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AND HAUSDORFF’S MAXIMAL PRINCIPLE
PART I. SET FORMS

JUDITH M. HARPER and JEAN E. RUBIN

1 Imtroduction ~ When is a maximal principle equivalent to the axiom of
choice, AC? While we are not able to give a non-tautological answer to
this question, we do study a large variety of maximal principles, some of
which are equivalent to AC, some are weaker but do not follow from the
other axioms of set theory, some are provable from the other axioms, and
some have the property that their negations are provable from the other
axioms.*

In section 2 we study variations of Zorn’s Lemma and principles of
cofinality. It is shown in most cases that a principle of cofinality is equiva-
lent to a corresponding variation of Zorn’s Lemma. Variations of Haus-
dorff’s Maximal Principle are studied in section 3. The results for class
forms are similar to those for sets, but often the Axiom of Regularity is
used to insure that we are dealing with sets and not proper classes at vari-
ous stages of the proofs. These results will appear later in Part II of this
paper. Section 4 is an appendix in which we list all the statements which
are used in the paper along with their abbreviations, and in Figures 4.1 and
4.2, we summarize our results for the set forms of Zorn’s Lemma and
Hausdorff’s Maximal Principle.

The following definitions and symbols are used throughout this paper:

1.1 Let NBG° denote von Neumann-Bernays-Godel set theory excluding the
Axiom of Regularity, AR, and the Axiom of Choice, AC. Let NBG = NBG® +
AR. All results are in NBG® unless it is explicitly stated othevwise.
Capital letters such as X, Y, and Z and these letters with subscripts, will
be used for class variables, and lower case letters will denote set

*Some of the material in this paper is a revision of part of the first author’s
Ph.D. thesis: ‘“Variations of Zorn’s lemma, principles of cofinality, and Hausdorff’s
maximal principle,”” Purdue University, 1972 (J. E. Rubin, major professor). The
research was supported in part by NSF Grant GJ-980.
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variables. Lower case Greek letters will be used to denote ordinal
numbers. The power class of X, P(X) = {u:u C X}. If R is a relation on X,
the domain of R,®(R)={ueX: (Jve X) uRv}, and the range of R, N(R) =
{ve X: (3ue X) uRv}. @ is the empty set, V is the universe, w is the set of
natural numbers, and On is the class of ordinal numbers.

1.2 A class X is partially ovdeved by a relation R iff R is a (binary)
relation which is transitive, antisymmetric and reflexive on X.

1.3 A relation R is connected on a class X iff (Vu)(Vo)(u, veX & u +v —
uRv or VRu).

1.4 A class X is linearly ordered by a relation R iff R is a connected
partial ordering on X.

1.5 An element u€X is an R-first (R-last) element of X iff (VveX)({w #
u — uRv). (R-last is defined similarly.)

1.6 An element u € X is an R-maximal element of X iff (Vv ¢ X)(wRv — vRu).
(R-minimal is defined similarly.)

1.7 If Y C X, ueX is an R-upper bound of Y in X iff (VveY)( # 4 — vRu).
(R-lower bound is defined similarly.)

1.8 A class X is well ovdered by a relation R iff R linearly orders X and
every non-empty subclass of X has an R-first element.

1.9 A class X is directed (upwards) by a relation R iff R partially orders X
such that every finite subset of X has an R-upper bound.

1.10 Let R partially order X. A subclass S of X is an R-initial segment of
X iff '

Vu)(Vo)weS & ueX & uRv — ueS).

1.11 If S is an R-initial segment and there is a yeX such that S =
{u: ueX & uRy} then S will be called the initial segment genevated by y and
may be denoted by y.

1.12 A class X is ramified by a relation R iff R partially orders X such
that every initial segment (37 of X is linearly ordered by R.

1.13 A class X is a forest under the relation R iff R partially orders X
such that every initial segment y of X is well ordered.

1.14 A class X is a tree under the relation R iff X is a forest and is
directed downwards (i.e., every finite subset of X has an R-lower bound).

