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INFINITE SERIES OF REGRESSIVE ISOLS UNDER ADDITION

JUDITH L. GERSTING

1 Introduction Let E denote the collection of all non-negative integers
(numbers), A the collection of all isols, Ay the collection of all regressive
isols, and Aty the collection of T-regressive isols. (T-regressive isols
were introduced in [4].) We recall the definition of an infinite series of
isols, Z)Ta,,, where TeAg - E anda,: E — E:

Z)Tan = Req :i](t”’ V(a”))

where j(x,v): E> — E is a one-to-one recursive function, ¢, is any regres-
sive function ranging over a set in T, and for any number #, v(r) = {x lx < n}.
Infinite series of isols were introduced by J. C. E. Dekker in [2], where it
was shown that 2ira, e A. In [1] J. Barback studied infinite series of the
form ZTaﬂ where T <*a,_,. The relation T s*a,., means that for any
regressive function ¢, ranging over a set in T, the mapping {, — a@,-, has a
partial recursive extension. Professor Barback proved that for T <* a,.,,
ZTa,l € Ar. Because

a, recursive = T <*q, = T <* q,,

but not conversely, there are several conditions of varying strength on the
function aq, such that ETane Ag. It is also known [5] that T <* a,_, is not a
necessary condition for ETan to be a regressive isol.

The following questions were posed by Professor Barback. Let
TeAg - E and let a,, b,: E — E be functions such that ETa,,, ETb,,e Ag:

(1) Does 2ira, + 2irba€ A ?
(2) Does 2uran + 21by = 201 (ay + by) ?

The present paper provides some partial answers to these questions.

2 Some rvesults We will assume throughout that TeAgz - E and that
@y by E — E with 2iran, 2070, € Ag.

Theorem 1 Let a and B be disjoint vecursive sets with a U 3 = E such that
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T<s¥a,on aand T <* b, on B, that is, for any regvessive function t, vanging
over a set in T, there exist pavtial vecursive functions f, and fz such that

(V) [nea = t,€dfy and folty) = ay and ne B = t, € 65 and f3(t,) = b,).
Then

2ty + 2a1by = 2ut(an + by).

Proof: Suppose first that @ and B are both infinite sets. Let 7, be the
strictly increasing function ranging over a and let s, be the strictly
increasing function ranging over $. Define sets a and $ by

a= [U(j(tsm, bs(iy),y « -+« Jtstny, bsiy + @sti) - 1))]

i

U [U(j(tr(i)) 0)’ CEEREP} j(tr(i)’ () = 1))]

B= [U(j(ts(i), 0), . .., iltsth, bsh - 1))]
U [U(]’(tru), ar@)y - - o Jw,s a6 + b - 1))]-

00
Then 2ira, = Req @ and 2u1b, = Req B. Also, /B and a UB =Zoz-\j(t,,, via, +
b)) € 27 (ay + by). The argument is easily modified to take care of the case
where one of sets a or 8 is finite (or even empty).

Corollary 1 If T <* a,, then ETa,, + ETbn = Z;T(a,, + by).

Thus under the condition T <* g, the answer to Question (2) is
affirmative. Keeping T <* a@,, we investigate several conditions on the
function b, which result in affirmative answers to Question (1) as well.

Lemma 1 If T <*a,and T <* b,.,, then ET(aﬂ + by) € Ag.

Proof: T<*a,and T <*b,, implies T <* (@,-; + b,-;) which means (by
Proposition 5 of [1]) that Er(a,, + b,) is regressive.

Theorem 2 For T <*a,and T <* b,.; (ov T <* b, or b, vecursive), ETa,, +
21bne Ag.
Lemma 2 If T <* a, and for all n, a,, b, = 1, then ETa,, + Z)Tb,, € Ag.

Proof: Let t, be a regressive function ranging over a set in T. Let f be a
partial recursive function such that pt, C 6 f and (V#) [ f(%) = a,). Let

@ =23 ja(tn, viay), 0)
8 =2 jults, (b, D).

Then a ezTa,, and Beszn while a|B. Hence Req(a UB) = ETa,, + ETb,,. By
the assumption that Z;T bn€ Ag, B is a regressive set. Let 8 = ps,, where s,
is a regressive function; let p(x) be a regressing function for s,. We define
by induction a function 7, such that 7, is a regressive function and 7, ranges
over a U S.
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Let 7, = 5. Let n > 1, and assume that »,, . . ., 7,-, have been defined. For
the definition of 7,, we consider the following two cases:

Casel. 7,.1€0, say 7,.; = js(t, ¥, 0),0 <y < a, - 1.
Subcase (i) vy #a, - 1. Set 7, = j3(&, v + 1, 0).

