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RECURSIVE AND RECURSIVELY ENUMERABLE MANIFOLDS. I

VLADETA VUCKOVIC

Foveword In[1]1 have presented a sketch of the Local Recursive Theory—
a generalization of the Recursive Theory, which is quite different from
other generalizations: instead of being a study in definability (as, for
example, [6] of Platek), or a concrete interpretation (as the Metarecursive
Theory of Kreisel-Sacks in [7]), or an abstract axiomatization (as the
Theory of Uniformly Reflexive Structures of Wagner in [8]), Local Recur-
sive Theory is the study of sets which admit a local recursive structure;
this structure is induced via appropriate enumerations of local neighbov-
hoods and an effective patching of such neighborhoods.

Local Recursive Theory, or the Theory of Recursive and Recursively
Enumevable Manifolds, is a further development of the Theory of Enumera-
tions, of an integral part of the Recursive Theory, which was systematically
studied by Malcev and his students, especially by Yu. Ershov; in [1] I
presented a first draft for such a development, considering only a very
special case (of injective local enumerations). Here, I develop the Local
Recursive Theory in its full generality and in many directions which were
not even mentioned in [1].

With the exception of a few pages, the material of this monograph has
not been published previously. The monograph was drafted for a course in
Generalized Recursive Theory, at the Graduate School of Mathematics at
the University of Notre Dame in the first semester of 1974/1975 year.

CHAPTER I—BASIC NOTIONS

Every map u: N — U of the set N of non-negative integers onto an at
most denumerable, non-empty set U, is called an enumeration of U; if it is
bijective it will be called an indexing of U. Using enumerations we can
extend recursive notions to any enumerated set U. For example, a map
f: U— Uof Uinto U will be called u-vecursive iff (if and only if) there is
an r. (recursive) function f*: N — N, such that, for all z€ N,

(1.1) fum) = u(f*@xn)),
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i.e., such that the diagram in Figure 1.1 commutes.
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Figure 1.1
In case # is an indexing, this situation may be expressed by
(1.2) u”'ofouis an r. function.
(Obviously, u™* is the inverse of u, and o denotes composition of functions.)

The Theory of Enumerations is exposed in the fundamental paper [2] of
Malcev, and in the monograph [5] of Ershov. For the results I shall refer
to both of those expositions. The fundamental idea of the Local Recursive
Theory is the following one: suppose, for each peP, a): N — A, is an
enumeration of the set A, thus, for each peP, one can pursue some

recursive theory on 4, using the enumeration @,; now, if A = U Ay, can one
pebP
use the same enumerations to introduce some recursive theory on A? My

answer is ‘‘yes’’, if one supposes the local neighborhoods A,to be patched
in an effective way—whenever their intersections are not empty. (By @ I
shall denote the empty set.)

Definition 1.1 A non-empty set A is called a Recursive Manifold (an RM)
iff:

(i) There is a family % of enumerations @: N — A,, pe P, where each 4, is

a non-empty subset of A and A = U Ap.
pepP

(ii) For every pair (p, p)) € P* such that A,N A, #®, both a,'(4,) and
@;,(Ap) are recursive sets, and there are numerical p.r. (partial recursive)
functions

f;’: a!’_l(Al’l) - a;ll(A[,) and fl’x: al;ll(AP) - a;I(Af’l)

such that

(1.3) ap(n) = @, (f,(n)), for all ne a;I(Apl),
and

(1.4) ay (1) = ay(fp, (), for all ne a;II(A,,).

In Figure 1.2 (see p. 267) the relations (1.3) and (1.4) are represented
graphically.

The sets A, are called Local Neighborhoods, the enumerations o, are
called Local Enumevations and the family U = {ozpl p € P}is called the Atlas
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of the RM (4, A). In general, (4, A), (B, V), (C, 6),

267

. .., will denote RM’s

with atlases U, BV, ¢, . . ., respectively. We shall call sets A, B, C, .. .,
the Carriers of the corresponding RM’s. In case all @, are indexings (i.e.,
injective enumerations), we call (A, %) an jective RM (an IRM). For such

manifolds, (1.3) and (1.4) can be shortened to

(1.5) a,'oa, and @, ' oa, are p.r. functions with r. domains.
b, °% p 20, p

Every enumerated set (U, {u]) is an RM; in case u is bijective, (U, {u})
is an IRM. By n I shall denote the IRM (N, {I}), where | is the identity on N.

(In general, |4 will denote the identity on the set A.)
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Example 1.1 Let A be a non-empty (infinite) set, and let a: N — U be an
enumeration (an indexing) of a subset U of A (which is infinite). If A = U,
(A, {a}) is an RM (an IRM). If A+ U, let P=A - U and to every peP
correspond the local neighborhood A, = U U {p} and the enumeration (the
indexing) a,: N — A,, defined by

pforn=20

ap(n) =

a(n - 1) for n = 1.
Let % = {a,|pe P}. Then (4,U) is an RM (an IRM). Further, for all p # p,,
ApN Ay = U, and a;'(4,) = a;II(A,,) =N*=N-{0}, and ay(n) = ay,(») for all
ne Nt. Figure 1.3 represents this last case.

Figure 1.3

Example 1.2 ooLet (AN be a sequence of non-empty recursive subsets of
N. Let A= ,UOA,-, let @;: N — A; be recursive, with A; as range, and let
i=

% = {a;lie N}. Then (A, %) is an RM. Namely, if i #j and A; N A; # P, then
A; NA; is recursive, and both @;'(4;) and @j'(4;) are recursive. Define
then

fin) = uy(@;(n) = aj(y)) for all ne a;'(4;)
and
fim) = pyla;(n) = a;(y)) for all ne aj '(4,).
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Then a;(n) = a;(f;(n)) for all nea;'(4;), and ;(n) = a;(f;(n)) for all nea;'(4;).
In the case in which ¢ # j implies A; N A; = @ for all i, je N, we may suppose
that all A; are only r.e. sets. In the case in which all A; are infinite and
recursive we may suppose that all ¢; are recursive and increasing; in this
case (4, A) becomes an IRM.

Example 1.3 Let Q be the class of all ordinals, and let Q, be its subclass
consisting of zero and of all limit-ordinals. To every £eQ, there corre-
sponds an enumeration

as: N— {& + nlne N}

Let H={a;/£eQ,}. Then (,H) is an RM, very trivial indeed, since £ # 1,
&, neQy, imply U N Up= ©®, where Us and U, are ranges of a, and a,
respectively. In case each a; is injective (for example, if one defines as(n) =
&£ +m), {Q, H) is an IRM. Initial segments of (Q, H) are RM’s too. If Q, is
the set of all ordinals <o, and Q,;, the subset of Q, consisting of zero and of
all limit-ordinals which are <o, with H, = {a,| £ € Qs;o}, (2, H,) is an RM (an
IRM in case all a, are indexings).

Example 1.4 Let H be a (non-immune and infinite) subset of N. Let
ho: N— H be a recursive (increasing) function with a recursive (infinite)
range H,. Let hi: N— H - H, be an enumeration of H - H, (an indexing of
H - H,, in which case we suppose it infinite). In a trivial way, (H, {h,, 2}) is
an RM (an IRM).

A more interesting manifold is constructed as follows (supposing that %
is injective): define, for n = 0, the enumeration (indexing) %,., by

Ry+1(@) = h(i) for 0 < i < n,
Bpa(i) = ho(i - mn - 1) for n < i.

