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ON PROPOSITIONS

W. D. HART and COLIN McGINN

Traditionally, propositions have been assigned at least three roles:
meanings of sentences, objects of propositional attitudes, and bearers of
truth values. We are not certain that there is any one sort of entity which
can play all three roles; in particular it is not clear to us that the identity
conditions satisfied by entities playing one of these roles must coincide
with the identity conditions satisfied by entities playing another of these
roles. In recent years it has become fashionable to construe propositions
as functions of a certain sort, namely as functions taking truth values as
values. We regard this view of propositions as a version of (at least) the
traditional view of propositions as bearers of truth values; on this view, a
proposition bears the value truth if and only if its value as a function is
truth. Our aim is to specify what sort of functions propositions so viewed
are, and in particular to specify identity conditions for propositions so
viewed.

Before presenting our view, we state two reasons for identifying
propositions with functions. First, those who object to propositions often
do so on the grounds that their identity conditions are not clear. But the
identity conditions for functions are clear: functions are identical if and
only if they have the same values for the same arguments. So viewing
propositions as functions tells us at least what sort of identity conditions to
seek for propositions. Second, the identification of propositions with
functions seems intuitively natural. In general, a function assigns an entity
in its range to each entity in its domain. Propositions as bearers of truth
values seem intuitively to fit this characterization; they select a truth value
given how things are. Roughly and intuitively put then, a proposition is a
function which assigns the value truth to a sentence if things are as the
sentence says, and which assigns falsity otherwise. Thus the thesis that
propositions are functions into truth values seems both theoretically
well-motivated and intuitively plausible.

Usually those who identify propositions as bearers of truth values with
functions take them as functions from possible worlds to truth values.
Intuitively this is to identify a proposition with the function whose value is
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truth for all and only the possible worlds in which the proposition bears the
value truth. However, it seems to us that this view yields wrong identity
conditions for propositions. For since necessary truths are true in all
possible worlds and since there is exactly one function whose value is truth
for all possible worlds, this view has the consequence that there is exactly
one necessarily true proposition. This consequence seems counter-
intuitive to us; it seems clear to us that the prime number theorem and the
law of quadratic reciprocity are distinct propositions which necessarily
bear the value truth. Similarly, since necessarily equivalent propositions
are true in exactly the same possible worlds and since for each set of
possible worlds there is exactly one function whose value is truth for
exactly the worlds in that set, the view in question has the consequence that
necessarily equivalent propositions are identical. This consequence also
seems counter-intuitive to us. For example, if p is a contingently true
sentence and ¢ is a necessarily true sentence, then p and the conjunction of
p and g are necessarily equivalent contingently true sentences which will in
general express distinct propositions. Thus, when we consider the
modalities with which propositions bear truth values, it seems to us that
the now classical construction of propositions as functions from possible
worlds to truth values does not discriminate finely enough among proposi-
tions. Our aim is to make such finer discriminations possible.

To this end we return to the intuitive reason for identifying proposi-
tions with functions in the first place. A proposition is a function which
assigns truth to a sentence if and only if things stand as the sentence says
they stand. To formalize this intuition we introduce states of affairs or
truth conditions as fixing what sentences say. We view states of affairs as
segments of possible worlds, or, what comes to the same thing, we view
possible worlds as divided up into states of affairs. A sentence is true ina
world if and only if the state of affairs assigned to that sentence in that
world obtains in that world. Sentences express the same proposition if and
only if they are assigned the same truth conditions in all possible worlds.
This is the basis for our finer discrimination among propositions, our
more restrictive identity conditions for propositions. We also think our
view fits better than the classical view with the following train of thought:
When we contemplate some counterfactual situation, that is, when we
suppose true some sentence not actually true, we do not seem to conjure up
a whole possible world in which that sentence is true. Rather, we contem-
plate a state of affairs such that if it obtained our sentence would be true;
precisely how things stand in the rest of any world in which the contem-
plated state of affairs obtains seems in general irrelevant so long as there
is at least some full possible world in which that state of affairs obtains.

