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INFINITE SERIES OF REGRESSIVE ISOLS UNDER ADDITION

JUDITH L. GERSTING

1 Introduction Let E denote the collection of all non-negative integers

(numbers), Λ the collection of all isols, ΛR the collection of all regressive

isols, and ΛTR the collection of T-regressive isols. (T-regressive isols

were introduced in [4].) We recall the definition of an infinite series of

isols, Σ/Tan, where T e ΛR - E and an: E -» E:

OO

Στan = Req Σf j(tn, v{an))

where j(x, y): E2 —> E is a one-to-one recursive function, tn is any regres-

sive function ranging over a set in T, and for any number n, v{n) - {x\x < n\.

Infinite series of isols were introduced by J. C. E. Dekker in [2], where it

was shown that Σ τ α n e Λ. In [l] J. Barback studied infinite series of the

form L-jΊan where T ̂ * an.ι. The relation T ̂ * an.ι means that for any

regressive function tn ranging over a set in T, the mapping tn —» an_1 has a

partial recursive extension. Professor Barback proved that for T ̂ * an.u

YjΎane AR. Because

an recursive =#> T ̂ * an =Φ T ̂ * an-γ

but not conversely, there are several conditions of varying strength on the

function an such that ΔjΎane ΛR. It is also known [5] that T ̂ * an-γ is not a

necessary condition for Lj^an to be a regressive isol.

The following questions were posed by Professor Barback. Let

T e ΛR - E and let an, bn: E —> E be functions such that LjΊani ΣjΎbne ΛR:

(1) Does Σjjan + Σ/Ίbne ΛR ?

(2) Does Σ/Ύan + Tjjbn = Σ/τ (an + bn) ?

The present paper provides some partial answers to these questions.

2 Some results We will assume throughout that T e ΛR - E and that

On, bn: E — E with ΣιΊan, Σ/Tbn e ΛR.

Theorem 1 Let a and β be disjoint recursive sets with a U β = E such that
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T ^* an on a and T ̂ * bn on β, that is, for any regressive function tn ranging
over a set in T, there exist partial recursive functions fa andfβ such that

(Vw) [n€ a =Φ tn e δfa andfa{tn) = an and ne β ==> t» e δfβ andfβ(tn) = bn].

Then

Σ/jan +Σ)jbn = Σ/j(an + bn).

Proof: Suppose first that a and β are both infinite sets. Let rn be the
strictly increasing function ranging over a and let sn be the strictly
increasing function ranging over β. Define sets a and β by

a = \\J{j{tsU), bs(i)), . . ., j(tsU), bs(i) + as(i) - 1))J

u [ y (jfeω, o), . . ., j(trU), ar{i) - i))l

β = [U(jfeω, o), . . ., jfcω, *>sω - D)]

U U0Ur(i)> ar(i))> , jtirii), «r(i) + ̂ r{i) " D) L

oO

Then Σ/Tβ« = Req a and Σ/T^w = Req β. Also, α |β and α U β =1Q j(tn, v{an +
bn)) eLjj{an + bn). The argument is easily modified to take care of the case
where one of sets a or β is finite (or even empty).

Corollary 1 If T ̂ * αw, then Σ/Ίan + Σ/Tbn = Σ/Ί(an + bn).

Thus under the condition T ̂ * an, the answer to Question (2) is
affirmative. Keeping T ̂ * On, we investigate several conditions on the
function bn which result in affirmative answers to Question (1) as well.

Lemma 1 If T ̂ * an and T ̂ * bn.u then Σ/T(αw + bn) e ΛR.

Proof: T ̂ * an and T <* bn-γ implies T ̂ * (an^ + bn^) which means (by
Proposition 5 of [l]) that Lj^(an + bn) is regressive.

Theorem 2 For T ̂ * an and T ̂ * bn^ (or T ̂ * bn or bn recursive), S τ α w +
ΣjΊbne ΛR.

Lemma 2 If T ^* an and for all ny an, bn ^ 1, i^e« Σ/Ίan + Σ/τ^« e ΛR.

Proof: Let ίw be a regressive function ranging over a set in T. Let / be a
partial recursive function such that ptn c 6/and (Vw) [f(tn) = an]. Let

a = ξ) j 3 (4, ^(««), 0)

β = Σj3(tn, v(bn), 1).

Then aeΣjΎan and /3eΣT6w while en 1/3. Hence Req(α U β) -ΈjΊan +Σjτbn. By
the assumption that ΔjΊbne ΛR, β is a regressive set. Let 0 = psn, where sn

is a regressive function; let £(#) be a regressing function for sn. We define
by induction a function rw such that rn is a regressive function and rn ranges
over a u 0.
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Let r 0 = s0. Let n ^ 1, and assume that r0, . . ., γn.γ have been defined. For

the definition of rn, we consider the following two cases:

Case I. rw-i€ a, say rn-γ = j3(tx, y, 0), 0 ^ y ^ ax - 1.