Let H, be the range of %, and $ = {k:/ne N}. Then, (H,$) is an RM (an
IRM). This is easily checked: »n < m implies H, N H, = H, and

H, - H,={h(n), hin + 1), . . ., k(m - 1)}
Thus, defining, for n < m,

kforO<sk<sn-1,
fm(R) =3k +n-mfor m<Ek,
undefined for n< k<m - 1,

and
kforO0<sk<sn-1,
fn(k) =
B-n+mfor n<k,
we have
hnlk) = R fu(R)) for all ke Dy,
and

Tn(R) = hn( £i(R)) for all ke Dy,
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where D; denotes the domain of the function f. (We shall write Ry for the
range of f.) This r. manifold (H, $) has the property that H, C H,,, for all
ne N.

Example 1.5 An RM (IRM) (4, A) will be called an amalgam iff A, N Ap # )
implies that ay(n) = ozpl(n) for both ne a;‘(Apl) and ne a;f(Ap). On such a
manifold, in case it is injective, we can define P additive operations @, and
P multiplicative operations @, p€ P, (P = the cardinal of the set P), by

ap(n) ®p ap(m) = ay(n + m),
and
ap(n) ©p ap(m) = ap(n - m).

It is interesting to note: if ap(n), ay(m), and ay(n + m) are in A, N A, then
ay(n) ®pap(m) = ap (n) ®p ap(m), and similarily for ©p. Thus, one can
consider A,’s as ‘‘sheets’’ of the amalgam (A4, A); on each sheet A, one can
develop an arithmetic which will be compatible with the arithmetic on
another sheet A, , in case 4, N A4, # Q.

Let me introduce now some first effective notions on manifolds. In the
following (if not indicated otherwise) (4,A), (B, W), (C,E), . . ., will denote
RM’s (or IRM’s); then

U={a,lpe P}, B={B4lqeQ}, 6 ={y,l7eR}, ...,
Ap, By, C,, ..., will denote respective ranges of enumerations ap, B, v+, .. ..

Definition 1.2 (i) The set X T A is U-recursively enumerable (U-r.e.),
respective U-recursive (U-r.) iff, for every pe P, a,'(X), the inverse
image of X under @, is an r.e., respective an r. subset of N.

(ii) The map f: X — B, X C A, is U-B-partial recursive (U-B-p.r.) iff X is
anA-r.e. set and, for every pair (p, q) ¢ P x Q, there is a p.r. arithmetical
function f, 4, with domain Dy, , = @, '(X N f7'(By)), such that

(1.6) flap(n)) = Bg(fp,q(n), for all ne Dy, ,.
(iii) If f is both A-BW-p.r. and total it is called A-BV-recursive (U-B-r.).

In Definition 1.2, in case X Nf (B, = P, fp.q is meant to be the
nowhere defined p.r. function A.

In considering functionals, i.e., maps f: X — N, X CA, and anti-
functionals, i.e., maps f: D — A, D C N, we shall consider N always as the
IRM n = (N, {I}), where | is the identity on N. In this way, every a,: N — 4,,
as an anti-functional, is {I}-%-recursive. In case it is injective, its inverse
@'t Ap— N, as a map from A into N, is an W-{l}-partial recursive
functional, with -recursive domain A,. Also, l4, the identity on A, is an
A-A-recursive map: if f, and fﬁl are as in (1.3) and (1.4) then, in case
ApNA, +0,

La(@y(n)) = ay,(f,(n)), for all mea,'(A4,),
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and
L a(ap, () = ay(f, (), for<all ne a;f(Ap).
Similarly, every constant map f: A — {a}, where a is a fixed element
of A, is A-U-recursive.
For subsets of A” and maps from A” we enlarge Definition 1.2.

Definition 1.2' (i) The set X C A", m > 1, is A-r.e. (respectively A-r.) iff,
for every m-tuple (py, . . ., p,) € P", the set

(1.7) Kppvosom = Wy o ooy 1wy e N"ap (m1), . . -, @ (nm)) € X}

is an r.e. (respectively r.) subset of N".
(ii) Let XC A™. The map f: X — B is U-B-p.r. iff X is A-r.e. and, for
every (m + 1)-tuple (p1, . . ., pn; @ € P” x @, there is a p.r. function

Forseresppiq With domain G (fTH(BY)) % . .. xa (fTH(B,)

such that

(1.8) f(apl(nl), ..y apm(nm)) = Bq(fpl,...,Pm;q(nl, ey nm)),

for all (m,, . . ., n,) € Dfp,,...,pmq-

(iii) Let X be a subset of A”. A map g: X— B" g={g, ..., &), is

U-V-p.r. iff X is an U-r.e. set and each g;: X — B an A-B-p.r. map.

For example, the projection f: A*> — A, defined by f(x, y) = x, is W-A-
recursive. Defining f,,,pl,.p(n, m) = n, we have (in case 4, N Ay, # D)

Flap(n), ap (m)) = ay(f,p,:p(n, M) = ay(n), for all ne N.

Similar is the situation with g(x, y) = y. Remark that in case (B, ®) is an
IRM, one can define the p.r. function in (1.8) by

(1-9) fpl,...,pm:q(nl, s ey nm) = Bt;l(f(apl(nl)y et apm(nm))-

Definition 1.3 Let X C A. Xx, the charactevistic functional of X, is defined
by

0if xe X,

(1.10) () = {1 ifxeCX=A- X.

Theorem 1.1 (i) The set X C A is W-recursive iff both X and CX ave
A-r.e.

(ii) The set X C A is WU-vecursive iff its characteristic functional Xy is
A-{I}-recursive.

Proof: (i) If X is A-recursive then each a,'(X) is recursive; therefore,
each @, '(CX) = @, (4, - X) = N - a;'(X) is recursive too. Conversely, if
both a;'(X) and @;'(CX) are r.e. they are recursive, i.e., X is %-recursive.
(ii) Remark that a functional f: A — N is U-{I}-recursive iff to each pe P
there corresponds a recursive arithmetical function f, such that f(a,(n)) =
fp(n), for all ne¢ N. Now, if X is recursive, Xyca, is just the characteristic
function of the recursive set a,'(X).
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It is evident that X C A is U-r.e. iff it is the domain of an A-U-p.r.
map from A into A. Also, every such set is the range of such a map.
However, it is not necessarily tvue that the vange of every U-U-p.r. map
f: X— Ais anU-r.e. set. Namely,

(1.11) 0 =U axna).
pepP

Consider now D, = @;'(X N 4,), in case it is not empty. It is a r.e. subset of
N and for every p,, such that X ﬂf“(Apl) # @, there is a p.r. function fMl
with domain @, (X N f7'(4,)) such that

flap(m) = ay (fp,p,(n)), for all ne Dfp,pl'

This gives:
2 (F(X 0 A)) = a3 (X N FTH(Ap)),

and this proves that each f(X N Ap) is an A-r.e. set, since the set a;l(Xﬂ
f'l(Apl)), as the domain of a p.r. arithmetical function, is a r.e. set.
However, for each p, € P,

(1.12) G (F(X)) = ,,9,,“53‘/’(“ A)),

and, although each member in the union in (1.12) is a r.e. subset of N, the
union itself is not necessarily a r.e. subset of N.

Example 1.6 Consider the IRM of Example 1.3, with a.(n) = £ + n. Let w be
the smallest denumerable ordinal, let §,=0 and £,=w-% for n=1. Let
d: N — N be any increasing function whose range D is not a r.e. set, and
X ={¢,/neN}. Then X is an H-r.e. subset of 2. (Each o;'(X) is either
empty or a singleton.) Define f: X — Q by f(§,) = d(n). Then f(a:(2) is
defined only if £ = £, for some ne N, and ¢ = 0; in such a case

ao(d(n)) for i = 0,
undefined otherwise,

e ) = |

i.e., fis an H-H-p.r. map. Yet, ap ' (f(X)) = D is not a r.e. set, i.e., f(X) is
not an H-r.e. set.