1.15 A subclass @ of a partially ordered class X is quasi-cofinal in X iff @
has no strict upper bound in X.

1.16 A subclass @ of a class X partially ordered by a relation R is cofinal
in X iff @ is linearly ordered by R and

(Vy)(yeX — (32)(z € @ & YRZ)).
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1.17 A subclass A of a class X partially ordered by a relation R is called
an antichain iff (Vy)(Vz)(yeA & 2¢ A & ¥y + 2 — 1(YRz or 2RY)). That is, no
two distinct elements of A are related by R.

1.18 For a class X, let
Wx ={{t, w): t C X & w C t x t & w well orders t}.
Let I be the relation defined on ordered pairs such that
EGwy I, wHYyiff tCH &w=w' N{ExD) &tx ('~ Cw'.

I will be called the initial segment velation and Wx as ordered by I will be
called the free of well ovdeved subsets of X. If x is a set, we may write
“w,’’ instead of “Wy”’.

Every set is a class and classes which are not sets are called proper
classes. When considering only sets we use the preceding definitions with
the word ‘‘class’ replaced by ‘‘set’”. Also, the name of the relation may
be omitted if no confusion arises. For example, we may write ‘“‘maximal
element’’ instead of ‘‘R-maximal element’’, if it is clearly understood
which relation R is meant.

2 Vaviations of Zovn’s Lemma and Principles of Cofinality
2.1 Zorw’s Lemma Zorn’s Lemma may be stated as follows:

Every non-empty pavtially ovdeved set x in which every linearly ovdeved
subset has an upper bound, has a maximal element.

We vary two parts of the hypotheses: the type of order on the setx and
the type of subset which always has an upper bound. To denote such a
variation of Zorn’s Lemma we write Z(Q, U) to stand for the statement:

Every non-emptly Q-ovdeved set in which every U-ovdeved subset has an
upper bound, has a maximal element.

As possibilities for @ and U we begin with the following:

arbitrary (any binary relation)
. transitive
. antisymmetric

connected

partially ordered

well ordered

linearly ordered (also called a chain)

directed

ramified

forest

tree

—_
JIRRDERORR2

For instance, Z(D, R) stands for the statement:

Every non-empty divected set in which every vamified subset has an upper
bound, has a maximal element.
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Zorn’s Lemma has also been considered in the following form:

Every non-empty set x in which each subset which is linearly ovdeved by
tnclusion has an upper bound, has a maximal element.

However, this statement is equivalent to Z(P,L) because every partially
ordered set x can be replaced by an isomorphic family of sets ordered by
inclusion simply by mapping ye* to 9. For this reason we shall not
consider as special cases forms of Zorn’s Lemma (or Hausdorff’s
Principle) in which inclusion is the ordering relation.

It is easy to see that Z(Q, U) is provable in NBGP° if @ is a stronger
relation than U; i.e., if x is @-ordered implies x is U-ordered. Hence the
following statements are all provable:

Z(Q, A) for all @ (so we may drop A from the U list),
Z2(Q,U) forall @ =1,

Z(P,U) for U= TR and AS,

Z(L,U) for U= TR, AS, C, P, D, and R,

Z(D,U) for U= TR, AS, and P,

Z(R,U) for U= TR, AS, and P,

Z(F, U) for U= TR, AS, P, and R,

Z(T,U) for U= TR, AS, P, R, and F,

Z(W, U) for all U (so we may drop W from the @ list).

Z(F, T) is also provable as we see by the following lemma.
Lemma 2.1 Every forest is the union of a pairwise disjoint set of trees.

Proof: Let f be a forest under the relation R. For each xef, ¥ is well
ordered and hence has a least element, 7,. Now 7, = {uef: 7, Ru} is a tree,
because as a subset of a forest, 7:: is also a forest, and it has 7, as its least
element. This proves that every element of fis a member of some tree in
f which is generated by a minimal element of f. Now suppose 7, and 7, are
two minimal elements of f and that 7, N7, # ®. Then (Juef)(voRu & 7, Ru).
It follows that 7, = %, = ¥,. Therefore, 7'0 = '71. Thus any two trees in f
which are generated by a minimal element are either identical or disjoint.
This completes the proof of the lemma. Q.E.D.