Subcase (ii) vy=ax - 1. Set#, = s, where p(s,) = j3(&, 0, 1).
Case II. 7,-,€fB, say 7p-1 = j3(tx, v, 1), 0< y < b, - 1.
Subcase (i) ¥ # 0. Set 7, = S; where p(S;) = 7.

Subcase (ii) v = 0. Set 7, = js(¢, 0, 0).

This completes the definition of 7,. It can be seen that 7, ranges over a U .
Further, consider the function g, defined on p7, by

js(te, y - 1, 0) for 7, = ji(ty, v, 0), y £ 0
q (’}’) _ js(txa 0, 1) for 7, = j3(tx, 0, 0)
e p(7) for v, = jy(te, v, 1), kso p(72) # 0

j3(k31p(/rn)7fk31p('rn) - 1, 0) fOI' Vn = jS(txy y’ 1)? kszP(Vn) = 0

Then ¢ has a partial recursive extension, say g¢*, and g*(v,) = 7,.,.
Therefore 7, is a regressive function, a U is a regressive set, and
ETan +2Tbn6 AR.

Lemma 3 If T <* a, and for all n, b, = 1, then ETa,, + ETbne Ag.
Proof: Let Z)Ta,, +201by, = A. Then
ETan +Z>Tbn +T=A+T

= ETan +Z>Tbn +ETI =A+T (since T =2T 1)
=2 (a,+1) + 2070, = A+ T (by Corollary 1, since T <* a,)
= A+ TeAg (by Lemma 2, since T <* g, + 1)

Because A < A + T, it follows that A € Ag.

Actually, the argument of Lemma 2 can easily be modified to take care
of the possibility of the function a@. having zero values, but this does not
seem as elegant an approach as the proof of Lemma 3!

Theorem 3 If T <* a, and theve exists a numbev m such that for n=m,
br =1, then Z)Ta,, + ETbne Ag.

Proof: ETa,, +ETb,,
=(@o+...+am-1) + 2o G + (bo+...+bp1) +Z>T_,,,bn+,,,
=k + Z;T-mam»m"' Z>T-mbﬂ+m

where ke E. By the assumption that ETa,,, ETbne Agr, it follows that
Z;T_,,,a,,m, Z)T-mb,,me Agr. Also, since T <* a,, we have that T - m <* a, .
Thus, by Lemma 3, ET-,,,a,,m + ET-,,, bn+m€ Ag and hence Z)Ta,, + Z)Tb,l € Ag.

Remark: Theorem 3 of [5] provides an examile of an infinite regressive
isol T and a function b, with b, > 1 for all n, 2470, € Ag, and T £* b,-,. We
can use Theorem 3 above to generate a whole class of such examples from
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this one. Let a, be any function with T <*a,, and let ¢, be the function
defined by ¢, = a, + b,. Then Z)Ta,, +21b,, =20rc, € Ag but T £* ¢ ooy,

What happens in the case of b, functions that do not fit Theorems 2 or 3
above, that is, T #* b,., and b, = 0 at infinitely many places? The following
Lemma, due to Professor M. Hassett, shows that such functions do exist.

Lemma 4 (Hassett) Let Te Ag - E. Then there exists a function b,: E — E
such that for all n, 0<b,<1, b,=0 at infinitely many values of n,
2irby€ Mg, and T £% b,.,.

Proof: Let t, be a retraceable function ranging over a set in T. Let a, be
any retraceable function such that a, > 0 and p#(a, is not a separated
subset of pf,. This is possible because there are c retraceable functions,
hence ¢ subsets of the form p#(a,), but pt, has only R, separated subsets.
Let a = pf(a,). We define a function b, by

0if tyfa
b, =
lif ¢t €a.

Then 0 < b, <1 for all »n. Also b, = 0 at infinitely many values of », because
if b, = 1 from some point on, then a would be a separated subset of pi,.
The function #(a, - 1) is the composition of two retraceable functions,

o0
hence is retraceable, and Req pt(a,- 1) = Req %)j(taﬂ_l, 0) = ETb,,. Thus
ETb,,e Ag. Finally, if T <*b,.,, then given {, we could compute b,., and
hence decide whether or not f{,ea. This would contradict the fact that a is
not a separated subset of pf,.