In view of the previous example, one may ask for the validity of the
Graph-Theorem for maps of one RM into itself. Such a theorem is valid
without additional suppositions for IRM’s only; in the general case of RM’s
I need one condition more.

Definition 1.4 (i) We say that the atlas WU is positive iff, for every pe P, the
numerical predicate %, of two variables, defined by

(1.13) Ay (n, m) <> ay(n) = ap(m),

is recursively enumerable, it is negative iff, for every pe P, ~,, the
negation of A, is r.e.; it is solvabdle iff it is both negative and positive.

(ii) We say that the RM (A, ) is positive, negative, and solvable iff its
atlas YU is positive, negative, and solvable respectively.
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Definition 1.4 leaves a huge number of RM’s outside of its scope; I
shall call such RM’s neutral. It is evident that all IRM’s are solvable.
(For these, My(n, m) <> n = m.)

Theorem 1.2 (Graph Theorem) Let (A, ) be a positive RM, and let X be
an U-r.e. subset of A. Then, a partial map f: X — A is W-U-partial
vecursive iff its graph Gy is an U-vecursively enumevrable subset of A®.

Proof: First, let f be A-p.r. For (p, p,) € P* consider the set (subset of N?)
Gy, = {n, M) (), @y, (m) € Gy} = {(n, m) |@y (m) = Floy(m))}.
Let f,,, be p.r. with domain ;' (X N f7'(4, ), and such that

Fap(n)) = O‘Pl(fl"h(n))’ for all ne D/P'/’f

Then
Gy, = L, m) |y (m) = ap (fp.p1(m)}
= {tn, m) 19, (m, fyp () ameD, 3,

which proves (since {4, A) is positive) that each (Gf);’;JJL is r.e., i.e., that Gy
is Y-r.e. (The sign » above denotes conjunction.)

Conversely, suppose that G, is W-r.e., i.e., that each (G,);j[,1 isar.e.
subset of N°. By definition of this set we have

F@y(n) = ap (m) <> (n, mye(Gy), ), -
Define fp,p, by
-1
fP'Pl(n) ~ some m such that (n, m) e (Gpp,-

fo.p, 18 p.r. and flay(n)) = @), (fp,p,(n)) for all meD,  , which proves that f is
A-A-partial recursive. (The symbol =~ denotes conditional equality.)

Corollary 1.2.1 For every IRM (4, ) and any U-r.e. set X C A, the partial
map f: X — A is W-U-p.r. iff its graph is W-r.e.

Remark that the proof of Theorem 1.2 establishes a sharper one-sided
result: in any RM (A, A), if Dyis U-r.e. and G; U-r.e. then f is U-p.r.

Similar to the case of direct images, we cannot say anything
definite about inverse images of A-r.e. sets under U-U-p.r. maps. The
following theorem is the only exception I know.

Theorem 1.3 The inverse image of a r.e. subset of N undev an u-{I}-p.r.
Sfunctional f: X — N, X C A, is anU-r.e. set.

Proof: To each pe P there corresponds a recursive function f, such that
flap(n)) = fo(n), for all ne N. Let E C N be r.e. and such that fAX)NE # Q.
Then a;'(f~Y(E)) = f;'(E), which is a r.e. subset of N.

Theorem 1.4 If X C A is U-r.e. then therve is a map ¢: P — N such that
(1.14) X =pL€JPaP(wcp(P)),
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where w; = {n|V,T:(i, n, y)} is the ©’th r.e. subset of N in the standard
enumevation of all such subsets.

Proof: Set wy(p) = @;'(X), and remark that ay(a; (X)) = 4, N X.

The following example exhibits the perils of replacing maps with
functionals for RM’s (A, A), where A C N; it illustrates also bad sides of
atlases whose cardinal is larger than the cardinal of the carrier A.

Example 1.7 To every arithmetical function a: N — N there corre-
sponds its bar-function a by
a(n) _ Hpiua(i),
i<n
where po = 2 and p; = the ©’th odd prime. Let U, be the range of a and
% ={alfor all a: N— N}. Let A= |J U,. Obviously, A is the set of all
sequence numbers. e

Let me prove that (4, %) is an IRM. Since @(0) = 1 for all a, then for
all functions a, B8 the intersection U, N U is not empty; as is easily checked,
either U, = Us or U, N Us is a finite set. In the former case, (8)”'°@ and
(@)"'eB are identities on N, and in the second case they are identities on
their domains. Thus, (4, ™) is even an amalgam (see Example 1.5).

Consider now a functional f: A — N. It is recursive iff every foa is a
recursive function (see Figure 1.4). Let now f be defined by f(x) = x for all
x€ A. Then fea(n) = a(n), i.e., foa is the bar-function @ itself. Since most
of @’s are not recursive, f is not an A-{I}-recursive functional.

However, as identity 14 on A, fis an A-A-recursive map, since

(B) tofoa= (B oq,

which is a p.r. function for all a, B.

Ua

Q|
<
o
Q|

Figure 1.4
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In the theory of enumerations, a set X C U, where (U, {#p is an
enumerated set (i.e., an RM with singleton-atlas), is called weakly u-r.e.
iff there is a r.e. set w; C N such that X = u(w;). We can introduce a
similar notion.

Definition 1.5 The set X C A is weakly A-r.e. iff there is a ¢: P — N such
that X = wg, where

(1.15) we = pl:{)a,,(w?(,p.

By Theorem 1.4, every §U-r.e. set is also weakly U-r.e.; however, the
converse statement does not hold even in the case of enumerated sets (see,
for example, [5], page 312).

Until now I have imposed the demand that for every RM (A, ), each 4,
be essentially a ‘‘recursive’’ set (and so 4pN A,,1 is also “‘recursive’’). Now
I shall reduce this demand to recursive enumerability only.

Definition 1.6 A set A is called a Recursively Enumevable Manifold (an
REM) iff:

(i) There is a family % of enumerations a,: N — A,, pe P, where each 4, is

a subset of Aand A = U Ap.
pepP

(ii) For every pair (p, p,) e P? such that Apn A, # P, both @y '(4,) and
a;ll(A,,) are recursively enumerable subsets of N, and there are numerical
partial recursive functions

fo: @3 M(Ap) — @5 (Ap) and f: @5 (Ap) — @5 '(4,),
such that (1.3) and (1.4) hold.
(iii) If all @, are injective we say that A is an Injective REM (an IREM).
Example 1.8 Every sequence (4,); y of non-empty r.e. subsets of Nis an

REM: 1let a;: N— A; be recursive, with A; as range, let A = U A; and
=0

A = {2;|ie N}. Then (4, ) is an REM which, in general, is not an RM. In

case all A; are infinite and all @; injective (and recursive) (A, A) is

an IREM.

All definitions of this chapter are applicable to REM’s, and I shall use
them without further notice. Also all theorems of this chapter hold for
REM’s without change; in using them I shall refer to the number of the
theorem for RM’s.

Note that a disjoint REM (A4, A), i.e., for which p # p, implies AN A,,1 =
©, is always an RM.

CHAPTER II-GENERATION OF REM’s AND RM'’s

In this chapter I shall exhibit several ways of obtaining new REM’s and
RM’s from given ones.

Theorem 2.1 (Duplication) Let (A, %) be an REM (an RM), let B be any set
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of the same carvdinality as A, and let f: A — B be a bijective map of A onto
B. Define the family

B = {8, p € P} of maps by By = foay.

Then, (B, ®B) is an REM (an RM), f is an N-B-recursive map andf™' is a
B-U-recursive map.

Proof: Let A, and B, denote the respective ranges of a, and B,. It is
obvious that B =peP B,. Suppose that D,,, = B, N By is not empty. Then:

B;l(Dp,pl) = (f°ap)-l(Dp,p1)
= {n| V flay(n)) = Slap,(m))}
= {nl\’é a(n) = ap (m)}
= ;' (Ap N Ap) = a5 (4p).

