υ), x,y)eW&Dyc CΛ).

Corollary

(i) B^T(A) iffB^heCA

(ii) CΛ^heT(A).

Theorem 6 B ^A iff CB ^ e CA.

B^hA iff both B and B are U\ in A, iff B ^heCA and ^< h e CΛ, iff

Cβ^heCΛ.

Let us recall that Wo, Wl9 . . . , Wn, . . . is an enumeration of all RE sets
such that the predicate xe Wy is also RE. If A is any set we define a set
W{A) as follows:

H(A) = {<*, «>: (V/)(3t;)(3y)«/(ί;), *, >̂ € ^ & Dy c A)}

If ^ ^he^ there is a number k such that

# € # i f f <jr, k)e H(A)

hence B^x A. On the other hand it is very easy to check that H(A) ^eA.

Proposition 5 A =ueB iff H(A) =1 H(,B).

Corollary H(CΛ) =1 T(A).
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3 Pseudo hyper arithmetical sets We shall say a set A is pseudo
hyperarithmetical (PHA) in case A ^eA.

Theorem 7 The following conditions are equivalent:

(i) C Λ

Ξ h e ^
(ii) H(Λ) ^ Ύ(A)
(iii) A zs_PHA
(iv) AM A =\,eA
(v) There is a listing F of A such that F ^eA.

_ (i) implies (ii) by Corollary to Proposition 5. (ii) implies (iii) since
A <! Ύ(A). The implication from (iii) to (iv) is trivial. To prove (v) from
(iv) the case A is finite is trivial and case A is infinite it is easy
to show that FA ^eAvA where FA is the strictly increasing listing of A.
Now (v) implies (i) by the Corollary to Theorem 4.

Proposition 6

(i) If A is PHA and A =e B thenB is PHA.
(ii) If A is PR then both A and A are PHA.
(iii) If A is PE then both A and A are PHA.

Let A be PHA and A =e B. Then A = h e B and A = h e £ . Hence B ^he ̂  ^he
A^heB. To prove (ii) note that in case A^eA then A ^\,eA and A^[^eA.
Now (iii) follows from (i) and (ii).

Note that Ύ(A) is not PHA; otherwise we should have T(T(A)) ^ TU)
and this is impossible. Hence no set of the form T(A) is ever PE_^ On the
other hand T(A) is PHA by the same argument used to show that A' is PR.
But T(A) is not PE, otherwise Ύ{A) would be PHA.

Proposition 7 IfA^hB^eA and B is PHA then A is PHA.

In this case we have CΛ ^he c β ^he^ ^he^

Corollary H{A) is not PHA.

Assume H(A) is PHA. Since A ^ H(A) ̂ \,eA we have that A is also
PHA. But then H(A) =λ Ί(A) so TU) is PHA. Contradiction.

Note that since A1 is PE it is also PHA. It follows from Theorem 7,
(i) that A is PHA if and only if A' ^eA. Hence Ar =\,eA". On the other
hand by Theorem 2 there is always some set B such that

A' <eB<eA"

where B is PHA but it is not PE. If A =he^ where A is PHA we shall say
that B is a pseudo hyper enumerable (PHE) set. The next theorem shows
that there is exactly two hyperdegrees in any PHE he-degree.

Theorem 8 Let A =\^eB where A is PHA. Then:

(i) Either A =h B or H{A) =h B
(ii) A =h Biff Bis PHA
(iii) B is not PHA iff H(B) <h B.
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Note that since A is PHA then H(A) =λ Ί{A) and furthermore A ^B. If
the proof of Theorem 16-XXXII in [5] is relativized to the set A we get
from B ^eA that either B ^A or H(A) Ξ h # This proves (i). To prove (ii)
note that B ^^A^eB implies B is PHA and in case B is PHA we have
B ^A. Now (iii) follows from (i) and (ii) noting that H(A) =x H(B) and H(B)
is not PHA.

In the next section we prove there are sets which are not PHE. We
have not been able to obtain any information on the hyperdegree structure
of the he-degrees of such sets.

4 Forcing We prove in this section there are sets which are not PHE.
The construction uses a forcing technique that was first introduced by
Thomason in [6], We shall construct generic sets A such that whenever
F ^heA and F is a partial function then there is a Πj extension of F. Such
set A is PHE if and only if A is HE.