More precisely, our aim is to sketch a simple modification of possible
worlds semantics equal in power to conventional ones but respecting the
intuitions about identity conditions for propositions mentioned above. We
construct sets of of truth conditions or states of affairs such that for each
sentence ¢ in the languages L we consider and each possible world w, there
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is a unique a in o and w such that a obtains in w if and only if ¢ is true in
w. Our construction justifies us in introducing a function f whose value for
each ¢ and w is the required truth condition. We then require that
sentences ¢ and Y express the same proposition if and only if for all
worlds w, f(¢, w) = f(¥, w). As shall emerge below, our identity condition
for propositions allows considerable flexibility in constructing of. At first
blush it may seem odd that we permit a sentence to have distinct truth
conditions in distinct possible worlds; perhaps it will be thought that we
should assign truth conditions to sentences alone rather than to pairs
consisting of a sentence and a world. But it seems to us that a universally
quantified sentence of the form (x) Fx should be true in a possible world w if
and only if F is true of all the objects that are actual in w. Since different
possible worlds need not have exactly the same populations, it seems
preferable to us to permit a single sentence’s truth condition to vary from
world to world. We think similar remarks apply to sentences in which
occur singular terms which are not rigid designators, and perhaps other
sentences.

We now give a syntax for our first language L. L has a denumerable
infinity of sentence letters

P, P, ...

Atm is the set of all sentence letters of L. All sentence letters are
sentences. If ¢ and Y are sentences, so are (¢ & y), ~¢ and O¢. These
are all the sentences of L. So much for syntax. Turning to semantics, we
first sketch for comparison a conventional possible worlds semantics for
L. Let W be a non-empty set; intuitively, W is a set of possible worlds.
We take the numbers 0 and 1 to be the truth values truth and falsity
respectively. Let V' be a function from Atm x W to {0,1}; intuitively,
V(P;, w) = 0 if and only if P; is true in w. The pair U = (W, V) is a world
structure. The truth of a sentence ¢ of L at a world w in a structure U is
defined by induction on the complexity of ¢:

(1) P; is true at w in W if and only if V(P;, w) = 0;

(2) (¢ & Y) is true at w in W if and only if ¢ is true at w in W and Y is true
at w in Wu;

(3) ~¢ is true at w in W if and only if ¢ is not true at w in U;

(4) O is true at w in W if and only if for every ue W, ¢ is true at « in U.

A sentence ¢ of L is valid if and only if for every structure W and world w,
@ is true at w in W. As is well known, the valid sentences of L are exactly
the sentences of L which are theorems of S5.

We now sketch an alternative semantics for L. As before, let W be a
non-empty set; intuitively, W is still a set of possible worlds. We also
assume a non-empty set of; intuitively, f is a set of states of affairs. We
think of all possible worlds as sharing the same states of affairs; different
worlds are distinguished by which states of affairs obtain in them; some
states of affairs obtain in all worlds, others obtain in none, and still others
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obtain in some but not in all worlds. Let f be a function from Atm x W into
o; intuitively, f(P;,w) is the truth condition for P; in w. Let g be a function
from o x W into {0, 1}; intuitively, g(a, w) = 0 if and only if @ obtains in w.
A quadruple =AW, A, f, g is an interpretation: the truth of a sentence ¢
of L at a world w under an interpretation J is defined by induction on the
complexity of ¢:

(1) P; is true at w under ¥ if and only if g(f(P;, w), w) = 0;

(2) (¢ & Y) is true at w under 3 if and only if ¢ is true at w under I and y
is true at w under J;

(3) ~ ¢ is true at w under J if and only if ¢ is not true at w under J;

(4) O is true at w under J if and only if for each ue W, ¢ is true at u
under J.

We now prove that our alternative semantics is equal in strength to the
conventional semantics. First we show that for any structure Wt = (W, V),
there is an interpretation 3 such that for each we W and each positive
integer ¢, P; is true at w in W if and only if P; is true at w under J. Keep
W fixed. Let of be the set of positive integers, let f(P;, w) = ¢ and let
g, w) = V(P;, w). Then J=(W, o4, f, g) is the required interpretation.
Conversely, for each interpretation J = (W, o, f, g) there is a structure U
such that for each we W and each positive integer i, P; is true at w under J
if and only if P; is true at w in M. Again keep W fixed and let V(P;, w) =
g(f(P;, w), w). Then W=(W, V) is the required structure. By a trivial
induction it follows that for each structure W there is an interpretation 3
such that for any we W and any sentence ¢ of L, ¢ is true at w in U if and
only if ¢ is true at w under J. Equally trivially, for each interpretation 3
there is a structure W such that for any w e W and any sentence ¢ of L, ¢ is
true at w under J if and only if ¢ is true at w in M. Thus a sentence ¢ of L
is valid (or a theorem of S5) just in case for each interpretation J and
world we W, ¢ is true at w under 3. This completes our proof that our
alternative semantics is as strong as the conventional one. It is obvious
that this result can be extended to conventional semantics for L with
alternativeness relations.

