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LOGICS FOR KNOWLEDGE, POSSIBILITY, AND EXISTENCE

RODERIC A. GIRLE

In [2] completeness proofs were set out for several possibility pre-
supposition free logics. Use was made of the kind of semantics to be found
in Hintikka’s work, especially in [3] and in Knowledge and Belief [4]. It is
of interest to extend the possibility pre-supposition free logics by means of
epistemic modalities similar to those in Knowledge and Belief, and by
means of alethic modalities. In what follows we will be concerned with
extensions of QHi, or systems isomorphic with QHZ. Such extended logics
could deal with sentences such as ‘‘John knows that the round square is an
impossible object,’”’ ‘“Everybody knows that Mr. Pickwick is an imaginary
character,’”” and ‘‘Mr. Pickwick knows who the Queen is.”’

As in [9] we use the quantifiers 7 and T to range over objects said to
be real and objects said to be possible. We will also use the quantifiers U
and E, as in [4], to range over objects said to be real or existing. The
formula ‘(Zx)(x = @)’ would be translated as ‘a is a possible object’, and
“(Ex)(x = a)’ as ‘a exists’. In order to avoid some of the problems which
arise in [4] as a result of reading ‘K,p’ as ‘a knows that p’ and reading
‘P,p’ as ‘It is possible, for all that a knows, that p’, and holding ‘P,p =
~K,~p we have two epistemic operators, P and K. ‘K,p’ is read as
above. ‘LP,;p’ is read as ‘P,p’ above. Whereas it is indefensible in the
logic in [3] to say ‘~K,T’ where T is a tautology, in the logics set out below
we can defensibly say ‘~ K,T’ even though it is clearly indefensible to say
¢ LPa ~T°.

1 Primitive symbols:

improper symbols O ~ 7 U K LP () ©

bound personal variables X, y,, 2o, X1, V1, Z1, X2, V2, 225 - - .
free personal variables a,, b,, ¢y, a,, by, ¢y, @y, by, Cyy . . .
bound impersonal variables iy, jo, Ro, 21, j1, B1, @2, J2, B2y -« - -
free impersonal variables Sq, £y, %y, S1, L1, Ui, Sz, Loy Uy . . .
propositional variables p,, q,, 70, P15 15 715 Doy G2y Vay - - -
n-ary predicate variables (n = 1) F{, Gy, Hy, F, G7, H, . . .
predicate constants =, E
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2 Formation Rules:

(i) A propositional variable standing alone is a wif.

(ii) If F”1is any m-ary predicate variable, and if w,, .. ., w, are n free
personal or impersonal variables (not necessarily distinct nor of only one
kind) then

" .
Fiwg...w, 15 2 WEL.

(iii) If @ and b are any free personal variables (not necessarily distinct)
then a = b is a wff.

(iv) If s and fare any free impersonal variables (not necessarily distinct)
then s = £ is a wff.

(v) If wis a free personal or impersonal variable then Ew is a wff.

Wffs according to (i) to (v) are atomic wffs.

(vi) If Ais a wff, so is ~ A.

(vii) If A and B are wffs, so is (A D B).

(viii) If A is a wff and ¥ is any bound personal variable and a is any free
personal variable, then both (7x)(A(x//a)) and (Ux)(A(x//a)) are wffs where:

If A is a wif and X is a personal variable free or bound and Y is a personal
variable free or bound, then A(X//Y) is the result of substituting X for zero
or more occurrences of Y in A, and A(X/Y) is the result of substituting X
for every occurrence of Y in A.

‘(ix)’ is the result of substituting ‘impersonal’ for every occurrence of
‘personal’ in (viiij, and ‘¢’ for ‘x’ and ‘s’ for ‘@’.

(x) If Ais a wff and a is any free personal variable then K A is a wff, and
Lp,A is a wff, and a will be said to be an epistemic subscript in such wffs.
(xi) If Ais a wff, then O A is a wff.