First we note that the set H(A) can be defined by induction. In fact we
can define by induction a set H*(A) as follows:

(HI) If (u, x, y) e Wz and Dy c A then (u, x, z) e H*(A).
(H2) If for every number j, (u-j, x, z) e H*(A) then (u, x, z) e H*(A).

It follows that (x, z) e H(A) if and only if (1, x, z) e H*(A).

A condition C = ( d , C2) is a pair of finite disjoint sets of natural
numbers. If C1 = (Cj, C2) is another condition such that C1 c C{ and C2 c C2

we shall say that C1 is an extension of C. Now we define predicate
Kp(C,u, x, z) where p is some ordinal, C is a condition, and u, x, and z are
numerical variables.

(Kl) If C = ( d , C2) and there is some y such that (u, x, y) e Wz and Dy c Cγ

then Kp(C, u, x, z) holds for any ordinal p.
(K2) If for every number j and extension C1 of C there is ordinal q < p and
extension C2 of C1 such that Kq(C2,u -j, x, z) holds, then Kp(C, u, x, z) holds.

Proposition 8 If Kp(C, u, x, z) holds and C1 is an extension of C then
Kp{Cι, u, x, z) also holds.

Let C be the condition ( d , C2). Then C+ denotes the condition ( d , 0).

Proposition 9 If Kp(C, u, x, z) holds then Kp(C+, u, x, z) also holds.

The proof is by induction in the rules (Kl) and (K2). The case in which
Kp(C, u, x, z) holds by (Kl) is trivial. Assume Kp(C, u, x, z) holds by (K2)
and we show Kp(C+, u, x, z) also holds by (K2). Let C1 = (Cj, Cι

2) be an
extension of C+ and j some number. Since (Cj - C2, C2 U C2) is an extension
of C there is an extension C2 and ordinal q < p such that Kq(C2, u j, x, z)
holds. By the induction hypothesis Kq(C2+, u- j, x, z) also holds. If we take
C3 = (C2 U Cj, C\) we have by Proposition 8 that Kq(C3, u j, x, z) holds and
C3 is an extension of C1. It follows that Kp(C+, u, x, z) holds.

The predicate K(C, u, x, z) holds in case for some ordinal p

Kp(C, u, xt z) holds.
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Theorem 9 The predicate K{C, u, x, z) is a U\ predicate.

Since no upper bound is imposed in the ordinals it is clear that
K(C, u, x, z) is the least predicate that satisfies the following rules:

(i) If C = (C1? C2) and there is some y such that (u, x, y) e Wz and Dy c Cx

then K(C, u, x, z) holds;
(ii) If for every number j and extension C1 of C there is extension C2 of C1

such that K(C2, u, x, z) holds then K(C, u, x, z) holds. It follows that
K{C, u, x, z) is a Π} predicate.

Let C = (Cl9 C2) and A some set. We say that C is consistent with A in
case CXQA and C2^A = φ. The predicate Kp(A, u, x, z)(K(A, u, x, z)) holds
in case there is C consistent with A and Kp(C, u, x, z)(K(C, u, x, z)) holds.

A set A is quasi-generic in case the following two conditions are
satisfied:

(i) If Kp(A, u, x, z) holds then either there is y such that (u, x, y) e Wz and
Dy c A or for every number j there is ordinal q<p such that Kq(A, U'j,x,z)
holds.
(ii) If K(A, u, x, z) does not hold then for some number j , K(A, u jy x, z)
does not hold.

Theorem 10 Let A be a quasi-generic set. Then (u, x, z) e H*(A) if and
only if K(A, u, x, z) holds.

First we prove that whenever Kp(A, u, x9 z) holds then (u, x, z) e H*(A).
This follows immediately by transfinite induction on p using condition (i) in
the definition of A is quasi-generic. The converse follows by induction in
the rules defining H*(J4) and condition (ii) in the definition.