Lemma 5 Let TeAyr. Let c,: E — E be such that theve exists a numbev M
with 1 < ¢, < M for all n. IfETcne AR, then T <* ¢ ;.

Proof: Let t, be a T-retraceable function ranging over a set in T. Let
0

o= ?j(t,,, v(cy), and let ZTC,,EAR. Then o is an infinite regressive set.
Let o = ps, where s, is a regressive function and let p(x) be a regressing
function for s,. For 0<i<M -1, we define functions ¢,(x) by ¢;(x) =
pjlx, i). Then each ¢; is a partial recursive function. Because f, is a
T-retraceable function, it follows that for each g;(x), 0 <i < M - 1, there
exists a number m; such that for n = m;, q;(t,) < tp.,. Let m = max m;,
and consider the finite set oM=L

j(to, 0), .o .,j(to,Co" 1),j(t1,0), . .,j(tl, Ci1- 1), . .,j(tm, 0), .o .,j(tm, [ 1) .

Let g be the maximum index of s, represented in this set, and consider the
finite set

k(Sq), k(sq-l)’ ] k(so)-

Let 2 be the maximum index of £, occurring in this set. We can now
describe an effective procedure for computing c,-, from ¢, for n =% + 1.
Thus, assume # =k + 1. Then it follows that j(¢,, 0) = s, with » > g¢.
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Suppose that a term of the form j(¢,-,, ¥) with 0 <y < c,., < M has an
index in s of 7, with #, > 7, say v, =7 + b, b = 1. Then

Sr-1 = p(srl) = pj(tn-ly y) = qy(tn—l) <t
since n - 1 >k >m > m,. The term Sy,-1 has the following properties:

(i) Srl_l = ](tp, yp) with 0 < yp$ CP -1
(i) p <mn- 1.

Property (i) follows from the definition of the s, function. For (ii), note that
tp < j(ty, ¥p) = S;-1 < t» and since {, is a strictly increasing function, p <.
Also, 7, - 127 >¢q so that p>m. Therefore this argument may be
repeated on the term s, _,, etc. The result is that each term below s, in
the ordering s, has for the {-index of its first component a number <z - 1.
After b times, however, j(f,, 0) is reached and a contradiction is obtained.
Hence every term of the form j({,-1, ¥), 0 <y < c¢,.;, has an index in s
which is less than 7.

Now let f, be given, with #» >k + 1. We may then compute the index »
and the term j(f,, 0) = s,. We can then effectively generate the list

Sry Sr-15 + + +5 So

and compute the ¢-indices of all the first components of this list. The
number of f-indices with value n - 1 is equal to ¢,.,. We can easily patch
up the finite number of points with index below % + 1 and thus conclude that
T <*cpoye

Combining Lemmas 4 and 5, we will see that even with a very strong
condition on the function a,, namely a, equal to the constant function 1, we
can produce a case where the answer to Question (1) is negative.

Theorem 4 Theve exists T e Ag - E and functions a,, b,: E — E such that
21y, 2irbpe Ay but 2ora, + 2vb, ¢ Ag.

Proof: Let T e Arg and let b, be the function guaranteed by Lemma 4. Then
0<b,<1for all «n, ZTb,,e Ag and T #* b,.,. Let a, be the constant function
1. By Corollary 1,

2y + 207y = 2av(ay + b)) = 201 (1 + b,).
Now 1<1+b,<2and T £ (1 + b,.), so by Lemma 5, 27 (1 + b,) ¢ Ag.

Remark: Theorem 4 above provides still another example of the non-
closure of Az under addition.

3 An open question For TeAgr - E, we know that T <* a,., and T <* b,
implies ETa,,, 2irby€ Agr. This is certainly an obvious way to pursue
Questions (1) and (2). Under these conditions we of course have T <*
(@y-y + byey) so that 21 (a, + by) e Ag, and an affirmative answer to Question
(2) for this case is mentioned by Barback in Lemma 3 of [1]. However, for
T<*a,,, T<*Db,, it remains an open question whether Eran +Z>Tbn =
2i1(a, + b,) or even whether 2Jra, + 2urb, is regressive at all.
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