We also adopt the usual definitions of the improper symbols &, v, and =
in terms of ~ and D, and (ZX)A =4 ~ (1X) ~ A, (EX)A =af ~(UX) ~ A, PA =y
~K,~ A, KA =y~ TPy~ A, 0A =y ~ O~ A, and write ~(a = b) as a # b.
We also adopt the convention that X, Y, Z, X,, Y,, Z,, . . . can stand for any
free or bound variable permitted by the formation rules. We define ‘‘fully
Kmodalized’’ as follows:

p is not fully Xmodalized when p is any atomic wff. ~A is fully Xmodalized
iff A is. (A D B) is fully Xmodalized iff A and B are both fully Xmodalized.
LK,A is fully Kmodalized.

3 Axiom Schemata:

AD(BD A)
(AD>(B>2C)>(A>B)>A>D0)
(~BD> ~A)D (A2 B)

K,(A D B) D (K,A D K,B)

(Ex)(x = a) D (K,A D A)

(Ex)(x = a) D (Ex)(x = b) D (KK, A D KA))

S O W N
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7. LK. A D B) O (*K,A D LK,B)
8. (Ex)(x =a) D (FK,A D A)
9. rk,ADLK,'K,A
10. L“K,A D A, provided A is fully Kmodalized.
11. (Ex)(x = a) 2 ((Ex)(x = b) D (*K, 'K, A D 'K, A))
12. LK,AD ~LK, ~ A
13. tp,AD PA
14. K,AD MK,K,A
15. O(AD>B)D(@MAD>OB)
16. OA DA
17. CADOCA
18. (Zx)(x = a) O (K,A D OA)
19. Zx)(x=a) O (*K,AD OA)
20. Ea O (K,A D A)
21. EaD (LKA D A)
22. Ea D (Eb D (KA O KA))
23. Ea D (Eb D (LK,'K,A D LK,A))
24. A D (1X)A, provided X does not occur in A.
25. (1X)(A 2 B) D ((nX)A D (1X)B)
26. Y)Y =X)D ((12)A D A(X/Z)) provided Z occurs in A.
27. @X)EY)(Y = X)
28. (EY)AD (ZYV)A
29. (rY)A D (UV)A
30. A D (UX)A provided X does not occuy in A.
31. (UX)(A D B) D ((UX)A D (UX)B)
32. (EX)(X=7Y)D ((UX)A D A(Y/X)) provided X occurs in A.
33. (UX)(EY)(Y =X)
4. X=X
35. X =Y D (A D A(X//Y)) provided A is an atomic wff.
36. ExD CY)(Y =X)

Rules:

Rl A,ADB— B

R2 A — (1X)(A(X/Y)) provided X does not occur in A.
R3 A-—IK,A

R4 A-0OA

R5 A — (UX)(A(X/Y)) provided X does not occur in A.

4 The Systems QHZE, QHE, QHEM, QHK, and QHKE can be axiomatized
using sets of axiom schemata and rules as follows:

QHE ={1- 14, 24 - 35; R1 - R3}

QH2E ={1-4,7,9, 10, 12 - 14, 20 - 27, 34 - 36; R1 - R3}
QHEM = {1 - 19, 24 - 35; R1 - R4}

QHK ={1-3,7- 12, 30 - 35; R1, R3, R5}

QHKE = {1 - 14, 30 - 35; R1, R3, R5}

It will also be clear that ¢ is a primitive symbol in QHEM only, and
2(xi) is a formation rule in QHEM only. E is a primitive symbol in QHZE
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only and also 2(v). 7 is not a primitive symbol in QHK nor QHKE and 2(viii)
must be suitably amended. E is not a primitive symbol in QH2E and
2(viii) must be suitably amended.

The System QH2ZE is an extension of QHZ with the epistemic modalities K
and tP,

QHE is isomorphic with QHZE, but uses the quantifiers U and E instead of
the predicate constant E.

QHEM extends QHE by the introduction of ¢ and its axioms.

QHK is a system somewhat like that in [4].

QHKE has both modalities K and “P where QHK has only P.

In what follows there is a completeness proof for QHE. It will also be
obvious from the axiom schemata that the logic of & alone is isomorphic
with S5 (cf. [8]), the logic of P alone is isomorphic with S4 (cf. [7]) for
existing knowers and with D4 for imaginary knowers, and the logic of K
alone is a weak system which could be called E0.5. The logic for both
quantification systems is isomorphic with QH2. Following the proof of
completeness for QHE there are appended some remarks concerning
various features of QHE and the other systems.