Next we shall consider a first order language £ for number theory
containing negation, conjunction, existential quantifier, constant, functions
symbols and predicate symbols with equality included. For each constant,
function symbol and predicate symbol some interpretation in the natural
numbers is assumed. If n is a number then n# is a term that denotes n. If
t is some constant term then §t is the numeral denoted by t. So #(w#) = n.
We extend £ to £γ by adding two new predicate symbols: S(x) and
S*(w, x, z). Whenever S is interpreted as some set A then S* is interpreted
as H*(A). If Mis a sentence in 4!i then k^AM means the Mis true if S is
interpreted as A.

The forcing relation C If-M between conditions and sentences in ^i is
defined as usual, but in the case M is the sentence S*(g, h, t) we put C II-M
if and only if K{C, %g, #h, #0 holds. If C is consistent with A and C\hM
then we write A \hM. We shall say that a set A is generic in case it is
quasi generic and for every sentence in ^ either A IhM or A lh~M.

Proposition 10 If A is generic and \jrAM then A IhM.

This property of generic sets is proved as usual, but in the case M is
the sentence S*(g, h, t) we use Theorem 10.
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Theorem 11 There is a generic set A which is not HE.

We proceed as usual by enumerating all sentences in -d in the form
Mi, M2,. . . and defining conditions C°, C1, C2, . . . where C° is an arbitrary
condition, Cn+1 is an extension of Cn and either C Ih Mn or C II—Λfβ. The
only difference is the case in which Mw+1 is a sentence of the form
S*(w#, x#, z§) for numbers u, x, z. In case there is an extension C of Cn

such that for some ordinal p Kp(C, u, x, z) holds we take one such C for
which the ordinal p is the least and put Cn+1 = C. Otherwise there is an
extension C of Cn and some number j such that for no extension C of
C K{C\u-j, x, z) holds. Then we put Cn+1 equal one such C. We put
A = U Cf and obviously we have to prove only that A is quasi-generic.

n

Let Mw be S*(w#, ##, 2#) and assume Kp{A, u, x, z) holds for some p.
This means Kp(Cn, u, x, z) holds so either there is y such that (w, ΛΓ, y) e PFZ

and Z)y c Cι c A, or for every number j and extension C of Cw there is
q < p and extension C" of Cr such that Kq(C", w j , Λ:, £) holds. But then if
MΛ is S*((M j)#, Λ?# , ^#) it follows that i^(C^, u j , x,z) holds also for some
q < p. Hence Kq(A, u j , x, z) holds.

Now with the same Mn assume that K(A, u, x, z) does not hold. In this
case Cn is taken such that for some number j there is no extension C1 oi Cn

such that K(C, u j , x, z) holds. Hence K(A, u j , x, z) does not hold.

Since the collection of HE sets is denumerable we can modify the
construction of A in such a way that for each HE set B there is Cn which is
not consistent with B. This makes A different from any HE set.

Theorem 12 Let A be a generic set and F a partial function such that
F ^eA. Then there is an extension of F which is a ΐl\ partial function.

Since F ^eA there is a number k such that

Fix) = y iff <1, (x, y), k) e H*(A) iff K(A, 1, (x, y), k).

Let M be the sentence:

~(3*)(3y)(3t;)(S*(l#, <*, y>, M) & S*(l#, (x, υ), M) & y Φ υ).

Since \JZAM there is a condition C = (Cn C2) consistent with A such
that C ihΛf. Now let R(x, y) be the following predicate: There is a condition
C, Cf is an extension of C and Zf(Cf, 1, (x, y), k) holds. Since K(C, u, x, z)
is a Πj predicate it follows that R(x, y) is also a Π} predicate. It is clear
that R(x, y) is an extension of F(x) = y. We must show that R(x, y) is single
valued.

Suppose R{x, y) and R(x, υ) both hold with y Φ υ. By definition there is
C1 = (Cί, d) extension of C and C2 = (C2, C2) extension of C such that
tf(C\ 1, {x, y), k) holds and K(C2, 1, (Λ:, I;), k) holds. Put C = (C{ U C2, C2).
By Propositions 8 and 9 it follows that K(C, 1, (x, y), k) holds and
K(C, 1, (#, y), )̂ also holds. Hence C is an extension of C such that
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C lhS*(l#, <##, y#), k#) & S*(l#, <##, v#>, fe#) & ;y# Φ v#)

and this is a contradiction with the assumption about C.

Corollary Tjf A is generic, F is a total function and F ^\^eA then F is hyper-

arithmetical.
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