Returning now to propositions, we must extend f so that f(¢, w) is
defined for each sentence ¢ of L. In effect we have already assumed that
for each sentence letter P; and each w there is a unique ae€ of such that a
obtains in w if and only if P; is true in w. To extend f we extend our
assumption. Thus, suppose that:

(1) for every ae o and we W there is a unique b€ of such that b obtains in
w if and only if @ does not obtain in w;

(2) for every a and b in of and we W there is a unique ce of such that ¢
obtains in w if and only if a obtains in w and b obtains in w;

(3) for every ae o and we W there is a unique b € of such that b obtains in
w if and only if for every u e W, a obtains in «.
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It is then evident that f can be extended in such a way that for any sentence
¢ of L and any we W, f(¢, w) is the unique element of o# which obtains in w
if and only if ¢ is true in w. For each sentence ¢ of L, let fo: W — o be
defined thus: for all we W, fo(w) = f(¢,w). For each sentence ¢ of L, let
g¢: o x W— {0,1} be defined thus: for any ae of and we W, gy(a, w) = 0 if
and only if g(a, w) =0 and fo(w) = a; otherwise, gy(a, w) = 1. Then let
Prop(®), the proposition determined by a sentence ¢, be gy. Thus Prop(¢) =
Prop () if and only if for all we W, f(¢, w) = f(y, w), as was promised
above. Let 7 be the set of all functions from of x W into {0, 1}; 7 is the set
of all propositions. Clearly, for any sentence ¢ of L, Prop(¢)e 7, as seems
desirable.

It should be apparent that our construction of propositions is indepen-
dent of the particular ways of might be constructed. To illustrate this fact
and to take some of the sting out of the apparent ontological excesses of our
assumptions about A, we give two examples. Suppose every positive
integer greater than one is in o and that whenever a and b are in o so are
{a, by, (0, @), and (1, a). These being the only elements of A4, of is
ontologically respectable. Suppose we have two possible worlds, w;, and w,.
For each positive integer nand k= 1, 2 let f(P,, wp) = (X k) + 1. Let

f(((p & lp), wl) = <f(¢y wl)) f(\P, wl)>, f((q) & W)7w2) = <f(¢7 w2)’ f(d/f w2)>7
f(N(p’ wl) = <0, f((pa w1)>; f(N(pa wz) = <0’ f((py w2)>y f(Dgo’ wl) = <1,f((py wl))
and f(@ @, w,) = (1, f(@, wy)).

If n is a positive integer greater than one, let g(n, w,) = 0 if and only if # is
odd and let g(n, w;) = 0 if and only if nis even. For k= 1, 2 and any pair
(a, bye A with a# 1 and a+0, g(a, b), wp) =0 if and only if g(a, w,) =
g(b, wy) = 0; if a=0, g((a, b), w,) =0 if and only if g(b, w) = 1; if a=1,
g(a, b), w) = 0 if and only if g(b, w,) = g(b, w,) = 0. It is then clear that
~(~P, & ~P;) and ~(~P, & ~P;) are true in both worlds though they
determine different propositions. Likewise, P, and P; are true in the same
worlds though they also determine different propositions. Of course, in this
example distinct sentences of L always determine distinct propositions. In
this respect and in our use of indices to satisfy the constraints on of, we
discriminate propositions about as finely as they would be using Carnap’s
device of intensional isomorphism.