Subcase (i) y * ax - 1. Set rw = j3(tx, y + 1,0).

Subcase (ii) y= ax - 1. Set rn = s2 where />(sz) = j 3(ί x, 0, 1).

Case II. rn-x e β, say r ^ = j3(tx, y, 1), 0 < y *z bx - 1.

Subcase (i) y Φ 0. Set rw = sz where p(sz) = rn.λ.

Subcase (ii) y = 0. Set rw = j3(tx, 0, 0).

This completes the definition of rn. It can be seen that rn ranges over a U β.

Further, consider the function qn defined on prn by

(
j 3 ( t x , y - 1 , 0 ) for rn = j 3(ί x, y, 0), 3; ̂  0

Js(tχ,0, 1) for r n = j3Uχ, 0. 0)
/>(r«) for r w = j3(tx, y, 1), fe32p(r») ^ 0
J3(k3ip(rn),fk31p(rn) - 1, 0) for rn = j 3 (k, y, 1), k32p(rn) = 0

Then # has a partial recursive extension, say q*, and q*(rn) = rn_γ.

Therefore rn is a regressive function, of U β is a regressive set, and

TjΊan +Σ)τbne ΛR.

Lemma 3 // T ̂ * βw and for all n, bn ^ 1, ί/zβw ̂ -/τ

β« + Σ/τ^« e ΛR.

Proof: Let Σ/Tβw + Σ/τδ« = A. Then

Σ/Tαw + Σyτδw + T = A + T
= ^ > Σ)ταw + Σ/T6W + Σ/Tl = A + T (since T = Σ/ τ 1)
=^> Σ/τ («w + 1) + Σ/Tδw = A + Ί (by Corollary 1, since T <* an)

=Φ A + T e ΛR (by Lemma 2, since T ̂ * an + 1)
Because A ^ A + T , it follows that A e ΛR.

Actually, the argument of Lemma 2 can easily be modified to take care

of the possibility of the function an having zero values, but this does not

seem as elegant an approach as the proof of Lemma 3!

Theorem 3 If T ̂ * an and there exists a number m such that for n^m,

bn ^ 1, then ΣjΊan + ΣΊbne ΛR.
Proof: Σjτan +Σ/Tbn

= (a0 + . . . + am-\) + 2-Jτ-man+m + (bo + . . . + bm-i) + Ijj-mbn+m

= k + 2-jΎ_man+m+ λjj,mbn+m

where keE. By the assumption that άjτan, Σ/τfrweΛR, it follows that

Σ/τ.man+m, ΣjT.mbn+me ΛR. Also, since T ̂ * an, we have that T - m ^ * an+m.

Thus, by Lemma 3, Σ/Ί-man+m +Σ/j-mbn+me ΛR and hence Σ/Tan + ΣjΊbn e ΛR.

Remark: Theorem 3 of [5] provides an example of an infinite regressive

isol T and a function bn with bn ^ 1 for all n, ΣjΊbne ΛR, and T ̂ * bn-i> We

can use Theorem 3 above to generate a whole class of such examples from
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this one. Let an be any function with T ̂ * an, and let cn be the function
defined by cn = an + bn. Then Σ/Tan + Σjτbn = Σ/Tcn e ΛR but T ̂ * cn.γ.

What happens in the case of bn functions that do not fit Theorems 2 or 3
above, that is, T ̂ * bn.ι and bn = 0 at infinitely many places? The following
Lemma, due to Professor M. Hassett, shows that such functions do exist.

Lemma 4 (Hassett) Let T e ΛR - E. Then there exists a function bn: E —» E
such that for all n, 0 ^ δ w ^ l , δw = 0 at infinitely many values of n,
ΣjΊbne ΛR, and T ̂ * δw-i.

Proof: Let ίn be a retraceable function ranging over a set in T. Let an be
any retraceable function such that a0 > 0 and pt(an) is not a separated
subset of ptn. This is possible because there are c retraceable functions,
hence c subsets of the form pt(an), but ρtn has only No separated subsets.
Let a = pt(an). We define a function bn by

(0 if tn+ja
bn =

[ 1 if tn+1 e a.

Then 0 ̂  bn < 1 for all /2. Also bn = 0 at infinitely many values of n, because
if bn = 1 from some point on, then a would be a separated subset of ptn.