If a5 '(4p,) is r.e. (r.) then B;'(Dp,p,) is r.e. (r.). (V denotes the existential
quantifier.) Let now fp,, be partial recursive, with o, 1(Apl) as domain (and
a@,.(A,) as range), and such that

ay(n) = ap (fp,p,(n)) for all ne oz;‘(Apl).
Then, for all ne B, (Dp,p,)
Bp(n) = flap(n)) = flap,(Fp.p,()) = Bp,(fp,p, (7)),

(and similarily for Bh(”))' This proves that B is an atlas on B. At last, for
allme N, and p, e P

flap, () = By (1(n)),
where | is the identity on N; similarly, if Dyp,p, # ® then
flap,(n)) = By(fp,(n)), for all neay,(4,),

where f,, satisfies By, (n) = By(fp,(n)) for all me B, '(Dp,,). The statement
about f~!is proved in a similar way.

Remark: If (4,A) is an IREM (an IRM) then (B,®) is an IREM (an IRM).

Construction in Theorem 2.1 is suitable for situations in which we need
replicas of an REM which are disjoint from it. Another simple construction
is given by the next theorem.

Theorem 2.2 Let (A, %) be a positive REM (a solvable RM). For every
pe P define §, by

Bp(n) = (n, ap(n)) for all ne N.

Let B, be the vange of B, let B = U B[, and B = {By| pe P}. Then, (B, B) is
an IREM (an IRM).

Proof: Each B, is obviously injective. Suppose Dy, = By N By, is not
empty. Then

B3 (Dp.py) = B {(n, ap(m)) | ap,(n) = ap(m)}) = {nlay,(n) = ap(n)}.
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Let fp,: @5, (4,) — ;'(4,,) be partial recursive with r.e. domain (with
r.) and range, and such that @, (n) = a,(f,,(n)) for all Nea;'(4,). Then

B;l(Dp,pl) = {nlap(fpl(”)) = ap(n)}
= fne a3 (4)) [, (), W)},

where U, is the predicate from Definition 1.4. In case (4, ) is a positive
REM this proves that B;l(Dp,pl) is a r.e. subset of N (and similarly for
By, (Dp,p,)). In case (A,MU) is a solvable RM we must proceed further.
Define gp, by

-1
Vo 1 (n) for nea, (4,
En(m { b for nf a; (A,

where b is any fixed element of Cay,,(4,). g, is recursive, since a;'(4,) is
now recursive. Then

B3 (Dp,p)) = {nlne ay (Ay) n Uyl g5, (n), M)}
Since M,and g, are recursive, f,'(Dp,,) is now recursive. (Similarly for
By (Dpp).) At last
By (Bp,(m) = By ((n, ap () = m if ne By (Dy,p,)
(undefined otherwise), which shows that each B;IOBPl is a p.r. function.

I shall call the IREM (the IRM) (B, B) from Theorem 2.2 and The Graph
of the REM (of the RM) (A, A).

Example 2.1 I call (B,®B) from Theorem 2.2 a graph, because, for the
manifold (4, {a}), where a is an enumeration of A, the corresponding B is
just the graph of a.

Definition 2.1 Let (4, %) and (B, ®) be REM’s, let A = {a, |,.p}, B = {B7lc0}
and let A, and By be the respective ranges of a, and 8,. Set C = A x B and,
for each pair (p, q) € P x @, define the enumeration Yp.qt N = Ay x By by

(2.1) p,q(0%(n, m)) = (ay(n), By(m)),

where o®: N> — N is the well-known bijective, recursive map of N° onto N.
(I shall induce its inverses o° and o3 by o3(0°(n, m)) = n and 03(c*(n, m)) = m;
they are recursive and of large oscillation: they take each natural number
as value infinitely many times.) Set

6 ={y,,, DePxQ}

and denote the range of y, 4 by C,4. Then the pair (C, 6) is called the
Divect Product of (A, %) and (B, B).

Theorem 2.3 The direct product of two REM’s (respectively RM’s, IREM’s,
and \RM’s) is an REM (rvespectively RM, IREM, and IRM).

Proof: Using notations of Definition 2.1, remark first that yp,q’s are
injective in case both a,’s and B4s are injective. Suppose now that D =
Cp,g N Cp.q, #D. Then:
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Yp.qD) = 6™y (Ay N4,), B7'(By N By));

if o' (AP N4y,) and B;'(By N By,) are r.e. (r.) so is y,4(D). Moreover, if
Frit @, (Ap) — @5 '(Ap,) and fy,: B (B,) — B7'(By,) satisfy

@y, (1) = ay(fp,(n)) for all ne ay,'(Ay)
and
Bgi(m) = By(fg,(m)) for all m e B(B,),
then

y”lvql(cz(n’ m)) = <a[71(n)3 Bql(m))
= {ap( fp,(n), Byl far(m)))
= ¥5,q(07(fp, (), fq,(m)),

for all o*(n, m) € y,,, 4 (D); thus, with
Fova () = 0°(fo,(03(), f7,(05(w)))
we obtain
7’171,111(”) = ')’p,q(fpl,ql(n)),
for all n € vy, 4,(D).

Example 2.2 Let (4,%), (B,B) be REM’s and let (C,®) be their direct
product. Define the projections po: C — A and p;: C — B by po(x, ¥) = ¥ and
pilx, ») = . Since

Po()’p,q(cz(n, m))) = Po(ap(n), Bq(m)) = Olp("),
Do is €-A-recursive. Similarily, p, is C-B-recursive.

Let now (D,®), ® = {6;|s €S}, D, = range of 6s, be another REM, such
that there are two maps, go: D — A which is ®-U-recursive, and g,: D — B
which is ®-B-recursive. These two maps determine in a unique way the
map f: D — C, defined by f(x) = (go(x), g1(x)), which satisfies both g, = py°f

and g, = p;° f (see Figure 2.1).

=
\/

Figure 2.1

Now,

F(85()) = (£o(65(n), £1(65(n))) = v,,4(0*(fs(n), Rs(n))),
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where fs and ks satisfy
&(65(n)) = ap(fs(n),
and
£1(65(n)) = Bylhs(n)
on corresponding domains. This proves that f is ®-E-recursive.
The dual notion to the direct product is the direct sum.

Definition 2.2 Let (A, W) and (B, W) be REM’s. A REM (C, @) is called the
Direct Sum of (A, ¥) and (B, W) iff there are two maps, f,: A — C, which is
A-@-recursive, and f;: B — C, which is B-E-recursive, with the following
property: for any REM (D,®) and any two maps, g,: 4 — D, which is
A-D-recursive, and g,: B — D, which is B-D-recursive, there is a uniquely
determined €-®-recursive map f: C — D, such that g, = fo f, and g, = fof,

(see Figure 2.2).
c
|
|
l \
|
|
|
|

/f
\/

Figure 2.2

Theorem 2.4 The divect sum of any two REM’s exists; it is of the same
kind (REM, IREM, RM, IRM) as those two.

Proof: I shall use notations of Definition 2.2. Consider first the case of
disjoint A and B. In this case, set C=A UB and € = A UW. Trivially,
(C, @) is an REM of the same kind as both (4, A) and (B, ¥). (In case those
two are not of the same kind, then (C, @) is of the kind of the ‘“worse’’ one
of those two.)

