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AN INDEPENDENCE RESULT CONCERNING INFINITE
PRODUCTS OF ALEPHS

JOHN L. HICKMAN

0* We work within ZFC (Zermelo-Fraenkel plus Choice) set theory, and
for typographical reasons denote (wherever possible) infinite cardinals by
lower case script letters instead of employing the usual aleph notation.
Infinite ordinals are denoted by lower case Greek letters (with " ω " being
reserved for the first such ordinal), and finite ordinals by "k", "m", "n",
etc. Ordinals are assumed to be defined in such a manner that each is the
set of all smaller ordinals.

Let α be an aleph. By "i(α)" we denote the corresponding initial
ordinal, by " α + " its successor cardinal, and by "cf(α)" the cardinality \η \
of the smallest ordinal η for which there is an increasing η-sequence (σ̂ ) of
ordinals σξ < i(α) such that \Ίmξ<ησξ = i(α). We denote by " Σ " and " Π " the
operations of generalized cardinal addition and generalized cardinal
multiplication. Furthermore, if Γ = (aξ) is any a- sequence of alephs, a
being a nonzero limit ordinal, we put */(Γ, ζ) = Σ{aξ; ξ < ζ} and -P(Γ, ζ) =
Π {aξ; ξ < ζ} for each ordinal ζ with 0 < ζ < a; for convenience, we put

*/(Γ, 0) = 0,^(Γ, 0) = 1,«/(Γ) =«/(Γ, a), and^(Γ) =^(Γ, a).

Let a be any nonzero limit ordinal, and (α )̂ any increasing en-sequence
of alephs. Then it is well-known that:

(51) lim{Λ(Γ, ζ); ζ<a} = J(Γ),
(52) Σ{J(Γ, ζ); ζ<a}=J(T);

where Γ = ( α ^ < α .

It is natural to ask whether the analogous results hold for multiplica-
tion, namely:
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(PI) lim{f(Γ, ζ); ζ<a} = P(Γ),
(P2) Π{ΛΓ, ζ); ζ < α } = ̂ (Γ).

Now (P2) does indeed hold; this is proved in [2]. That (PI) does not
hold in general is immediate from the following simple result.

Result 1 Let Γ = (αn) be any increasing ω-sequence of alephs. Then
lim{f(Γ,n);n<ω} < ^ Γ ) .

Proof: From the elementary properties of alephs we obtain ί>(Γ, w + 1) =
αw=*/(Γ, rc + 1). It now follows from (SI) that lim{^(Γ, n); n < ω} = */(Γ).
But Kόnig's inequality (the more general theorem of Zermelo is proved in
[1], p. 123) tells us thatW(Γ) < ̂ (Γ).

1 We have just seen that there exist increasing α-sequences (α̂ ) of alephs,
a being a nonzero limit ordinal, for which lim {P(T, ζ); ζ < a} < ^(Γ), where
Γ = (<iξ). Now clearly we have lim {P{T, ζ); ξ < a}^ P{T) for every increas-
ing limit sequence Γ of alephs, and so the question naturally arises as to
whether the inequality is always strict. Our interest thus lies in the
following question. What is the status of the statement (#) in ZFC set
theory?

For every nonzero limit ordinal a and every increasing a-sequence Γ of
alephs, lim{f(Γ, ζ); ζ < a}<ί>(Γ).

We shall show that (#) is independent of ZFC. The consistency part of
our demonstration requires a result of Tarski's; this appeared in [5], but to
the best of our knowledge no proof of it has ever been published, and so we

. take this opportunity of presenting one. The following proof of Tarski's
theorem depends, however, on a prior theorem of Tarski's, stated and
proved in [4]:

Theorem 1 Let p be an infinite prime component, and let Γ = (<iξ) be an
increasing ^-sequence of alephs. Put a = \\mζ<p^ζ. Then ^(Γ) = J p l .

The theorem in [5] that we require may be stated as follows:

Theorem 2 Let a be a nonzero limit ordinal, let Γ = (aξ) be an increasing
a-sequence of alephs, and put α= lϊm^<αct̂ . Then ^(Γ) = α'p' for some
positive remainder p of a.

Proof: We let a = px + . . . + ρn be the canonical prime component decom-
position of α, and for each i < n we define the ordinal σr as follows:

σo = 0;
or, = σ i - ι + Pi> l ^ i ^ n .