To show that certain of the maximal principles are false in NBG® (i.e.,
the negation is provable in NBG®), we give the following example. (See [21].)

Example 2.1:

%, =1{a, b, c, d}
R, ={a, b), (®, o), {c, d), (d, @)} U Id/x,.

(Id is the identity relation.) R, is antisymmetric. R,-connected subsets of
%, have at most two elements and, therefore, have R;-upper bounds. But x,
has no R,-maximal element.

Example 2.2:
%, ={a, b, c}
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R, = {(a, b), (b, ), (¢, A} U 1d/%,.

R, is connected and antisymmetric. R,-transitive subsets of x, have at
most two elements and have R,-upper bounds. But X, has no R,-maximal
element.

Example 2.3:
X3 = X,
Ry =R, U ld/x,
(le =%, X X; ~R;) R; is connected and R;-antisymmetric subsets of x; have

at most two elements, so have R;-upper bounds, but x; has no R;-maximal
element.

Consequently, we see the following maximal principles are false in
NBG®:

Z(A, C), Z(AS, Q) (Example 2.1)
Z(A, TR), Z(AS, TR), Z(C, TR) (Example 2.2)
Z(A, AS), Z(C, AS) (Example 2.3)

Using the fact that if U, — U, then Z(Q, U,) — Z(®, U,) for all @, and if
Q; — Q. then Z(Q;, U) — Z(Q,, U) for all U, we list in Figure 2.1 those
maximal principles which are remaining after eliminating those which are
known to be provable in NBG® and those which are false in NBG°.

Z(TR, AS) Z(P, R) Z(R, W)
Z(TR, C) Z(P, F) Z(R, L)
Z(TR, P) Z(P, T) Z(R, D)
Z(TR, W) Z(L, W) Z(R, F)
Z(TR, L) Z(L, F) Z(R, T)
Z(TR, D) Z(L, T) Z(F, Q)
Z(TR, R) Z(D, C) Z(F, W)
Z(TR, F) Z(D, W) Z(F, L)
Z(TR, T) Z(D, L) Z(F, D)
Z(p, Q) Z(D, R) Z(T1, Q)
Z(P, W) Z(D, F) Z(T, W)
Z(p, L) Z({D, T) Z(T, L)
Z(p, D) Z(R, C) Z(T, D)
Figure 2.1

In a connected set, W, F, and T are equivalent. Hence, Z(L, W) =
Z(L, F)=2Z(L, T). In a ramified set, L and D are equivalent. Hence,
Z(R, L) = Z(R, D). In both forests and trees, W, L, and D are equivalent.
Moreover, every tree is a forest and to find a maximal element in a forest
in which every U-ordered subset has an upper bound, select one of the
constituent trees of the forest and use Z(T,U). Hence, Z(F, W) =Z(F, L) =
Z(F,D)=2(T,W)=2Z(T, L)=2(T, D). Also, in a partially ordered set C
and L are equivalent, Therefore, Z(P, C)=2Z(P, L), Z(D, C) =2Z(D, L),
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Z(R,C)=2Z(R, L), Z(F,C)=2(F, L), and Z(T,C)=2Z(T, L). In a transi-
tively ordered set AS and P are equivalent, so Z(TR, AS) = Z(TR, P).

Z(P, L) is Zorn’s Lemma in its original form. We see that Z(TR, W)
is the strongest maximal principle in the list. It follows from the work of
T. Szele [27] (see also [23], p. 12 ff) that Z(TR, W) is equivalent to AC in
NBG®°. (Similarly for Z(P, W).) Thus, AC implies each of the maximal
principles in the list.