Let f, be the identity on A and f, the identity on B (both maps satisfy
conditions of Definition 2.2). For given g, and g, as in Definition 2.2, define
f: C— D by

golx) for xe A,

flx) = £:(x) for x e B.

f is G-®-recursive and g, = f°f,, g1 = f°f1. Suppose now that AN B # Q.
Let A' be any set disjoint from A U B, of the same cardinality as A; take
any bijective ¢: A — A' and construct, as in Theorem 3.1, the replica
(A", u" of (A, ). (Thus A’ ={aplpe P} and aj = ¢oa,.) Let then (C, G) be
the direct sum of (A',U') and (B, W), i.e.,, C=A'"UB and € = A" UWY.
Define fo: A — C by fo = ¢, and let f; be the identity on B. (By Theorem 3.1
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fo is A-@-recursive.) For go: A — D and g,: B— D as in Definition 2.2,
construct f as in the first part of this proof. Anew, f is €-®-recursive and
8o = f°fo, &1 = fofr.
Definition 2.3 Let (A, %) and (B, W) be REM’s. We say that (B, ®B) is a
submanifold of (A, W) iff B C A and to every ge @ there corresponds a pe P
such that B, < A,.

(Obviously, I use in Definition 2.3 the notations % = {a,[pe P}, B = {8,/ € Q},
A, = the range of @, and B, = the range of B;.)

Lemma 2.1 An REM (B, ®) is a submanifold of the REM (A, W) iff to every
g€ Q there corresponds some pe P and a function f,: N — N such that Bq =
G °fp-

Proof: Define f,(r) = any m such that B4(n) = ap(m).

In view of Lemma 2.1 I shall say that (B,®) is effectively a
submanifold of (A, ™) iff each f, in Lemma 2.1 is recursive (or can be
chosen recursive). In the case in which (4, %) and (B, W) are injective, all
J» must be injective.

Example 2.3 One may conjecture that the fact of (B, B) being an REM would
imply the recursiveness of each f, in Lemma 2.1. Let me give an example
that it is not so.

Let B be any subset of N which is not r.e. and let b be the principal
Jfunction of B, i.e., b is an increasing function with B as its range. Then the
IRM (B, {b}) is a 'submanifold of the IRM (N, {I}} (I is the identity on N), and
b = | of, where f can never be chosen recursive (f = ).

Example 2.4 Let (A, %) be an REM. Let P, C P be non-empty. To each
D€ P, there corresponds an injective recursive function g,; define By=a,°g;,

B = {B,|pe P,}, B, =range of B, and B = U B,. Then (B,®) is an REM
pePo
which is effectively a submanifold of (4, ).

Example 2.5 Let (M, M), M= {y,|te T}, M, = range of y,, be a positive
REM. Define p{® and p!” by u{%®) = 1,(2%) and pP @) = 1, (2n + 1), Let
M and M be the respective ranges of p(® and u, set M® = U M,
teT
MO = UTM,‘”, MmO = [ute T} and MD = {u*M[te T). Then (M, M)
te
and (M@, m©) are REM’s which are effectively submanifolds of (M, ).

It is enough to prove that (M'® a”) is an REM. Suppose that
D=M" M # . Then ,

(1) D) = {nlV p,(2n) = p, (20)}..
Let f,: py, (M) — p;'(M,)) be partia; recursive and such that
uh(n) = i, (fy,(n)) for all ne thl'
Then
() D) = {nlV ne(20) =, (f1(2u)} = {n]V My(2m, £, (20)},
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where W,(u, u) <> p,(u) = p,(u) is a r.e. predicate. Thus, (u”) (D) is

r.€. The remaining part of the proof is left to the reader.
Let me introduce a less strict notion of submanifold.

Definition 2.4 Let (4, A) and (B, W) be REM’s. We say that (B, ®) is a
quasi-submanifold of (A, U) iff BT A and to every ge @ there corre-
sponds a finite set P, C P such that

(2.2) By=Bn UPA,,.

pePq

Lemma 2.2 An REM (B, W) is a quasi-submanifold of the REM (A, W) iff
B C A and to every qe€ Q theve corvesponds a finite family, say {flflq), ce
f;,‘fl)} of partial functions, such that

Ben) = ay,(f,2n)) for ne B7'(Ay,),
and for i =1, 2, . . ., m, and such that (2.2) holds with Py = {p\, . . ., Pn}-

Anew, if all f;f) in Lemma 2.2 are recursive (or can be chosen recur-
sive), we shall say that (B, B) is effectively a quasi-submanifold of (A, A).

CHAPTER III--ATLASES AND THEIR DEGREES

In this chapter I shall consider relations between different atlases on
one and the same set, and two fundamental relations between such atlases:
compatibility and veducibility. Compatibility is concerned with the recur-
sive structure imposed by a given atlas, and reducibility helps introduce a
classification of atlases on one and the same set. Both notions can be
introduced with various degrees of strength.

I consider a fixed non-empty set A, and atlases
U={olpe P, B ={8,lqe @}, €= [reR} ..,

which are all atlases on A. I shall say that an atlas % is an RE-atlas
(respectively IRE-atlas, R-atlas and IR-atlas) iff (A4,A) is an REM
(respectively IREM, RM, and IRM). If I do not mention the special struc-
ture of the atlas, I always consider it to be an RE-atlas; I shall mainly be
interested in such, most general atlases.

Definition 3.1 Two atlases A and ® (on A) are compatible iff they induce
the same ‘‘r.e.”’, “‘p.r.”’, and “‘r.”’-notions for sets and anti-functionals in
both (A, ) and (4, B).

Thus, compatible atlases induce the same ‘‘effective’’ structures on a
given set A, at least for its subsets.and for maps of N into A.

Theorem 3.1 A and B are compatible iff theiv union U U B is an atlas on A,
which is compatible with both U and B.

Proof: Suppose first that % and B are compatible. Consider a, as an
anti-functional f: N— A, with A, as range. It is, trivially, an {I}-%-
recursive anti-functional. But then it must be also {I}-®-recursive; thus,
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whenever A, N By # O there is a p.r. function f;, with domain a;‘(Bq), such
that f(n) = B,(f,(n)), i.e., such that a,(n) = B,(f,(n)) for all nea,'(B,). With a
similar consideration for B,’s, we conclude that % U® is an atlas on A. It
is obviously compatible with both % and ®. Converse evident.

Let me point out that the condition on anti-functionals cannot be
omitted from Definition 3.1. To see this, let A be a denumerable set and
a: N— A, B: N— A two indexings of A. By Theorem 3.1, {2} and {8} are
compatible iff there is a recursive permutation p: N — N such that B = acp.
By a theorem of Kent ([9], p. 233) there exists a non-recursive permutation
f: N — N such that, for every r.e. set E C N, both f(E) and f '(E) are r.e.
Thus, if B: N— A is defined by B =a°f, B and @ induce the same notions
“r.e.”” and ‘“r.”” for subsets of A. However, for anti-functionals this is not
true. Define ¢: N— A by ¢ =Beof ', Then ¢ is not {I}-{8}-recursive;
namely, if there is a recursive, injective ¢*: N — N such that ¢(r) =
B(¢*(n)) for all neN, this would imply that f ™' = 87 o = @* is recursive,
and so that f is recursive. However, since ¢ = a°l, where | is the identity
on N, we obtain that ¢ is {I}-{a}-recursive.

Corollary 3.1.1 If W and B are compatible (on A) then |, the identity on A,
is both U-V-recursive and B-WU-vecursive.

Proof: 14: A— A is A-W-recursive iff for every pe P and g€ @, such that
Ay 0 By + P, there is a p.r. function fp,4 with domain Dy, 4 = @;'(B,) such that
lalay(n)) = By(fy,q(n)) for all me Dy 4, i.e., such that a,(n) = B,(fp,4(n)) for all
ne a;l(Bq). Since % and B are compatible such fj ,’s always exist.

