
489
Notre Dame Journal of Formal Logic
Volume XVIII, Number 3, July 1977
NDJFAM

SOME APPLICATIONS OF MODEL THEORY TO THE
METATHEORY OF PROGRAM SCHEMATA

RICHARD A. DeMILLO

1 Introduction Program schemata (also called schemes, or abstract
programs) are widely known as devices for treating properties of computer
programs which are invariant across a range of interpretations. Since the
intent of schemata is to formalize a specific aspect of effective computa-
tion, the properties studied are usually those which have been prescribed in
other models of computation: e.g., totality, equivalence, decision power. It
is perhaps for this reason that the methodology for dealing with schemata
has evolved around constructive mathematics and direct demonstration
rather than continuous mathematics, transfinite mathematics and indirect
proof. Recently, however, it has been pointed out (Kfoury [3], DeMillo [2])
that useful properties of schemata can be established using arguments
which rest on nonconstructive foundations; in this case the model theory of
first order logic. The outcome of this activity has been to recast some
deep questions regarding, for instance, what can and cannot be proved about
computer programs into a form which is similar to the corresponding
logical questions, where some of the answers are known.

In this note,* we present three such applications of model theory. We
allow a free wheeling notion of schemata (allowing, for example, first order
oracles of any sort desired) and show that direct limitations exist in the
ability to draw inferences about schemata by examining finite entailment
and axiomatizability. The third application shows that even the expansive
concept of effectiveness allowed here does not admit more relative decision
power than the standard models of computation.

2 Notation Logical notation follows such standard sources as Bell
and Slomson [1]. In particular, such notions as first order language,
similarity type, relational structure, and interpretation are assumed in
this presentation. A given first order language always talks about
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relational structures of the same similarity type, and these are denoted
51 = (A, F, R) where A Φ 0, F is a set of mappings An —> A, and R is a set of
relations r c Am (m > 0). If fe F maps An —> A, for w = 0, it interprets an
individual constant. Lower case Greek letters represent cardinals: ω is
the first transfinite ordinal, hence ω = N= {θ, 1, 2, . . .}. For any nonempty
X, Xω is the set of all ω -termed sequences on X. Although it will not be
essential for later developments, we will give a rather detailed accounting
of the satisfiability relation for a first order language L. This keeps the
presentation relatively self-contained and leads easily to the corresponding
ideas for schemata.

The concept of a schema used here is essentially the concept presented
by Kfoury [3], and the reader is referred to that paper for a more detailed
justification. Let L be a set of first order formulas, and let T be a set of
expressions of the form v{ «- t, where v{ is an individual variable and t is a
term. We define S=(LxTxNxTxN) and say that any s e S is an
instruction. An intuitive reading of s = (0, v{ *- tl9 j, vk *- t2, ΐ) is the Algol-
like statement

if φ then
begin V{\ = tλ\ go to j end

else
begin v^: - t2; go to I end.

We let As be any acceptable arithmetization of instructions in S; Use S, as

is the value of s in As. The set of schemata P(L) is the set of functions
p: JV—> S which may be partial on N. That is Do(p) c AT. An effective
schema is a schema p: N —* S such that there exists a partial recursive
p'\ N-+ As satisfying

P'{i) = apω

for all i e N, whenever either side is defined. A schema p is a flowchart
schema iff Do(p) is finite. Every schema p has a unique START instruction:
if n is the least element of Do(/>), then p(n) is the START instruction. If
p(m) = (0, Vi <- tl9 j , υk *- t2, I) and j(ί) is not in Do(p), then j(ί) is said to be
an exit oί p. For fixed P(L), we let P(L)E and P(L)F denote, respectively,
the effective and flowchart schemata in P(L).

3 Interpretations The interpretation of a primitive symbol P (individual
constant, function symbol, predicate symbol) in a relational structure $ϊ is
written P. Let t be a term and let x = (x0, xly x2, . . . xm . . .) eAω. The
value of t at x, [t] (x) is defined:

(1) if t is an individual variable Vj, [t](x) = #,-;

(2) if t is an individual constant αf , [t](x) = jgi,

(3) i f Π s a term f(tlf . . ., tn), [t](x) =/ ([ίΓ] W, . . ., [QM).

For i e N, y e A (i/y): Aω —» Aω is defined as follows: for x e Aω

(d/y)χ)(j)= \*hiLiΦi.'iy> ' w / ^y^ o t h e r w i s e .
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Let L and 21 be fixed, and suppose xe Aω, and 0 is a formula in L. Then x
satisfies 0, written 21 t=x0, iff:

(1) 0 is atomic r{tu . . ., 4) and <[fi](#), . . ., [*«](#)> e r

(2) 0 is φ0 v 0! and $1 K0o v51 K0i;

(3) 0 is Ί0O and SIP*0o5
(4) 0 is (Vv;.)0o and V y e A 2( N ( ; / y)x0o.

Extensions to <->', Ά', <<->>, *3' follow as usual. If 2tt=x0 for all *€ Aω, 0 is
said to be true in 21, written 21 [=0. If 0 contains the free variables
Viλ, . . ., v, n then 21 K 0 iff 21 N0[^-1, . . ., xin]. If L is a set of formulas,
then 2ί is said to be a model for L iff 21 N0 for each 0 e L.