Now for each i with Π i ^ n w e define alephs Ί>,, c, :

<&./ = Π{ασ._1+^; I < p j ;
c, = lim ασ ί.1+^; I < Pi}-

Obviously we have /'(Γ) = 4Λ2 . . hn - mαχ{^l5 . . ., &„}, and by
Theorem 1 l{ = (ct )

| p^ for each i. Thus ^(Γ) = max {(cf )'
p/l 1 ̂  i ^ n}; let j
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be such that (c/ )
| p/1 = ̂ (Γ) . Now clearly c ; < c , and so (cy )

| p/' < (<c»)|p''. On
the other hand we have \pn\ ^ | p ; |, and hence (cn)lp;l = ((<3w)'Pw')'P/' ^
((c ; )'p/')'p;' = (cy)'p/', since all the p# are infinite. Thus we have shown that
^(Γ) = (cw)lpΛ But of course c w = α and |p . | = |p . + . . . + pn\.

We state the Generalized Continuum Hypothesis in the form usually
known as the Aleph Hypothesis:

For every aleph α, 2α = α + .

It is of course well-known that GCH is relatively consistent with ZFC.
It follows that any result derivable from GCH is also relatively consistent
with ZFC.

Result 2 The statement (#) is relatively consistent with ZFC.

Proof: We assume GCH, and show that (#) follows from this assumption.
Let Γ = (α )̂ be an increasing a-sequence of alephs, a being a nonzero limit
ordinal, and put α = \\mξ<a<Xξ. Then by Theorem 2 we have-^(Γ) = α'p ' for
some positive remainder p of a. Clearly we have ^(Γ) <<Jα' , and so if τ is
the smallest positive remainder of a, it follows that cJΓl < f ( Γ ) ^ α'α' . Let
β be the smallest ordinal such that a = β + τ. Then the increasing r-
sequence (<Xβ+j)ξ<T of alephs has limit α, and it follows easily that cf (α) ^ I r |.
Hence α c f ( < i ; ) ^^(Γ) . On the other hand, it is clear that \a\^a and so
4>(T) ^α<\ Now it is well-known that under GCH we have άcKd)= cT = d+ for
every aleph ά. We thus see that under our assumption of GCH we have
*>(Γ) = < χ + .

Exactly the same argument shows that for each nonzero limit ordinal
γ < a, we have ^(Γ, y) = (lim^<γα^)+^αy, whence it is easily seen that
^(Γ, ζ) ̂ α ζ for each ζ < a. However, (α )̂ is an increasing α-sequence, and
s o ^ < α for each ξ < a. Thus we have lim {P{T, ζ); ζ < a]<α. This shows
that lim {P(Γ, 0 ; ζ < oί] < *>(T).

2 In this section we show that—assuming ZFC consistent— (#) is unprovable
in ZFC. The obvious method of doing this is to produce a ZFC-model in
which there is an increasing en-sequence Γ (for some nonzero limit ordinal
a) such that lim {P(Γ, ζ); ζ < a] = f>(T) . and this in essence is what we do.
More precisely, we show that the assumption of a certain variant of GCH
that is known to be relatively consistent with ZFC implies the existence of
such a sequence.

Our first problem is to find a suitable variant of GCH; and our next
result provides some clues in this direction.

Result 3 Assume that there is a nonzero limit ordinal a. and an increasing
a-sequence Γ = (aξ) of alephs such that lim{^(Γ, ζ); ζ<a} = ΐ>(Γ). Then
there exists a nonzero limit ordinal γ and an increasing γ + ω-sequence
Δ = (&ξ) of alephs such that

(1) Ίγ+ψ+1 = {lγ+φ)+, ψ < ω;
(2) f(Δ,y)=f(Δ).



AN INDEPENDENCE RESULT 247

Proof: Assume the hypothesis, and let a be the least nonzero limit ordinal
for which there is an increasing α-sequence Γ = (aξ) such that Mm \f (Γ, ζ);
ζ < α} = ^(Γ) . We claim that a = y + ω for some nonzero limit ordinal y.