Definition 3.2 Two atlases % and B (on A) are strongly compatible iff they
are compatible and, for every REM (M, M), f is U-M-p.r. map’’ <> ‘‘fis
BV-M-p.r. map’> and “‘f is M-WU-p.r. map’’ <> “‘f is M-BV-p.r. map’’.

It is difficult to find necessary and sufficient conditions for strong
compatibility; they may depend on the structure of atlases in question. I
am able to provide a fairly general sufficient condition in Corollary 3.2.1.

Theorem 3.2 Let A and B be compatible (on A), and suppose that each B,
meets only finite many A,’s. Then, for any REM (M, M), every A-M-p.r.
map is also a B-M-p.r. map, and every M-U-p.r. map is also an M-BV-p.r.
map.

Proof: Let f: X — M, X C A, be an U-M-p.r. map. Thus, for every pair
(p, e P x T (we suppose M = {y,|te T} there is a p.r. function f,,, with
domain D, ; = a,'(X N f~'(M,)), where M, = range of y,, and such that

flay®n) = p,(fp,:(n) for all me Dy, .

Let ge @ be such that A, N B, #+ . By supposition, there is a p.r. function
&g, with domain 8;'(4,), such that

By(m) = a,(gy(m)) for all me B7'(4,).

Now, if By is covered by A,, Ap,, ..., Ay, we have s p.r. functions 8q;»
j=12,... 8, such that
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(8.1) Bg(m) = a,.(g,,(m)) for all me Bg'(A,,).
Then,
F(Bg(m) = (£, , (gg,(m))) for all me B7* (A, N (M),

and j=1, ... s. By the uniformization theorem of the classical recursive
theory there is a p.r. function f,, defined on

g o) = Uspoen a0 770m)

such that, for every neB; (XNf '(M,)), fg:(n) is one of the values
Wy (gq].(n)) which are defined at the point n. Then

F(Bg(m) = w,(fq,:(n) for all ne Dy, ,-

Suppose now that f: Y — A, YC M, is an M-WU-p.r. map. Thus, for
every pair (f, p)e T x P there is a p.r. function f;,, with domain D,, =
ur (Y N f7Y(A,)), such that

() = ay(f,p(n) for all ne D, .

Suppose now anew that A,, ..., A, cover B;. Since A and ¥ are
compatible, there are p.r. functions %; such that

@, (m) = By(hi(m)) for m e a,;(B,).
Then
Fu () = By(Ri(fr,p; (1))

for ne u; (Y Nf By N Ap)), i=1,..., s. Asin the first part of the proof,
there is a p.r. function f,,, with domain yu; (Y N f~'(B,)) such that

Fu () = By(f1,4(n) for all ne Dy, .,
which proves that f is also an M-W-p.r. map.

Corollary 3.2.1 Let % and 8 be compatible and such that each A, meets at
most finite many Bg's and each By meets at most finite many Ay’s. Then U
and B ave stvongly compatible.

Most pleasant atlases are the finite ones. The following theorem dem-
onstrates why it is so.

Theorem 3.3 If W ={e;|0 <i<n}is a finite atlas on A, then theve is an
enumevration a: N — A of A such that ¥ and {a} are strongly compatible.

Proof: By induction. Let n=1, i.e., A={a, a;}. Set a(2n) = ag(n) and
a(2n + 1) = a,(n). Wand {a} are trivially compatible; by Corollary 3.2.1 they
are strongly compatible. Induction now completes the proof.

If we apply the construction in the proof of Theorem 3.3 to the case in
which (A, ) is an IREM, the corresponding a will be not an indexing but an
enumeration only. I can prove that in the case in which (4, A) is an IRM the
corresponding a may be chosen so as to be an indexing.
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Theorem 3.4 If (A, %) is an IRM with finite atlas N = {a;10 < i < n}, then
theve is an indexing a: N — A such that W and {a} ave stvongly compatible.

Proof: By induction. Let z=1, i.e., % ={a, a;}. Consider D= 4,N A4,
(A; = range of a;). E = a;'(D) is either empty, finite or infinite and recur-
sive; if it is empty apply the construction in the proof of Theorem 3.3, and
if it is not empty consider N - E. This is a recursive set. If it is finite,
say N - E = {eq, . . ., e}, define a(i) = ay(e;) for i=0, ..., sand a(s +1+4) =
a,(7) for i =0. If N- E is infinite, let f: N — N - E be recursive, increas-
ing, with N - E as range. Set a(2i) = a,(3) and a(2i + 1) = a,(f(3)). It is easy
to show that % and {a} are compatible. Then, they are strongly compatible.
Now, apply induction.

Theorems 3.3 and 3.4 show that, as far as ‘‘effective’’ structure is in
question, finite atlases can always be replaced by enumerations, respec-
tively by indexings. However, this situation should not suggest that
denumerable sets A should be considered only as REM’s (4, {a}), where a
is an enumeration or an indexing. I shall give later important instances in
which denumerable atlases on such a set A are essentially different from
possible enumerations of A (i.e., from singleton-atlases on A).

In the Theory of Enumerations one of the fundamental problems is the
so-called problem of veducibility for enumerations of one and the same set.
If a: N— A and B: N— A are enumerations of the set A, and there is a
recursive (and injective) function f, such that @ = Bof, then we say that a is
veducible (uni-veducible) to 8. In a natural way, this notion leads to a
notion of equivalence (and uni-equivalence) and to the notion of degrees
(one-degrees) of enumerations of A. (For example, the whole content of [5]
consists in an elaboration of this notion of reducibility.)

In the Theory of REM’s we have several possible notions of reducibility
of atlases, all of which fall back to the reducibility of enumerations in
case of singleton-atlases. I shall expose now some of these possibilities.

We consider a non-empty set A and the class a4 of all atlases
AV, E, ..., onA. (Seethe beginning of this chapter for notations.)

Definition 3.3 U is strongly reducible (strongly one-veducible) to B, in
symbol U << B (A <<, V), iff U= {a,/pe P}, B={8,/pe P} and there is a
family F = {f,|pe P} of recursive (and injective) arithmetical functions,
such that

(3.2) ap = B?°fp, for all pE P.

Strong reducibility is an immediate generalization of the reducibility of
enumerations, and it is not difficult to pursue its study along the same lines
as in the classical recursive theory. In the next chapter I shall show the
naturalness of the demand that atlases be enumerated by same indices—at
least for the sake of comparison of REM’s; however, I will not enter into
any detailed discussion of the strong reducibility.
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Definition 3.4 U is finitely veducible (finitely one-veducible) to B, in
symbol U 5B (A s, %), iff each A, can be covered by finite many B,’s, say

by B‘(I’;), R B,}?, and there are (injective) p.r. functions fl("), R S(p)’

such that for everyi=1,2,...,s
(3.3) a,(n) = B, (fP(n)) for ne az'(By,).

One should remark that the Definition 3.4 does not demand the covering
neighborhoods B, . . ., Bfli’) to be disjoint in pairs. Thus, if ne a;l(Bg) N
Bg)), we will have

ay(n) = By (fPAn) = By.(£7m)).

It is evident that § and Fs are both reflexive and transitive. Defining

(3.4) A=V <—>‘1l§‘8/\§8§‘2[,
and
(3.5) A S VU BAB < W,

we define Finitary Atlas-Degrees (on A), respectively Finitary Atlas-One-
Degrees (on A), in short FAD’s, respective FAOD’s, as equivalence classes
of a4 under %, respectively under = .. The FAD of U will be denoted by A,
and its FAOD will be denoted by A_,.

By Corollary 3.2.1 if two compatible atlases are in the same FAD,
then they may eventually be strongly compatible. In principle, one may
expect that a FAD contains non-compatible atlases. For example, if in
(3.3) one of the sets a;'(B,,),i=1, ..., s, is not r.e., then % and B are not
compatible.