Now let £ be any schema. We define a sequence px for any xeAω as
follows

(1) £X(O) = </>(START),*>;
(2) if £x(i) = </>(»), y) where />(») = (0, VJ - ίi, fe, ^ w - fe, 0, then

Λ / , + n {</>(«, (j/[ίil(y))y> i f * N y φ β

& U + 1 ; - |</,(Z), (m/U2](3;))3;)if 2 1 ^ 0 '

(3) if ^x(z) = (undefined, y), write px(i) = (*, y) and let px(i + 1) be undefined.

Following Kfoury [3], we consider a set of properties Γ = {Φo, Φi, . . .,}
such that a schema p is Γ satisfiable iff for some x e Aω, and all Φ, e Γ px

satisfies Φ*. In this case we write (21, Γ) \=xp. Analogously, if (2ί, T)\=~p
for all xe Aω, we write (21, Γ) IF p.

For any property set Γ, M(p) = {211 (21, Γ) \=p}. For technical reasons
we relativize this definition to a certain "universal" set M. Hence M(p) =
{2le M|(2I, Γ) \=p\. AS described in Kfoury [3], certain choices of Γ appear
to be reasonable; we introduce admissible property sets to recover this
notion. Γ is admissible iff:

(1) for some p e P(L) M(p) = M,
(2) for some pe P(L)M(p) = 0 ,
(3) any p, p* e P(L), there exist schemata p\pr and p\\p' such that

M(plp') =M(p)u M(pr)
M(p\\p') =M(p)ΠM(pf).

By analogy with first order models we let, for X a set of schemata, M(X) =
f){M(p)\peX}.

Let Γ = {Φ}, then for any p e P(L), 21 e M, x e Aω, px satisfies Φ iff fa is a
finite sequence. Then the notion of admissibility has special significance,
which we present without proof.

Theorem If p\ pe P(L) is an effective schema and Γ = {Φ}, then M satisfies
conditions (l)-(3) for admissibility.

Henceforth, we let Γ = {Φ}. If (2ί, Γ)\=p, p is said to be total in Φ. If
M(p) = M, p is said to be universally total.
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4 A duality concept The schemata £ I p' and p\\pτ have a certain physical
interpretation, given an environment in which to execute the effective
schemata p and p'. Consider that in order to execute p \ \pf for the flowchart
schemata p and pr it is sufficient to choose one schema, say p, and to
uniformly substitute for each variable Vj of p a variable v* not occurring in
p\ keeping a record of these substitutions by the expressions v' <- Vj. To
execute one first executes these assignments, effectively separating the
variables of p and pr; then, alternatively, the instructions of p and p' are
executed until one of the execution sequences satisfies Γ, upon which
execution terminates. This simulation corresponds to nondeterministic
programs. In similar fashion, the execution of p\pr can be simulated by
processing p and p1 in parallel.

5 Model constructions The model theory of P(L)E differs radically from
the model theory of L in the methods available for constructing models. It
is partially because of this fact that the subject carries some interest. We
review here two negative results and one positive result which show the
points of departure and similarity.

(i) Incompactness (DeMillo, [2]). For appropriate L, P(L)E contains an
incompact set of programs. That is, for some I C P(L), M(Y) Φ 0 for
every finite Y c X, but M(X) = 0.
(ii) Upward Lowenheim-Skolem (Kfoury, [3] and DeMillo, [2]). For ap-
propriate L, there is a schema pe P(L)F such that M(p) contains a
countable model but no uncountable model.
(iii) Downward Lowenheim-Skolem (Kfoury, [3]). For appropriate L and for
every X c P(L)E if $1 e M(X) is infinite, then for every infinite γ < Card (A)
there is some We M(X) such that Card (B) = γ. ~

6 Inferring properties of effective schemata The results of this section
are clearly metatheoretic. We assume that there is a semantic notion of
entailment available which characterizes mathematical inferences which
hold for schemata and necessarily limit any syntax which mediates such
inferences. Since such results are limitative, they are also negative. For
any X c P(L), pe P(L) we write X\\rp and say that X semantically entials p
iff M(X) QM(p). P(L) is said to have finitary semantic entailment (FSE)
when X\\-p implies Y\hp for some finite Y Q X. Let P(L)E be fixed, and
suppose that L contains a symbol (=π=) always interpreted as equality, a
unary function symbol /, and individual constants a0, aγ.

Theorem P(L)E does not have FSE.

Proof: Let X = {p, p0, pu . . .}, where (using obvious abbreviations)

(START: vι ^ ao; go to 1
ω 11: if vγ =o= aλ then [exit] else [υx *-f(υ^\ go to l]

= ίSTART: vι-a0; go to 1
Pi U: if aι^f\vι) then [go to l] else [exit].

In each p{ the term f\υx) abbreviates υl9 if i = 0 and /(/'"1(^i)), if i> 0.