For suppose not; then we must have a = ω2δ for some nonzero ordinal
δ. We claim firstly that there is θ < a such that ^ ( Γ , θ) = ̂ (Γ). For the
α-sequence (^(Γ, ζ))ζ<a is certainly nondecreasing, and so if no such 6
exists, then (^(Γ, ζ))ζ<a must contain a strictly increasing and cofinal
subsequence (f(Γ, ζ χ )) χ < Γ . Now clearly lim{^(Γ, ζχ); X< τ}= lim{ΛΓ, ζ);
ζ < a} = ̂ (Γ), and so by (SI) we have J((t>(Γ, ζx))) = ̂ (Γ). Moreover, by
(P2) we have f ( ( f ( Γ , ζx))) < f (Γ) ; thus />((ΛΓ, ζx))) W((/>(Γ, ζx))). But
Zermelo's Theorem tells us that«/((^(Γ, ζx))) < f ( (^(Γ, ζx))). This contra-
diction shows that no such subsequence {-P{T, ζx)) can exist, and so there
must be θ < a for which f>(Γ, θ) = -P(Γ).

Let θ be minimal in this respect. Since a = ω2δ, we must have
θ + ω < a. But we know that ^(Γ, θ) = ̂ (Γ) = ̂ (Γ, 0 + ω). Hence if we put
Φ = ( α ^ < ^ + ω we have fonnd a 0 + ω-sequence for which lim {^(Φ, ζ); ζ < 0} =
^(Ψ). As 0 +co< a? this contradicts the choice of a. Thus it must be the
case that a = γ + ω for some nonzero limit ordinal y, since the case a = ω is
ruled out by Result 1.

We now define an a-sequence (tξ) of alephs as follows.

(1) l ξ = nξίoτ ξ<γ;
(2) 4 y = lim{Cξ, ξ < y } ,

(3) V ψ + i = ( V ψ ) + f o r Ψ < ω-

We must show that lim{^(Δ, ζ); ξ < α} = ̂ (Δ), where Δ = (lξ)ξ<Oί. Now
since ^-ξ^^iξ for each | < a, we must have ^(Δ) ^ ^(Γ). As we obviously
have ^(Δ, y) ^ ^(Δ), it suffices to show that ^(Δ, y) = ̂ (Γ) .

Assume that ^ ( Γ , y) < ^(Γ). We know that the α?-sequence (^(Γ, ζ))
has no increasing cofinal subsequence, and so we must have -^(Γ, y + ψ) =
^(Γ) for some nonzero ordinal ψ < ω. But by the elementary properties of
alephs we have ^(Γ, y + ψ) = ̂ (Γ, y)<iy+ψ. Thus the assumption ^(Γ, y) <
^(Γ) implies that αy+t/, = ̂ (Γ). This, however, is impossible, since we have
Όy+ψ < v>γ+φ+i ^ ^(Γ). Hence we must have ^(Γ, y) = ̂ (Γ).

From the definition of Δ we obtain ^(Δ, y) = ̂ ( Γ , y): thus ^(Δ, y) =
^(Γ). As this gives ^(Δ, y) = ̂ (Δ), we have shown that the sequence Δ has
the required properties.

In order to show that (#) is independent of ZFC, we make use of the
fact (see for example Chapter 8 of [3]) that it is relatively consistent with
ZFC to assume that 2U= tfy+ω+i for every aleph α ^ ttγ+ω, where y is a pre-
viously specified nonzero limit ordinal. We also require the following two
theorems of Tar ski, given in [4]; the first is his well-known recursion
formula.

Theorem 3 Let σ, r be any two ordinals, and a an aleph with α ^ | τ | . Then

(κ σ + r )
α =(>υ α (fcw)M.

Theorem 4 Let a be any nonzero limit ordinal, and put Γ = {#^ξ<a. Then
f(T) = (tyl"! .
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Result 4 If ZFC1 is consistent, then (#) is improvable in ZFC.

Proof: Let γ be a specified nonzero limit ordinal, and assume that 2α =

tfy+ω+1 for every aleph α < tfy+ω. Put Γ = (#ξ)ξ<γ+ω. We claim that -P(Γ, γ) =

^(Γ); it follows from this of course that lim {P{T, ζ); ζ < γ + ω} = ̂ (Γ), and

hence that (#) is unprovable in ZFC—assuming that ZFC is consistent. For

by Theorem 4 we have P(T, γ) = (tfy) , where <χ = \γ\. Since γ is infinite, we

have | y | = ly + col, and so by Theorem 4 again, ^(Γ) = (^ y + ω)α. But of

course α ^ |ω|, and so by Theorem 3 we have ( « y + J α = (KyΓ (^y + ω)wo. Now

it is a well-known fact that c c = 2C for every aleph Ό . Thus (^y+ω)^° ^ 2^>/+ω =

fy+ω+i = 2 α ^ (»y)α. Hence we have ^(Γ) = ( « / = ̂ (Γ, r ) .
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