Example 3.1 Let me consider FAD’s on N, the set of non-negative integers.
In order to eliminate pathological atlases, I shall consider only at most
denumerable atlases %A, W, E,. . ., on N, which are genuine in the following
sense: if just one of Ap’s, or By’s, or C,’s, . . ., is removed, the remaining
local neighborhoods of the respective atlas do not cover N.

A singleton-atlas {a} is an atlas on N iff ais an enumeration of N; thus
{al s {8} <> a = 8o,
where f is a recursive function.

Now, suppose that a is an indexing of N. If B8 is another indexing of N
and {a}s {8}, then a=Bop, where p is a recursive permutation. This
implies also that 8 = a°p™", i.e., {8} § {a}. Thus, we have the result:

(i) If two singleton injective atlases on {a} and on {8} are comparable (under
§) then they ave in the same FAD.

In particular, all singleton-atlases each consisting of one recursive
permutation are in the same FAD, say {l};; this FAD is incomparable
(under the obvious sense of this word) with any FAD which contains a
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singleton-atlas consisting of one non-recursive permutation. This already
proves:

(ii) There is a continuum of mutually incomparable FAD’s on N.

Now consider a genuine denumerable atlas U = {a,- lie N} on N, and a
singleton-atlas {a} on N. We can never have {a} S, since no finite
number of A;’s (A; = range of @;) can cover N (which has to be the case if
{a} £ %). Thus, we obtain:

(iii) The FAD’s of genuine denumerable atlases on N nevev contain finite
atlases and, if comparable with FAD’s of finite atlases, the FAD’s of
genuine denumevable atlases ave smaller than the FAD’s of finite atlases.

(I have taken for granted that the reader realizes that, by Theorem 3.3,
finite atlases fall into FAD’s of singleton-atlases, i.e., they do not produce
any new FAD’s on N.)

Let now {a} be an injective singleton-atlas on N. Let (E;)iy be a
sequence of infinite recursive sets, such that N = Uo E;, but such that for
1=

every jeN, N - E; #+ N. Let E; be the range of the increasing recursive
function f;, let @; = a°f; and U = {a;|i e N}. Then U is a genuine atlas on N,
and % < {a}. This gives:

(iv) To every injective singleton-atlas on N one can correspond a genuine
denumerable atlas of a lower FAD.

Theorem 3.5 The FAD’s on a fixed set A form an upper semi-lattice, i.e.,
to every two FAD’s U and B theve covrvesponds theiv least upper bound
?lF V%F.

Proof: If the atlases A and B are given, U ={a,lpe P}, B ={8,/q¢Q},
consider the cardinalities P and Q. Suppose P < Q then we can assume that
P C Q. Define € ={y,/geQ} as follows: if ge P then y,(2n) = a4(n) and
vq(2n + 1) = Bg(n); and if ge @ - P then y, = B4. Trivially, A< ; € and ¥ 5 6.
Suppose now that an atlas ® = {6s|s € S} is such that both AsDand B < .
Then one obtains easily that @ s Di.e., G = U vV,

In an analogy with the notion of a cylinder I shall introduce a notion of
cylindrification for atlases.

Definition 3.5 Let % ={a,/pe P} be an atlas on A. Then, Cyly, the
cylindvification of %, is the atlas Cyly = {a,|p € P}, where

(3.6) @, (c*(n, m)) = ap(m) for all n, me N.
(0®, 0%, and 03 and o are as in Definition 2.1.)

Since a,(m) = Zip(cz(o, m)) and ay(n) = a,(02(n)) we have always S, Cyly and
C)’L)l f ‘1‘.

Lemma 3.1 Let W and B be atlases on A. Then:
(i) U s Cylyand CylysA.



RECURSIVE AND RECURSIVELY ENUMERABLE MANIFOLDS 287

(ii) B su implies B < Cyly.
(iii) B s <> Gl s Cyly.

Proof: (i) was already proved. (ii) Let ge @ and let Apy -+ ., Apcover B,
so that

(3.7) Bam) = ay,(f{9m)), for ne B71(A,,),

where £, ... £ are p.r. functions. Define gi(q)(n) = o*(n, fi(q)(n)), i=
1, ... s. Then:

B,n) = a,(g:9m)), for ne Bi'(4,),

which proves that B < Cyly.
(iii) 1f %g A then Cyly s, since Cylyg f%. Thus, by (ii), Cylg S, Ol
Conversely, if Cylg S Cyly we have

B < Gly <, Oly f‘)l, ie., B s
Theorem 3.6 Every FAD (on A) contains a maximal FAOD.

Proof: Consider g and Cylyr.,. Obviously, Cylyr.; is contained in .
Now, let e U be in any FAOD, say in Br_,. Since Ve U, we have BV s A,
and by (ii) of Lemma 3.198 < Cyly.

Let us remark that (iii) of Lemma 3.1 establishes an order-homomor-
phism from the ordering s into the ordering <. All this shows that finitary
reducibility of atlases is an appropriate extension of the reducibility of
enumerations. Let me remark that “® <%’ is equivalent with ‘“(A, B) is
effectively a quasi-submanifold of (A4, A)’’. This suggests placing our
manifolds (4, A), (4, B), (4, @), . . ., inside one fixed larger manifold.

Thus, I should now have a fixed REM (M, M), M= {u,lte T}, M,

range of u,, M= UM,, and that A € M. I shall consider atlases on A
teT
(obviously, I suppose that A is non-empty) which are finitely reducible to M

in the obvious sense: A < g M iff each A, can be covered by finite many M,’s

b

say by M,l, ... My, and there are p.r. functions f, ,i=1, , S, such
that

ay(n) = p, (fP(n)) for ne oy (M,,),
andi=1, ... s. (Consequently, I shall suppose that REM’s (4, A}, (4, B),
(4, 6), ..., are effectively quasi-submanifolds of (M, M).)

In a similar way I can extend the notion of finitary reducibility to
subsets A, of A, i.e., to the atlases on such subsets.

Definition 3.6 The atlas % (on A C M) is principal iff As M and, for every
atlas B on A, the relation ® < M implies BV $ A,

The existence of principal atlases on A depends on the recursive
structure of A in (M, M), and on the structure of M.

Theorem 3.7 If (M, M) is positive and A is an M-r.e. set, then there
exists at least one principal atlas on A.
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Proof: Let T, C T be the set of all € T such that yu;(4) # @. Then, every
set u; '(A), for te T, is a non-empty r.e. subset of N. Let it be the range
of the recursive function m,. Then, A N M, = u,(M,(N)) for all te T,, and
A= ur A,, where A,=range of &= y,oM,. At last, set¥u = {o,|te T,}. I

teTg
shall prove that 2 is principal.

Suppose B = {8,/q € @} is an atlas on A, such that 8 < M. Let geQ be
fixed and let {t,, ¢, . . ., s} C T be such that {M,, M,,, . . ., M} covers Bg;
let féq), fl(q), .. .,fﬁq) be p.r. and such that, fori=0,1,...,s,

By(n) = u,,.(fi(")(n)) for ne By (M,;).
Since B, C A, we have B, N M,; = B; N A;;. Thus,
(3.8) Ba(m) = u, (f{P(n)) for ne Bz (As,),

(6=0,1,...,8) and {4,, 4, , ..., A,} covers B;. For i=0,1,...,s,
define g; by gi(n) ~ some ye N such that pu,;(y) = ,;(m;(n)); since M is
positive, each ¢; is a p.r. function, and we have

u,i(n) = a;;(gi(n)) for all ne Dy,.
Then, by (3.8), we obtain
By(n) = ati(g;,-(f,-(")(n))) for ne B7'(Ay,),
andZ=0, 1, ..., s, which proves that ® §2!.
Corollary 3.7.1 If (M, M) is an IREM (an IRM) and A C M an M-r.e. set,

such that each non-empty u; ‘(A) is infinite, then theve is a principal atlas
W on A, such that (A, %) is an IREM (an IRM).