We next give an example which discriminates propositions less finely
than above but more finely than does the classical view of propositions as
functions from possible worlds to truth values. To give this example we
extend our construction to quantified languages. Our new language L
contains an infinity of variables: x,, %, . . .; and of constants a,, a,, . . .;
and for each positive # and j a predicate F,” We shall write the predicate
Fias A; we intend this predicate to be interpreted as ‘‘is actual’’. If F}is
a predicate and y,, . . ., y, are variables, F/(y,, . . ., y,) is a formula. If ¢
and ¥ are formulae and y is a variable, then (¢ & ¥), ~¢, O¢, and (y)¢ are
formulae. These are the only formulae. Note that no constants occur in a
formula. A sentence of L is the result of replacing all free occurrences of
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variables in a formula by constants (where distinct occurrences of the
same variable are replaced by the same constant) or a formula in which no
variable occurs free; in the second case, the sentence is said to be constant
free. If (b, ..., by) is a sentence containing exactly the constants
by, ..., bx, then its corresponding formula ¢(x,, ..., x;) is got thus:
rewrite the bound variables in ¢(b,, .. ., b;) from left to right using the
earliest of Xp41, Xp+2, . . . compatible with avoiding collisions of bound
variables and then substitute x,, ..., x; for b,,..., by respectively in
alphabetical order.

Turning to semantics, let W be a non-empty set; W is still the set of
possible worlds. Let D be a non-empty set; intuitively, D is the set of all
possible individuals (naturally, all actual individuals are possible). We
think of all worlds as sharing the same possible individuals; that is, an
individual is possible in one world only if it is possible in all. Let v be a
function from W to the power set of D; intuitively, uv(w) is the set of
possible individuals which are actual in w. We should probably wish that

D= U o(w). If we wish to adopt a counterpart theory, we should require
ueW
that for distinct w and » in W, uv(w) and v () are disjoint; otherwise we can

let them meet. We make the second choice. Let Z be the set of all
sequences of elements of D, that is, the set of all functions from positive
integers to D. As shall emerge, this definition represents a choice to
quantify over possible individuals. We regard this choice as an evil
necessary to smoothing the truth definition; we shall use the predicate A
and the sets uv(w) to remedy this evil. Let i be a function such that for
each constant a;, each predicate F,” other than A and each w, i(a;, w) € D and
i(F}, w) C D"; we require that i(A, w) = o(w) for all w. Let f be the set of
all # + 1-tuples {(zy, . . ., 2, S) such that z,,...,2,¢eDand SC Z. Clearly
o is no more ontologically suspect than W and D unless one is backward
enough to have scruples about elementary set theory; as it were, o is a
logical construction from W and D. It is also clear that our ontology of
states of affairs can be accepted by those who object to possible but not
actual worlds and to possible but not actual individuals simply by letting W
be the unit set of the actual world and letting D be the set of all actual
individuals (pretending that the latter set exists—this is a problem we all
share).

To relate the syntax and semantics of L, we define an auxiliary
function E. Given i and a we W, E assigns each formula of L a subset of Z
as its extension. E is defined by induction on the complexity of a formula:

(1a) For predicates Fjother than A, E(F}(x,, . . ., %), i, w) = {oe Z|{a(k),
oo oy olkn)) €1(FT, w))

(1b) E(A(xy), i, w) = {ve Z|o(k) e a(w)};

(2) E((p &), i, w) =E(e, i, w) NEW, i, w);

(3) E@g,i,w) =[] E(o, i, u);

(4) E(~o,i,w) =2 - E(o, i, w);
(5) E(tp)e, i, w) = {oeZ[(VTeZ)(V] # k) [7(j) = o(j) .O. T€ E(g, i, w)]}.
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The truth condition function f can now be defined explicitly. Given i, a
we W and a constant free sentence ¢ of L, f(o, i, w) = E(¢, i, w). For

a sentence go(akl, . . . a,) with constants, f(e(a, ... @), i, w) is
(i(akl, w), . . ., g, w), E(p(x,, ..., x,), i, w)) where ¢(x,, ..., x,) is the
formula corresponding to ¢(ag,, .. ., akn). Note that for any sentence ¢ of

L, and i and any we W, f(¢, i, w) € o and that £ and f satisfy the extended
assumptions above. The function g: of x W — {0, 1} is defined thus: for any
(Z1y o o vy 2y SY €A and any we W, if n>0g(zy, . .., 2,, S), w) =0 if and
only if for some oe S and each j =1, ..., %, o(j) = z;; if n =0, g(S, w) = 0 if
and only if S is non-empty; otherwise, g((2:1, ..., 2,, S), w) = 1. In the
interesting cases, this means that if ¢ is a constant free sentence of L,
g(f(o,1,w), w) =0 if and only if E(¢,i, w) is non-empty, and for a
sentence ¢(a,, . . ., a,) with constants, g(f(@(a,, . . ., &,), i, w), w) = 0 if
and only if for some oce E(¢(x,, ..., %,), 1, w)andeachj=1, ..., n,00) =
i(a , w). We can now take an octuple (W, D, o, i, o, E, f, &) as an inter-
pretation of our quantificational language L.