5 We define QHE-consistency for formulae as in [6], i.e.,
QHE-consistent (A4) .=. -igye~4
also
a finite set of formulae of QHE, {4,, . . ., A,} is consistent iff
doue~ A & ... & A,),
and

an infinite set of formulae of QHE, A, is consistent iff it contains no not
consistent finite subset.

We also define a maximal consistent set of formulae as in [2].
The following can be proved:

L1. If A is maximal consistent velative to QHE, then for any wff A, A and
~A ave not both in A.

L2. If A is maximal consistent velative to QHE, then for any wff A, either
Aor ~Ais inA.

L3. If A is maximal consistent relative to QHE, then for any wffs A and B,
if Ae A and (A D B)e A, then Be A.

L4. If A is maximal consistent velative to QHE then all the axioms and
theovems ave in A.

Similarly, if A; is an infinite set of formulae of QHE which contain only
those free variables that are in some infinite set of free variables, such as
dy, where
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dk, = ag, b(’)e, c(];', S(I;" ttl)ex u’é, afy o ooy
then L1%, L2', L3', and L4' can be proved. L1%, L2', L3, and L4" are the
result of substituting A; for QHE in L1, L2, L3, and L4 respectively, and
adding ‘‘provided that they are themselves in A;”’.

6 In order to show QHE complete, we show that if any formula A is
QHE -selfsatisfying, then Iggg4; or for every QHE-consistent formula
there is a satisfying QHE - Model.

Procedure: Given a formula, A, which is QHE-consistent, we construct,
beginning with A, a system of maximal consistent sets, and we construct a
QHE-Model which satisfies the formulae in the system and therefore
satisfies A itself.

Let the system of sets be K, and the sets in K are also members of at
least one pair of disjoint sub-sets of K such that for any @ and Af, eK (0<

i< > 1) (N,, N;) where N, C K, N; C K, N,N\ N, = §. Assume that
]Va = {Agly Agz, .« ooy Agn, .. .} (n = 1),

and that
Ny={a%, AL, oo o A%, .. J(R=1).

K is the smallest such set and has the following features:
(a) Ae A and either A = A, or A = Af, for some a.

(b) For every A5, (1=n>0,m=>1) in K and every wff of the form ~ 'K,B
in A%, there is an lalternate, maximal consistent set Aﬁ,- (j = 1) such that

(i) Ao, €N,

(ii) ~ Be Ab

(iii) for every wif of the form LK,C m A% Lk,C e A .and Ce Aﬁj, and for
every wif of the form K,D in A%, K,De Ao, and De Ao]

(iv) @ and b are not necessarily distinct.

(c) For every AL;(é = 1) in Ny(a%, = NG and for every wif of the form ~"K,B
and every wif of the form ~K,B in Ao,, there is an alternate, maximal
consistent set A%(k > 1) such that

(1) Alkf Nb
(ii) ~Beab,
(iii) for every wif of the form K,C in A%; C e A%,.

(d) For every Alp( p=1) and for every wff of the form ~“K, B and every wif
of the form ~K,B in Alp, there is an alternate, maximal consistent set
Alg(g > 1) such that

(i) Alg eN,,
(ii) Be Alg
(iii) for every wff of the form K,C in All, ~Ce Alg.
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7 Beginning with any QHE-consistent (A) we can construct a single
maximal consistent set, A, of formulae of QHE, such that A has the
Pk-property.

First we define the P-property (cf. in [2], p. 53, the P,-property). A set, A,
is said to have the P-property iff for every wff of the form (ZX)B in A
there is also in A a wif of the form (ZX)(X = Y) D B(Y/X), provided X
occurs in B, for some Y.

To ensure that A has the P-property, we begin with some definitions:
(i) Any wff of the form
(ZX)B > ((ZX)(X = ¥) D B(Y/X)),

provided X occurs in B, we shall call a P-formula with respect to Y, or a
pY-formula.

(ii) All P-formulae which differ only in that each is a P-formula with
respect to a different Y (a free variable) will be said to have the same
P-form.

Clearly the P-forms are enumerable.
(iii) Let the P-forms be enumerated thus:
P, Py, Ps, ..., P, ...
and let
P =1{x/3))x = P)},

then a set of wffs has the P'-property iff it is a superset of a selection set
for #.