In order to prove additional implications we use the fact that Z(P, L) —
Z(P, W). The method of proof is similar to the usual proof that Zorn’s
Lemma implies the well ordering theorem. (For example, see Theorem
4.9, p. 16 in[23].) Similarly, Z(TR, L) — Z(TR, W) and Z(R, L) — Z(R, W).
Moreover the proof that Z(P, D) — Z(P, W) is similar to Felgner’s proof
[2] that Z(M, D, 1) — Z(P, W). (Thel is to indicate that the hypotheses are
modified to state that every directed set is assumed to have a least upper
bound.) Since Z(P, W) — Z(P, D), we have Z(P, W)= Z(P, D). Using a
proof which is similar to the proof that Z(P, D) — Z(P, W). It can be shown
that each of the following imply Z(P, W)(= Z(TR, W) = AC): Z(@, U) for
=R, F,or T,andU =W, L, C, or D. Consequently, it follows that the 20
statements Z2(Q, U) for = TR, P, R, F, or T,and U=W, L, C, or D are
all equivalent to AC in NBG®°.

We prove next that Z(L, W) and Z(D, W) are equivalent to AC in NBG®°
if the order extension principle,

OE: Every partial ovdering can be extended to a linear ovdering,

holds. Moreover, the equivalence fails for Z(L, W) if OE does not hold.
Concerning the strength of OE, the following implications are known: AC —
BPl — OE — LO, where BPI denotes the Boolean Prime Ideal Theorem and
LO the linear ordering principle. That LO does not imply OE in NBG was
proven by Mathias [17]. That BPl does not imply AC in NBG has been
proven by Halpern and Levy [9], and it follows from this that OE does not
imply AC in NBG. It was recently shown by Felgner that OE does not imply
BPI in NBG.

To obtain the desired result we first use a result of Felgner [3] (as
corrected by D. Morris) that in NBG® + OE the principle of cofinality,

Cof: Every linearly ovdeved set has a well ovdeved cofinal subset,
implies
LW: Every linearly ovdered set can be well ovdered.

However, it is clear that QE & LW implies WO (the Well Ordering
Theorem) since every set can be partially ordered. Hence, from NBG® +
OE + Cof — LW, it follows that NBG® + OE ~ Cof — AC.

Concerning the relative strength of Cof, the following implications hold
in NBG®: AC — KA — LW — Cof, where KA is Kurepa’s antichain principle:

Every pavtially ovdeved set has a maximal antichain.
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It has been shown by J. D. Halpern in [7], that KA does not imply AC in
NBG°. However, it was shown by H. Rubin [22] that in NBG, AC is equiva-
lent to LW. Clearly, LW & Cof does not imply AC in NBG®. It was shown
by Morris [18] that Cof does not imply OE in NBG.

2.2 Principles of Cofinality We prove next that NBG° - Cof — Z(L, W). In
fact, we prove a more general theorem of which this is a specific case.

Theorem 2.2 Lel P be a non-empty partially ovdeved set and let U be any
property on subsets of P such that any singleton has the propevty U. Then
the following ave equivalent:

(1) If every subset of P with the property U has an uppev bound, then P has
a maximal element.
(2) P has a quasi-cofinal subset with the property U.

Proof: (1) — (2). If P has a maximal element, m, then {m} is a quasi-
cofinal subset with the property U. If P has no maximal element, then P
has a subset with the property U which has no upper bound. This set is
clearly quasi-cofinal.

(2) — (1). Let ¢ be a quasi-cofinal subset of P with the property U. If the
hypotheses of (1) hold, then ¢ has an upper bound, m. Clearly m is a
maximal element of P. Q.E.D.

We note that we need not be restricted to partially ordered sets. The
proof would go through if partially ordered were replaced by linearly
ordered, directed, ramified, well ordered, forest, tree, or any order type
which is at least a partial order. In fact, the theorem holds for any
transitive order.