SOME APPLICATIONS OF MODEL THEORY 493

Assume FSE. Notice that M(X) = p. Hence, for any p such that M(p) = 0,
φ = M(X) QM(p) =0. By FSE there is a finite YQX such that M(Y) c
M(p); that is YK-p. We choose 51 so that A = N, / i s the successor function,
Op = 0 and θχ = sup {i\pi e Y*i Φω} + 1. Then since every natural number is
some n'th sucessor of 0, M(Y) Φ 0, which contradicts Y\hp. Q.E.D.

Corollary P(L)F does not have FSE.

The set of schemata X in the proof of the previous theorem is
essentially the set which contradicts compactness. Let X c P(L)E. Then
define CI(X) = {p\X\\-p}. We say that X is a deductive system iff CI(X) = X;
systems will be denoted by a, β, γ, . . . (see Robinson [4] for the cor-
responding concept for L). The following facts concerning systems are
well known:

(1) {X\X is a system} is a lattice with unit and zero under the operations

a-β = a Π β

α + β =n{rlαu/3 c γ } .

(2) a c β iff M(j3) c M(α).
(3) M(α) U M(β) c M(α Π β).

A system a is finitely axiomatizable (FA) iff there is a finite Y Q a such
that CI(F) = of. P(L)E is FA iff every system is FA.

(4) β is not FA iff β = U{tfίUeω}, where for all z, ai c α / f l and Mia,-) gί
M(a ί + 1). (See Robinson [4], p. 36.)

Fact (3) is useful in relating the operations +, to the syntactic operations

I, II.

L e m m a C\(p) + Clip') c C\(p \\p') and C\(p) C\(p') = Q(plp').

Proof: Use (3). Q.E.D.

Theorem For sufficiently strong L, P(L)E and P(L)F are not FA.

Proof: Let L = {0O, φi, . . .} be such that for all finite J Q N, it jej there
e x i s t s , <SeM such that

51N Λφ/Λφ, a n d ^ N Aφ, Λ Ί0,.

For each natural number i let

^ = START: if φ, then [exit] else [go to START].

Define a sequence of systems α0, Q?i, . . . as follows:

αb= Cl(ίo)
α / + 1 = α, + CI(/>, +i).

Obviously α?/ c αf/+1. To verify the second property of fact (4) above, let,

for each i, βi = Cl(/>oll/>ill . . . 11/>,-). Thus αf c jS,-, and there is some 51 e M

such that

3ll=Λφί AΊφi+i.
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Therefore SleMίft) c M(α, ), but Sl/M(αί+i). Take β= \J αf to complete the
proof. Q.E.D.

7 Semantically preserving effectiveness A common question to ask about
such liberally "effective" concepts as schemata, is how much of the
intuitive notion of effectiveness they preserve. Of course, this question has
been settled by syntactic arguments, but the purpose of this section is to
recast one of these standard results in purely semantic terms. It so
happens that this is possible only insofar as the incompactness and non FSE
properties can be proved semantically. Nevertheless, we will be able to
solve a certain generalization of the Halting Problem (negatively, of course)
without explicit reference to the RE set which is not recursive.

Consider the algebra of sets over M obtained from {M(p)\pe P(L)}.
Schemata from P(L) (or P(L)E) are said to be non-Turing if a schema can
be formulated which ultimately decides Γ in each SI e M. That is, if for each
p there is some p for which M(p) = M ~ M(p). The proof that P(L)E is
Turing rests on set theoretic properties of filters. We assume that the
concept of a filter over M is known (see Bell and Slomson [1]). An ultra-
filter is a maximal filter. Two facts relating to ultrafliters are useful.
First, if a set of elements of the algebra is such that any finite subset has a
non-zero infimum, then the set is a base for a filter F. Second, if F is a
filter, it can be extended to an ultrafilter. An ultrafilter is said to converge
to Sle M iff F = {K\We K}.

Theorem P(L)E is Turing.

Proof: We suppose that P(L)E is non-Turing. First assume that every
ultrafilter on M converges to some SI. Since P(L)E does not have FSE, let
XiUp for all finite Xt c X, where XVhp. We define H(Xi) = M(X4) ~ M(p).
Since each H{Xi) Φ <β and (\{H{Xμ)\i ^ n} = H(\J{Xμ\i ^ n}), the Ή(Xi) are
a base for some filter F. By hypothesis, there is some SI to which F
converges. If p'eX, then Hip1) = M(p') ~ M{p) is in F, so M(p') is in F.
Hence, for any pr e X, (31, Γ) hp f . But since M(p) Π H(p') = 0 when M(p) e F,
M{p){F. But this implies XWp. By definition, M{p\\pr) = M(p) ΠM(p').
Let p be such that M{~p) =M ~ M(p). Then for any ultrafilter F, either
M{~p) e F, M(p) eF, but not both. In addition M(p) Π M(p') e F iff M(p)eF
and M(p') e F. Hence, M(p) e F iff M(p)iF and M(p\\p') e F iff M(p)eF and
M(p') e F. Then for some 91 e Λf (SI, Γ) \=P for all M(p)eF and (31, Γ) N J for
all M(p) iF. But this implies that F converges to SI. Q.E.D.
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