It is not difficult to show that for each constant free sentence ¢ of L, if
E(¢, i, w) is non-empty, it is =. This result, usual for truth definitions,
assures that our truth function £ is well behaved. It was for this reason
that we quantified over all of D. But above we argued that a sentence should
be allowed to have different truth conditions in different possible worlds on
the grounds that a universally quantified sentence of the form (x) Fx should
be true at a possible world w if and only if the predicate F is true of all
individuals actual in w. To recover and respect this intuition, we introduce
two definitional abbreviations; let

(V.x)o
be short for
()(A(x) — @)
and let
3.0¢
be short for
B0(A() & @)

(using conventional short hand). It seems to us that if we then say that a
sentence of the form (x) Fx is true at a world w if and only if for a suitable i
and a corresponding expression ¢ of L, g(f((V.%)¢, i, w), w) = 0, then we
have respected the above intuition as well as can be expected.

Turning again to propositions, suppose that the function i has been
fixed. For each sentence ¢ of L, let f,: W — of be defined thus: for any
we W, folw) = f(@, i, w). Let go: of x W — {0,1} be defined thus: for any
ae A and we W, gola, w) = 0 if and only if g(a, w) = 0 and fy(w) = a; other-
wise gy(a, w) = 1. As before let Prop(¢), the proposition determined by ¢,
be go. Then Prop(¢) = Prop(y) if and only if for all we W, flg, i, w) =
f@, i, w). Let 7 be the set of all functions from of x W into {0, 1}. 7 is the
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set of all propositions. For any sentence ¢ of L, Prop(¢) e n. Thus on our
view propositions are functions from states of affairs and possible worlds
to truth values, while on the classical view they are functions from possible
worlds to truth values. But if we are to assign propositions to sentences on
the classical view, then in a way that view is a special case of ours. To see
this, let of be W, let f,: W — A be the identity function f,(w) = w and let
go: oA x W— {0,1} be defined thus: for any ae o and we W, gyla, w) = 0 if
@ is true in w; otherwise, gy(a, w) = 1. Let Prop(¢) be gy and let 7 be the
set of all functions from o x W into {0, 1}. Then for any ¢, Prop(¢) e . As
it were, on the classical view each world is just one big truth condition and
all sentences have the same truth conditions. We think our construction of
propositions allows for a more intuitive individuation of propositions than
does the classical construction, while retaining the classical insight that
propositions are functions into truth values. We prefer our construction
because we think that different sentences often have different truth
conditions.

We close with an appeal to authority. At 4.022 in the Traciatus,
Wittgenstein writes: ‘A proposition skows how things stand #f it is true.
And it says that they do so stand.” We think that our construction of the
proposition expressed by a sentence ¢ in two stages, f, and g, accords
well with Wittgenstein’s dictum. For gy(a, w) = 0 if and only if fo(w) = a
and g(a, w) = 0; one could think of the first conjunct as showing how things
stand in w if ¢ is true in w and of the second conjunct as saying that they do
so stand. It should also be clear that our construction of o for the
quantificational language L has something of a logical atomist hue about it,
though perhaps of a more Russellian shade than Wittgensteinian. (The
differences between these logical atomist authorities serve to emphasize
that our construction of propositions is independent of the particular ways
states of affairs themselves might be constructed.) To conclude in a logical
atomist tone of voice, we could say: The world is the totality of actual
states of affairs. States of affairs may be complexes composed of n objects
and an n-ary relation. But whatever states may be, the function of a
sentence is to pick out a state of affairs and say that it obtains. This
function can be identified with the proposition expressed by the sentence,
since sentences which say the same thing perform the same function and
express the same proposition.
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