We will call a statement of the form (2) a principle of cofinality, and to
denote variations we will write C(Q, U). The theorem implies that
2@, U)=C(Q, U) for all @ and U as long as @ is at least a transitive
ordering and U is a property which always holds for a singleton. For some
properties U, (1) and (2) are both false. For example, if Ux) is ““x is
finite’’. On the other hand, for many properties U either (1) or (2) has been
shown to be equivalent to AC. Cof is the same as C(L, W). So as a
corollary to the theorem we have that Z(L, W) = C(L, W), and hence NBG° +
OEFZ(L,W) = AC, but not (NBG°F+Z(L, W) — AC). Since Z(L, W) =
Z(L,F)=2(L, T)=C(L,W)=C(L, F) =C(L, T), we have similar results
for these variations. Moreover, Z(D, W) — Z(L, W) so that NBG® + OE -
(Z(D, W) = AC) & (C(D, W) = AC).

It follows from our previous work that Z(Q, T) — Z(Q, F) because
every tree is a forest. We show next that if @ satisfies certain properties
then Z(Q, F) — Z(Q, T).

Theorem 2.3 If Q is at least a transitive ovdev and each set x which is
Q-ovdeved by R has the property that for each uex, u ={v ex: uRv & u +
v & TwRu}is Q-ordeved by R, then 2(Q, F) — 2(Q, T).
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Proof: Suppose x is a non-empty set @-ordered by R in which each tree
has an upper bound Suppose u €x. If # = @ then « is a maximal element of
%, so suppose % # P. Let y C % be a non-empty forest. Let y* =y U {u}.
Then y* is a tree, so by hypothesis y* has an upper bound bex. Since
y C y*, bis also an upper bound for y. Suppose vey. Then u#Rv, vRb, and
u + v. Moreover, since b is an upper bound of y*, uRb holds. Now it
follows from the transitivity of R that if either # = b or bRu then vRu, but
this contradicts the fact that ven. Thus, we have shown that uRb, u # b,
and 1bRu, and this implies be#. Now it follows that % satisfies the
hypothesis of Z(Q, F). Consequently, % has a maximal element 7, and
since R is transitive, m must be a maximal element of x. Q.E.D.

Now, it follows from Theorem 2.3 and our previous results that

Z(L, F)=2Z(L,T)=2Z(L, W) =Z(R, F) = Z(R, T),
Z(TR, F) = Z(TR, T), Z(P, F) =Z(P, T), Z(D, F) = Z(D, T).

Moreover, we have that Z(D, R) = Z(P, R) because a transitively ordered
set in which every ramified subset has an upper bound is directed.
Similarly, Z(D, F) = Z(P, F). Also, a ramified set in which every forest
has an upper bound is directed. Thus, such a set is linearly ordered, so
Z(R, F)=2Z(L, F).

The result that Z(D, W) — AC is due to U (Felgner (unpublished)). We
include our proof of it here.

Theorem 2.4 Z(D, W) — WO.

Proof: Letx be a non-empty set and assume x cannot be well ordered. Let
w = {f:f is a 1-1function & (3a) D(f) = 2 On) & N(f) C x}, and order w by
S as follows: f,Sf; iff M(f,) CN(f,) or f1 = f,. S partially orders w and by
the assumption that x cannot be well ordered, w is directed by S. Let c be
a well ordered cofinal subset of w. One can easily construct a function
which is an upper bound for ¢, and this upper bound, g, must be a maximal
element of w. M(g) = x, for otherwise it is easy to construct a function
which is S-greater than g. This contradicts ¢ being cofinal. Hence X can
be well ordered. Q.E.D.