If a maximal consistent set, A, of QHE has the P'-property, it also has the
P-property.

Secondly, we define the 'P-property in the same way as the P-property
above, except that we substitute E for T at every point, and ‘P for P.

If 2 maximal consistent set, A, of QHE has the 'P'-property, it also has the
'P-property.
Thivdly, we define the Pg-property thus:

(i) Any wif of the form (ZX)B D ((ZX)(X= Y) D B(Y/X)), provided X occurs
in B, is a Pg-formula with respect to Y, or a P,‘é—formula.

(ii) Any wiff of the form (EX)B D ((EX)(X = Y) D B(Y/X)), provided X occurs
in B, is a Pg-formula with respect to Y, or a P}(/-formula.

In virtue of (i) and (ii), every PY-formula and every 'PY-formula is also a
Px-formula.

(iii) All Pg-formulae which differ only in that each is a Pg-formula with
respect to a different variable will be said to have the same Pg-form.
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Clearly the Pg-forms are enumerable.

(iv) A set of wffs has the Pg-property iff it contains at least one Pg-
formula for each Pgx-form.

If 2 maximal consistent set has the Pgx-property it also has the P-property
and the 'P-property.

Fourthly, we assume that the wffs on QHE are arrayed in some standard
ordering, similarly the Pg-forms.

Fifthly, the proof of the following lemma can be retrieved from [2], with
suitable modifications:

Lemma (A). If A is a consistent set of formulae, none of which contains Y,
and G is a Py-formula, then A U {G} is consistent with respect to QHE.

8 To construct K:

(a) First we construct A, beginning with {A} (cf. [6], p. 175). Let the free
variables in A be X,, ..., X,. Let us now suppose that all the other free
variables are arranged in an infinite series of infinite sets, each of which
is to be associated, in a way to be set out below, with one of the maximal
consistent sets in K. Let us write each free variable with a superscript as
follows:

1 1 1 1 1 1 1 1 1 1 1 1 1
dl = {ao, bO’ Co, Soy tO, Uy, Ay, bla Ciy S1, tl: Uy, Ay . . }
_f2 .2 2 2 2
d2 - {(10, bO’ Cos So, tg’ Upy - - }
‘ _ k pk bk k 3k ,k
dk_ {ao’ bO’ Co5 So, to; Ugy « -« }

Let A; be the set of all those wffs of QHE all of whose free variables either
occur in A or are members of d,. Having begun A with {4} we then give the
set the Px-property by adding for each wff of the form (£X)B in A,, a wff of
the form (EX)B 2 ((TX)(X = Y) D B(Y/X)), provided X occurs in B, where Y
does not occur previously in A but is drawn from d,, and also for each wff
of the form (EX)Bin A,, a wff of the form (EX)B D ((EX)(X =Y) D B(Y/X)),
provided X occurs in B, where Y does not occur previously in A but is
drawn from d,. The formulae are added to {4} alternately. Then we make
the set maximal consistent for A,. So A is maximal consistent with respect
to QHE for the free variables ind; and A. Let the set of free variables in
d, and A be d;.

(b) Then we show that for some b, either

taking A = A%, (Agler) and some maximal consistent set A' taken to be
A'= A% (i = 1), where A' has the Px-property and is maximal consistent
relative to some A, as set out above, we can construct for any wif of the
form ~LK,B in A%, an Lalternate, maximal consistent set A%;(j>1) con-
taining ~ B and every wff LK,C and C such that LK,,C € AL; and every wff K,D
and D such that K,De Ag,-; and we can construct for any wff of the form
~K,E in A}, an alternate, maximal consistent set A%, (k> 1) containing ~ E
and every wff D such that K,De Agi,
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or

taking A = A’fl(Auer) and some maximal consistent set A' taken to be
Al = Afp(p > 1), we can construct for any wiff of the form ~'K,B in Alp the
same Lalternate, maximal consistent set, Ao,, as above; and we can
construct for any wff of the form ~ LK,B and any wif of the form ~K,B an
alternate, maximal con51stent set Alg(g 1) where Alg contains B and every
wif ~ D such that K, D¢ Alp

(c) We begin by taking A = A%, and for A’ we construct AO, and A%. Let AL)

be a subset of the mth set to be constructed in K, and ab k a subset of the lth
set to be constructed in K.