The function t(an - 1) is the composition of two retraceable functions,
oo

hence is retraceable, and Req pt(an - 1) = ReqΣ/j(^_ l5 0) = Σrτbn. Thus

Δjjbne ΛR. Finally, if T ^* bn-u then given 4 we could compute bn-x and
hence decide whether or not tn e a. This would contradict the fact that a is
not a separated subset of ρtn.

Lemma 5 Let T e ΛT R. Let cn: E —> E be such that there exists a number M
with 1 < cn < M for all n. IfΔjΊcn e ΛR, ίften T ̂ * cw-1#

Proof: Let ίw be a T-retraceable function ranging over a set in T. Let
oθ

σ = Σjj(tn, v(cn)), and let ΣjΊcneAR. Then σ is an infinite regressive set.
Let σ = psn where sn is a regressive function and let p(x) be a regressing
function for sn. For O^i^M- 1, we define functions #,(#) by qM =
pj(x, i). Then each ^ is a partial recursive function. Because tn is a
T-retraceable function, it follows that for each qdx), O^i^M - 1, there
exists a number m, such that for ft > m, , ^ ( 4 ) < tn+ι. Let m = max m, ,
and consider the finite set

j(fo,0),...,j(*o,co- l ) , j ( ί i ,0) , . . . ,7(^,^1- D , . . . , i ( ^ , O ) , . . . , j ( / w , ^ -1) .

Let q be the maximum index of sn represented in this set, and consider the

finite set

Let k be the maximum index of tn occurring in this set. We can now
describe an effective procedure for computing cn-γ from tn for n^k + 1.
Thus, assume n ̂  k + 1. Then it follows that j(ίw, 0) = sr with r > q.
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Suppose that a term of the form j(tn-l9 y) with 0 ^ y < cn.γ ^ M has an
index in s of rλ with rι > r, say rλ = r + b, b ^ 1. Then

s r i _! = p(srι) = pj(tn.u y) = qy(tn^) <tn

s ince n - 1 ^ k ^ m ^ m y . The t e r m srι-ι has the following p r o p e r t i e s :

(1) s r i -i = j(tp, yp) with 0^ yp^ cp - 1

(ii) /> < w - 1.

Property (i) follows from the definition of the sn function. For (ii), note that
tp ^ J(tρ, yp) - srι-i < tn and since tn is a strictly increasing function, p < n.
Also, r x - 1 ̂  r > # so that p>m. Therefore this argument may be
repeated on the term srι_2, etc. The result is that each term below s r i in
the ordering sn has for the ί-index of its first component a number ^ n - 1.
After b times, however, j(tn, 0) is reached and a contradiction is obtained.
Hence every term of the form j(tn-ι,y), O^y < cn.u has an index in 5
which is less than r.

Now let tn be given, with n ^ k + 1. We may then compute the index n
and the term j(tn, 0) = sr. We can then effectively generate the list

and compute the Mndices of all the first components of this list. The
number of t-indices with value n - 1 is equal to cn.λ. We can easily patch
up the finite number of points with index below k + 1 and thus conclude that
T ^ * cn.lm

Combining Lemmas 4 and 5, we will see that even with a very strong
condition on the function am namely an equal to the constant function 1, we
can produce a case where the answer to Question (1) is negative.

Theorem 4 There exists T e ΛR - E and functions an, bn: E — E such that
ΣfΊan,ΣΊbneAR butΣ/τan + Σ T 6 W /Λ R .

Proof: Let T e ΛTR and let bn be the function guaranteed by Lemma 4. Then
0 ^ bn < 1 for all n, λjΎbne ΛR and T ̂ * bn.ι. Let an be the constant function
1. By Corollary 1,

Σ}τan +Στbn = TjΊ{θn + bn) = Σ ) T ( 1 + bn).

Now 1 < 1 + bn ^ 2 and T ̂ * (1 + bn.^), so by Lemma 5, Σ/ T (l + bn) /ΛR.

Remark: Theorem 4 above provides still another example of the non-
closure of ΛR under addition.

3 An open question For T e ΛR - E, we know that T ̂ * an.ι and T ̂ * bn.γ

implies Σvτflw, Σ/Tbne ΛR. This is certainly an obvious way to pursue
Questions (1) and (2). Under these conditions we of course have T ^*
(βw_x + &w-i) so that Σjj(an + bn) e ΛR, and an affirmative answer to Question
(2) for this case is mentioned by Barback in Lemma 3 of [1], However, for
T ^* αw_i, T <* 6w-i, it remains an open question whether λjjan + L/jbn =
Σ/τ (an + bn) or even whether Σjan + Yjjbn is regressive at all.
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