We summarize the results we have so far in Figure 2.2. Let

A={Z@Q, U): Q=TR,P,R, F,or T,and U= W, L, C, or D},
B=1{Z(L, F), Z(L, T), Z(L, W), Z(R, F), Z(R, T)},
C={Z(@,R):Q@=Dor P},

D={2(Q, U):Q@=PorD,and U= F or T},

E = {Z(TR, P), Z(TR, AS)},

F={z(, L), 2(D, C)}

It follows from our preceding remarks that each pair of statements in
any one of the sets A - F is equivalent in NBG®. Each statement in A is
equivalent to AC in NBG®, while each statement in B implies AC in
NBG® + OE but does not imply AC in NBGP°. In Figure 2.2 when we write,
for example, A — F we mean any one of the equivalent statements in A
implies any one of the equivalent statements in F in NBG°.
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F———C

Z(D, W) = A
Z(TR, F) = Z(TR, T)
Z(TR, R) D——=B

N

E C

Figure 2.2

Let ACYO be the axiom of choice for a well ordered family of sets.
That is:

For every non-empty, well ovdeved set x of non-empty sets theve is a
function f on x such that f(u) eu for all u ex.

It is shown in [14] that E — AC¥O but ACY0 does not imply E in NBG®. We
were also able to show that there is a variation of Z(D, R) which does not
imply AC in NBG®. Let Z(D, R, 1) be the statement:

Every non-empty divected set x, in which every vamified subset has a least
upper bound, has a maximal element.

We shall show that KA, Kurepa’s antichain condition implies Z(D, R, [) in
NBG°. First, Felgner [3] proves that KA is equivalent to a generalized
antichain condition GKA:

For every x, if x = {(u, S.): Sy is a partial ovdev on u} is a non-empty set of
non-empty parvtially ovdeved sets, then theve is a function f on x such that
f(u, S,)) is a maximal antichain in u for each (u, S,) €x.

Theorem 2.5 GKA — Z(D, R, I).

Proof: Let x be a directed set under a relation S, in which every ramified
subset has a least upper bound.

1. We note that for each y ex, the set ¥ = {z e x: ySz & y # 2} is a directed
subset of x. Call§ the end segment generated by y.

2. An antichain in x is a ramified set (in fact, a forest), because initial
segments in an antichain are singleton sets and hence are linearly ordered
(in fact, well ordered).

3. Let f be a function on B(x) ~ {P} such that f(u) is a maximal antichain in
u for @ # u C x, where u is partially ordered by the restriction of S to «.

4. Define a function g on On recursively as follows: g(0) = the least upper
bound in x of f(x). Since f(x) is a maximal antichain in ¥, f(x) is ramified
(in fact, it is a forest) and by hypotheses has a least upper bound in x.

If g(0) is a maximal element in x we are done essentially. To complete
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the definition of g, suppose v £ x, then define g(a) = v and set g—(;)) =@ for all
a > 0. We note that if g(0) is a maximal element in x then E(_0$ =@. If g(0)
is not a maximal element define g(1) = least upper bound of f (m).
Inductively, if g(a) is defined, then let

g(a + 1) = the least upper bound of f(g(d)) if g@) #
= v if g(a) = P.

If a is a limit ordinal and g_('B_)) # @ for all 8 < a then {g(B): B < a} is a well
ordered subset of x such that g(8) S g(y) for 8 <y < a. Hence, this set is
ramified (in fact, it is well ordered so it is also a forest) and by hypothesis
has a least upper bound in x. In this case, define g(a) = least upper bound
of {g(B): B< a}. If g(B) = @ for some B < a set g(a) = v.

We note that if g(8) =@ then g(8 + 1) =v. So we see that for a limit
ordinal @, g(a) # v unless there is a 8 < a with g(8) = v.

If g(@) # v for all ae On then g is a 1-1 function from On into x. This is
impossible because x is a set. Hence, there is some B¢ On with g(B8) = v.
Let o be the least such ordinal number. By the above a = y + 1 for some
y€On. Thus, g(y + 1) =v but g(y) #v. Hence g(y)ex such that g(y) = D.
This implies that g(y) is a maximal element of x. Q.E.D.

Since Z(P, R, 1) = Z(D, R, ) it follows that GKA — Z(Q, R, ) for @ = P
or D. Also, as indicated in the proof, it is easy to see that GKA —
Z(Q, F, 1) for @ = P or D. Consequently, since KA = GKA, the following
corollary follows from the Halpern result [7] that KA does not imply AC in
NBG°.