(i) We begin Ag;' with ~ B.

(ii) We then add every wff LKbC and C such that 'K,Ce AOI, and every wif
K, D and D such that K, D¢ Ab;. The set so constructed is Ab”

(iii) We begin A%, with ~E.

(iv) We then add every wff D such that K,De A(b,,-. The set so constructed
is AII’Z.

(d) We then take A = A% and for A’ we construct Al{;’. Let A’f'g' be a subset of
the nth set to be constructed in K.

(i) We begin A%, with B.

(ii) We add every wif ~D such that K,De A’. The set so constructed is Alfg'.

! . . . .
(e) We now show Ag'] to be consistent. Assume Aﬁ',-' is inconsistent. Hence,
there are formulae:

LK,C ,"K,C,, . . ., “K;Cysuch that “K,Ce A’
and
KDy, KyD,, . . ., K,D,, such that K,De A’
such that
QHE~(Kbcl&...&LK,,cn&cl&...&c,, & KDy & .. . & KD, & D, &
.& D, & ~B).
Hence

tgre "KLK, Cy O (... D (*K, LKGC, O (PKL,Cy D (... D (PK,C, O (KK D, O
(...2>(KKD, > *K,D, D> (...>2 ("D, DLKB) ...))) ..)) .. ...,

and since A' is maximal consistent then 'K,Be A’ but ~ LK,Be A' so, by
reductio ad absurdum, Ag']-' is consistent.

(f) We now show that either Af/;' or Afg is consistent. Assume both incon-
sistent. Therefore:

IQ—HEN(Dl&&Dm&"’E)
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and

e~ (~D:1 & ... & ~D, & E).
So tgme KD, D (. . .2 (*"KyD, O LKLE) . . ) (R3, Def &)
and tgug "KyE O (“Ky ~(~Dy & . . . & ~D,)). (R3, Def &)

Since each 'K,De A’, then 'K, Ee A’

and ‘K, ~(~D, & ... & ~D,)eA".

Since tgrelK, ~A D ~K,A, (Ax12, Ax13)
then ~Kp(~D, & . .. & ~Dy)eA’.

So in at least one case E=(~D, & ... & ~D,),

so tgre~(D:1 & ... & Dp& ~(~D; & ... & ~Dy,)),

so tgue~(~D1 & ...& ~Dp) D ~(D1 & . .. & D)

and also lggg~(~D, & ... & ~Dp & (~D; & . . . & ~Dy)),

SO QHEN(DI &...& Dm)

so A(,], which contams D,, ... Dyis 1ncons1stent but Al,] is consistent.
Hence, by reductio ad absurdum one of Alk or Alg is consistent.

(g) (i) So we construct Ao; (A C Ao,) as follows:

We take Ao,- and give the set the Pg-property by adding for each wff, in the
appropriate Ag, of the form (EX)B, and for each wff of the form (ZX)B,
where X occurs in B, wffs of the forms

(EX)B > ((EX)(X = Y) 2 B(Y/X)) and (ZX)B > ((ZX)(X = Y)> B(Y/X))

where Y is a new variable in each case always drawn from the new set d,,.
By Lemma (A) A{;’,. is consistent if Ag;' is.

(ii) We construct Af,’,- by maximizing Ai’,; with respect to Ag.

(h) Also we construct on either Alk or Alg, for whichever is consistent,
either Alk or AY 1g respectively by the same method as in (g) above.

9 For a proof of the Completeness of QHE we show that we can construct a
satisfying QHE-Model for A when A is QHE-consistent (4). Consider a
Hintikka type model as follows:

(2, ®, C) is a QHE-Model where Q is a model system of maximal model
sets (cf. [2]) such that the members of © are also members of at least one
pair of disjoint subsets of @ such that for any a p,] eQ (0= 1,j=1)
(T,, TH where I, CQ, [,CQ, T,NT)=0,

Ty= {6, bl o - o Uow - - . F (R = 1),
and

Lo = {uth, pizs - o s Wiy - - .} (R 2 1);
& is a function from d, the set of sets of free variables as set out in 8(a)
above: d,, d,, ..., dp, ..., to the members of Q in their order of con-

struction; and where C is a set of consistency rules for deciding which
formulae of QHE can be included (or embedded) in any pj; (any p).
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We define & set (u): & set (u) is the union of all the setsd,, d,, . . ., d,
together with the set of free variables in the given QHE-consistent (4),
where (» > 1) and u is the #th set to be constructed in the QHE-Model for A.