If both A and W are principal, they are in the same FAD; this FAD is
the maximal element of the family of FAD’s of all REM’s (4, @), which are
effectively quasi-submanifolds of (M, M).

Example 3.2 Consider (N, {I}), where | is the identity on N, as the fixed
REM: (M, M). (To be precise, (N, {I} is an IRM.) Let A be any non-empty
subset of N. We shall consider at most dgnumerable genuine atlases on A.

Let A = {a;lie N}, A; = range of a;, A = _UO A;, be such an atlas. Suppose it
e

is principal. Consider any REM (4, {a}). If {a} < {I}, @ must be a recursive
function with range A4, i.e.,

(i) If a singleton atlas {a} on A is finitely reducible to {1}, then A must be a
r.e. set and a a vecuvsive function.

Therefore, let us start with the case in which A is a r.e. set. Then any
recursive function a: N — A, with A as range, defines an atlas {a} on A such
that {a}f {I}. Since % is principal, we obtain at once: A must be covered
by at most finite many A;’s. However, this contradicts the supposition that
A is genuine. So, we have:

(ii) If A is r.e. then no genuine infinite atlas M ={a;|ie N} on A can be

principal.
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Thus, if principal, ¥ must be finite. But then, by Theorem 3.3, A can
be replaced by a singleton atlas {o}, where a is recursive and has A as
range. Now, let % = {a}, @: N — A, a recursive. Let B = {8;|i e N} be any
atlas on A, such that %ﬁ{l} This implies: each §; is recursive. Define
then

fin) = pylaly) = Bi(n).
Then B;(n) = a(f;(n), i.e., B s {a}, and we obtain

(iii) Every principal atlas on A, in case A is r.e., can be reduced to a
singleton atlas {a}, with vecursive a. Every such atlas is then principal.

(The last statement in (iii) should not be astonishing, in view of
Theorem 3.6.) Now suppose that A is not r.e. Remark that it cannot be
immune if it admits any atlas U< {I} which contains at least one infinite
local neighborhood A, (since, then a, must be recursive). Thus, we have to
consider two cases: A immune, and A non-immune.

Let first A be immune. Then, every atlas A g {1} on A, must contain
only finite local neighborhoods A,;, and so must be infinite. Let A =
{a; lie N}, where each a; is recursive, with finite range, and suppose that A
is genuine. Thus, if W= {8; lieN} is any atlas on A which is finitely
reducible to {I}, we will have B; < =, for all i€ N. Also the relation ® < {I}
implies that each B; is recursive (w1th finite range). Therefore, to each

i€ N there corresponds finite many numbers 4, i, . . ., i, such that A;,

Aiy « o ., Aj cover B;. Define f;, by
f,-P(n) >~ any y € N such that a;,(y) = Bi(n).
Then each f;, is partial recursive, 4 =0, .. ., s, and
Bi(n) = a;,(fi,(n) for me Bi'(Ay),
w=0,...s51ie,9 f‘ll Thus:

(iv) If A is immune, then every atlas U = {a;|ie N} on A, where each a; is
recuvsive, with finite vange, is principal, and every principal atlas on A is
of this type.

At last, suppose A infinite, non-recursively enumerable and non-
immune. Then, no singleton atlas {a} on A can satisfy {a}<{l}, and no
finite atlas can do it either. Thus, exactly all genuine infinite atlases
A = {a;|7€e N}, with all @; recursive and such that (4,);.y is not a recursively
enumerable sequence of r.e. sets, satisfy U< {I} Here, some A; may be
infinite; in fact,

if Wis to be principal, at least one A; must be infinite.

To see this, remark that A contains an infinite r.e. set, say B, which is the
range of the injective, recursive function B,. Now, construct the atlas
B = {B lie N} by taking every B; for i=1 to be identically b; where
by, bs, b3, ..., is an enumeration of A - B,. Since ¥ < {I} we must have
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VW< A; this implies that B, can be covered by finite many A;’s; thus, at
least one of those has to be infinite.

It should be obvious that definite characterization of principal atlases
in this last case depends very much on the nature of A. Thus, I will leave
this characterization for a special study.

Let us say that an atlas Won A C M is finitary with respect to M (the
atlas on M) iff each M, meets at most finite many A4,’s.

Theorem 3.8 Let M be positive and let W be a principal atlas on A C M,
which is finitary with vespect to M. Let Ay C A and let (A,, B) be any REM
which is effectively a quasi-manifold of (M, M). Then B = A.

Proof: We suppose %B={B,/qe@}. If My, ..., My cover B, let f,-(q),
i=0, ..., 8, bepartial recursive and such that

By = u,, (Fi0(n)) for me B7}(M,,).
Then {A N M,, . .., AN M} covers B;. Now, by the condition on %,
A N Mti = {Api,l U, ..oy U Api'si}m M‘i

S

s S

for ¢=0, ..., s; thus, U U Apl-i covers B;. Moreover, there are partial
i=0 j=0 ’

recursive functions fp;;, ¢=0,...,s,j=1,..., s; such that

ap; () = u;(fp; j(m) for ne a;if].(M,i).

Applying the same method as in the proof of the second part of Theorem 3.6
we obtain the proof of this theorem.

A slight variant of Theorem 3.7 is

Theorem 3.9 Let U ={a,|te T} be such that A, C M, and that theve is a
family {f, |te T} of p.r. functions, satisfying for all te N

ur (A € Dy,
and
w(n = a,(fi(n) for all ne u;*(A).

Then W is principal (on A= U A,).
teT

Proof: We have to prove only that % \; M. Define g, by
g;(n) ~ any ye N such that f;(y) = n.
Since Ry, = N, & is recursive and
a,(n) = yp,(g:(n) for all ne N,
ie, AU f m.



(1]

(2]

(3]

[4]

[5]

(6]

[7]

(8]

(91

RECURSIVE AND RECURSIVELY ENUMERABLE MANIFOLDS 291

REFERENCES

Vugkovié, V., ““Local recursive theory,”” Notre Dame Jouvnal of Formal Logic,
vol. XIV (1973), pp. 237-246.

Malcev, A. 1., ““Konstruktivnye Algebry, 1,”’ Uspehi Matematickih Nauk, vol. XVI
(1961), pp. 3-60 (in Russian).

Malcev, A. I, ““Polno Numerovanye Mnozestva,’’ Algebva i Logika, vol. 2 (1963),
pp- 4-29 (in Russian).

Malcev, A. 1., “K Teorii Vychislimyh Semeistv Obiektov,’’ Algebra i Logika,
vol. 3 (1964), pp. 5-31 (in Russian).

Ershov, Y., ‘““Theorie der Numerierungen 1,”’ Zeitschvift fiir Mathematische
Logik und Gvundlagen der Mathematik, vol. 19 (1973), pp. 289-388.

Platek, R. A., Foundations of Recursion Theory, Ph.D. Thesis, Stanford Univer-
sity (1966).

Kreisel, G., and G. E. Sacks, ‘‘Metarecursive sets,”” The Journal of Symbolic
Logic, vol. 30 (1965), pp. 318~338.

Wagner, E. G., Uniformly Reflexive Structures, Ph.D. Thesis, Columbia Univer-
sity (1963).

Rogers, H., Jr., Theovy of Recursive Funclions and Effective Computability,
McGraw-Hill, New York (1967).

To be continued

University of Notve Dame
Notre Dawme, Indiana