The basic concept is that of Satisfiability:
(Fa)(3)EH(12i>0) &(j 1) & (K,B) & (Aepf)) .= Satisfiable (A).
Also
‘Self-sustaining (A) .=. ~ Satisfiable (~A).
The membership of C is as follows for QHE Satisfiability:

(C.~) If 4 contains an atomic formula it does not contain its negation.

(Cc.D) If (A D B)eu, then either ~A ey, or Bey, or both.

(Co~m) If ~(nX)A€u, then (ZX)~Aepu.

(C.~Z) If ~(ZX)Aepu, then (1X)~A€p.

(C.~U) If ~(UX)A€p, then (EX)~Aep.

(C.~E) If ~(EX)Aepu, then (UX)~Ace€p.

(C.~'K) If ~LK,Aep, then “P,~Ac€p.

(C.~LP) If ~LP,A€pu, then 'K, ~Aep.

(C.~K) If ~K,A€cu,then P,~Acep.

(C.~P) If ~P, A€y, then K,~Acp.

(C.self #) u does not contain any formula of the form (X # X).

(C.=) If Aey, (X=Y)eu, and A is like B except for the interchange of
X and Y at some (or all) of their occurrences, then Bey,
provided that A and B are atomic formulae.

(C.EZ) If (EX)A€y, then (EX)Ae€p.

(C.mv) If (71X)A € i, then (UX)A e pu.

(c.zh If (ZX)A €y, then if (EX)(X = Y) € u then A(Y/X) e u for at least one
free variable Y, provided that X occurs in A.

(Cc.md) If (n1X)A €, then if (ZX)(X =Y)eu, then A(Y/X) e, provided that
X occurs in A.

(C.71G) If A€y, then (mX)A € u, provided X does not occur in A.

(C.Zv) If (ZX)A ey and X does not occur in A, then Aep.

There are also the rules (C.E{), (C.U§), (C.UG), and (C.EV) which are
parallel to (C.Z{), (C.m}), (C.nG), and (C.ZV) respectively, but with the U
and E quantifiers.

(C.ou) u contains no formulae whose free variables are not in & set (u)

(c.kp*) 1If LPAE/J” €, then there is at least one alternatea set to u,,,
such as pg, where pugre Iy, such that Aep$,; and if u,] =
ul,,, (ufne I‘a) then there is also an alternate, set to u,, , such as
ui, where pige T, such that ~A € U1

(C.P~) If P,Aepus; e, then there is at least one alternate, set to pug;,
such as pf; where pfje I, such that A epuf;, but if P,Aept,e I,
then there is at least one alternate, set to u{,, such as u‘fp where
pfp€ Ta, such that ~A €pf,.

(C.K%) If K,Aeul; e, then if pf; is an alternate, set to ug;, then Aepf;;
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but if KA €pt, € Ta, then if puf, is an alternate, set to pf,, then

"'Aelllg
(C.KKY) 1f K,,Aeu,, €, then if uor is an Lalternate, set to u,,, then
KaA € gy and A € igy.

(CKE) IfKAepe§ and (EX)(X =a)epu, then Aeyp.

(C.LKE) If LK,,AeueQ and (EX)(X a) €y, then Aep.

(C.LKLK) If LI{aAeu,, €Q and ug is an Lalternate, set to u,,, then LK A €
Lok and A € pgg.

(C.KKtr) If K,K,Aepe and (EX)(X=a)ep and (EX)(X = b) e u, then K A € .

10 Given QHE-consistent (A4), we have constructed K such that Ae AeK.
We construct Q2 as follows:

(a) With each uf’,» we associate some model set Af-’i .

(b) Since each Aﬁ’i is maximal consistent with respect to that set of
QHE-formulae whose free variables either occur in A or ind, Ud, U . . . U
d, (where Af?,- is the mth set constructed in K), we stipulate that in the
construction of Q

diud, U . Ud,,,_@set(u,,)
where A,, is assomated with uf’,

(c) Each atomic wff B is Satisfiable (B) if it is one of the wffs in some A,, ,
and is ~ Satisfiable (B) if it is not in any A,b, , i.e.,

(VO)(V))((Be a%;) = (Beps)).

(d) Each wif of the form (ZX)(X = Y) is Satisfisble (ZX)(X = Y) if it is one of
the wifs in some A%, and ~ Satisficble (ZX)(X = ¥) if it is not in any A% .

(e) Each wif of the form (EX)(X = Y) is Satisfiable (EX)(X = Y) if it is one of
the wffs in some A%, and ~ Satisfiable (EX)(X = ¥) if it is not in any A%.

(f) For every Y such that ~ZX)(X=Y)e A,, and B(Y/X)e A,, , then if
(nX)Be A,, (and X occurs in B), Satisfiable (7X)B, and if (11X)B£A,, (for every
i and j and b) then ~ Satisfiable (1X)B.

‘(g)’ is as “(f)’ but with ‘E’ for ‘=’ and ‘U’ for ‘n’.
(h) When A;",- contains at least one formula of the form (ZX)(X =Y), and

also ~B, each wff of the form (nX)B (X does not occur in B) is Satisfiable
(nX)B if (1X)Be Ak,

(1)’ is as ‘(h)’ but with ‘E’ for ‘=’ and ‘U’ for ‘n’.
(j) When A;’, contains no formula of the form (ZX)(X = Y), and also ~ B,

each wff of the form (1X)B (X does not occur in B) is Satisfiable (7X)B if
(nX)BeA],

‘(k)’ is as ‘(j)’ but with ‘E’ for ‘=’ and ‘U’ for ‘n’.

11 Completeness Theorem: Given Satisfaction as defined above, for every
wff B, Satisfiubl; (B) or ~ Satisfiable (B) according as B is in some A’]’-,-, or B
is not in any Aj;, vespectively.
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Since by hypothesis our original QHE-consistent (4) is in A§ or A%,
Satisfiable (4). Proof is by induction over the construction of QHE formulae.
The proof for B, ~B, (BD>C), and (nX)B are as in [2] with suitable
modifications. The proof for (UX)B is as for (nX)B. So we have K,B and
Lp,B:

(a) If the theorem holds for B then it holds for “P,B, i.e., if P,B is in
some A% then Satisfiable LP,B, and if “P,B is in no AY; then ~ Satisficble LP,B

Proof: (1) Assume LP,B is in A}, and “P,B is in no u,,,,, Let the associate
set for A,,, be u,, So ~Lp Beu,] by 10b (C.&u) and u,, maximality. Also
Lp(p> p)eu” since uf’] is maximal. So there is an Lalternate, set to u,,

Let it be ug.
~LP,Beplrand ~B el

There is also an Lalternate, set to A which will be Aj, by 10a. And Be Aok
by construction of K. But then B € u§, contrary to (C.~). Hence if LP,Be A,,
then Satisfiable “P,B.

(ii) Assume LPB is in no A,, and LP,B is in pg,. ~P,B will be in all
those sets A,, which are maximal consistent relative to the appropriate A;.
Let p5, be the associate of AS,. So ~LP,BeAS,. Also P (pr)eA,,,,,
since A,, is maximal. So there is an Lalternate, to A5, Let it be Af:.
~BeAY,. Also there is an Lalternate, to ug, which will be uj, and B e ufy,
contrary to (C.~) and the construction of . Hence if “P,B is in no A?i then
~ Satisfiable LP,B.

(b) If the theorem holds for B then it holds for K,B, i.e., if K,B is in some
Al then Satisficble K,B, and if K, B is in no Aj; then ~ Satisfiable K,B.

Proof: (i) Assume K,B 1s in A,, and K,B is not in any ug,. Let the
associate set for Af’, be u,,

Either A% = Aj or A} = A%,
If K,B € Ag; then let A7, be the alternate, set and Be Aj,.
Either u = pf;or uf’i = Uiy

Now ~KBep,b, , 80 ~Beuj, contrary to the construction of Q (10a). If
K,B e A, then Af; is the alternate, set and ~Be Alq by construction of K.
Also Beulq, contrary. to the construction of Q. So if K,B is in A” then
Satisfiable K,B.

(11) Assume K,B is in no A and K,BeuS,. ~KzB will be in all those sets
A,, which are maximal con31stent relative to the appropriate A;. Let ug,
be the associate of AS,. So ~K,Be AS,. So there is an alternate, set to AS,

Either Ag, = Aggor Ag, = A%,
If ~K,B e A§y then let A'fp be the alternate, set and ~Be Afp. Also:

Either Ay, = Ag or A5, = Al,.
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So if K,Beug; and u'fp is the alternate, set then Bepug, contrary to the
construction of Q. Similarly for uz, = uj,. So the theorem holds for K,B.

Hence completeness is proved.

REMARKS

1. The Barcan formula and its converse for both quantifiers and both
epistemic operators are not theses of QHE.

The semantics given do not sustain the commutation of operators and
quantifiers in either direction, and so require that the following formulae:

(1) (UX)K.PX
(2) (EX)K,PX
(3) (EX)K,(X = D),

to be read respectively as

(i) Each and every existing X is such that a knows X is P.

(ii) There is at least one existing X such that @ knows that X is P
or as:

One of what a knows to be P, exists.

(iii) What @ knows as b, exists

o7 as:

There is at least one existing X such that a knows that X is b.

Under these readings there is no intuitive credibility to the inferences
licensed by either

(4) K, (EX)PX D (EX)K,PX, or its converse.

For example, a could know that at least one of the characters in
Shakespeares plays existed without knowing who any of the characters
were, so it would not be the case that at least one of those whom a knows to
be a character in Shakespeares plays actually exists, since there is no one
character whom a knows to be in the plays. Conversely, a could know that
someone, say Hamlet, was a character in the plays, Hamlet did exist, yet a
might well not know that any of the characters in Shakespeare’s plays
existed.

2. In[1] Follesdal shows how the thesis:
() (X)) (x =y 2>0(x =)

can be a problem to modal logic. This is especially so for epistemic logic
where the parallel thesis:

(b) (X)W (x = y O Ku(x = y))

is problematic. Hintikka has attempted to solve the problem by giving a
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reading for (b) so that (b) ‘‘does not say that all true identities are known to
a, which would be blatantly false. It only means that all true identities
among individuals known to a are known by him.”’ ([5], p. 57)

But, unfortunately, there is nothing other than dyadic predicates in the
logic in [4] to allow the reading ‘‘a knows b’’, and hence nothing in (b) on
which to base the phrase ‘‘individuals known to a’’. Furthermore, it is not
clear whether the quantifiers are existence pre-supposition free or not.
However, in QHE, (b) retains the more intuitively and logically acceptable
reading but is not a thesis owing to the failure of the Barcan formula.

3. In QHE the operator < does not occur, and, although there is a theorem:
() (KA & ~A) D ~(EX)(X = a),

it is not possible to determine whether or not (Zx)(x = @¢). Clearly, if T is a
tautology we would want to sustain:

(b) K, ~T > ~(CZX)(X = a),

but this we cannot do in QHE alone. By the addition of the relevant axioms
to get QHEM and constructing a QHEM-Model (€, &, Cy) we can sustain:

(c) (Kp & ~Op) O ~(ZX)(X = a),

which is to much the same effect as (b).
Cy would consist of the rules in C above together with:

(C.KT) If K,Aepf eQ and (SX)(X = @) e}y, then OAep?;.

(C.LKZ) If LK,Ae #f,' €Q and (ZX)X =a)e uf’j , then GCAe ufj .

(C.~<) and (C.~0) would be parallel to (C.~ P) and (C.~K).

(C.0O*) IfOAe pf-’j €Q, then there is in Q at least one ¢ alternative to uf,-
(such as p&%,) such that Aepug,.

(c.OO*) IfDAe uf’j € and u,, is a O alternative to uf’i then OA €

(c.O If DA€yl €Q then Aep .

(OO, If DAepleQ and pf is a O alternative to pj, in €, then
OA € .

QHEM has what amounts to the logic of two kinds of possibility. The
logic of Lp gives the logic of what is possible 7elative to what some person
knows, the logic of (S5) gives the logic of possibility simpliciter. [8]
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