Corollary 2.6 Not (NBG°+2(@,U,l) — AC) for @ =P or D,and U =R or F.

The proof of GKA — Z(D, R,I) suggests considering the following
variation of Zorn’s Lemma:

Every non-empty divected set x, in which evevy antichain has a least upper
bound, has a maximal element.

A simple example shows that this statement is false in NBGP°.

Example 2.4: Consider any well ordered set which does not have a maximal
element, for instance, w in its natural order. An antichain is a singleton
{n} with least upper bound z. But w has no maximal element.

We conclude this section by considering combinations of the properties
TR, AS, and C. Since there is no loss in generality in assuming relations
are reflexive, TR & AS is P and TR & AS & C is L. So we are left with
relations which are TR & C or AS & C. It follows from Example 2.2 that
Z(AS & C, TR) is false in NBG®, so we need not consider maximal
principles of the form Z(AS & C, U). Moreover, since L — AS & C — C and
L—-TR&C—-C,

Z(Q,AS&C)=2Z@, TR &C)=2Z(Q, L) =2Z(, C),
where @ = TR, P, D, R, F,or T.
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The only cases left are maximal principles of the form Z(TR & C, U)
where U is P, AS, AS&C, L, R, D, W, T,or F. Let

G={Z(TR&C,U):U=W, T,or F}.
H={Z(TR & C,U): U=AS, AS&C, P, D, R,or L}.

In a connected set, W, T, and F are equivalent, so each pair of statements
in G is equivalent in NBG®. Also, in a transitive, connected set, AS,
AS & C, P, D, R, and L are equivalent. Therefore, each pair of statements
in H is equivalent in NBG®°. Moreover, E — H because Z(TR, P)—
Z(TR & C, P). (See Figure 2.2.) Also, G— B because Z(TR & C, W) —
Z(L, W), and G— H because Z(TR & C, W) — Z(TR & C, P). Finally, we
shall show that H — AC¥C. (This is similar to the proof given in [14] where
it is shown Z(TR, P) — AC¥0.)

Theorem 2.7 Z(TR & C, P) — ACWO.

Proof: Let x be a non-empty, well ordered set of non-empty sets and let y
be the set of all choice functions on initial segments of x. Define a relation
R on y by fRg iff ®(f) CD(g). R is a transitive connected relation on y.
Also, since x is well ordered, any R-partially ordered subset of y is
actually well ordered by R. Suppose y'is an R-partially ordered subset of
y. We choose an upper bound f for y' as follows:

D(f) = U D(g), and for each ueD(f), flu) =g(u)
gey'

where g is the R-first function in y’ which has # in its domain. Z(TR & C, P)
implies that y has an R-maximal element g, and g is clearly a choice
function on x. Q.E.D.

It is shown in [14] that AC*© does not imply H in NBG°.
Theorem 2.8 Z(P, R) — Z(TR & C, L).

Proof: Suppose x is a non-empty set and S is a transitive, connected
relation on x with the property that each linearly ordered subset of x has an
S-upper bound. Define a relation S* on x such that for all u, v e x, uS*v iff
(uSv & 1wSu) or u=v. Then S* is a partial ordering on ¥ and x has an
S-maximal element if and only if x has an S*-maximal element. Suppose y
is an S*-ramified subset of x. Now, if u, vey, u # v, uSv, and vSu then we
claim # (or v) is an S-upper bound of y. For suppose wey. Then, since S is
connected, wSu or uSw, and wSv or vSw. If wSu holds we are all right. If
wSv, then since S is transitive, we again obtain wSu. Therefore, the final
case to consider is that u#S*w and vS*w. Since y is ramified by S*, this
implies uS*» or wvS*u. But each of these alternatives contradicts the
assumption #Sv and vSu. Now we claim that either » is an S-maximal
element of x or that y has an S*-upper bound. For suppose u# is not an
S-maximal element of x. Then there exists a wex such that uSw but not
wSu. Then, it is easy to see that w is an S*-upper bound of y.

Next, suppose uSv and vSu is false for all u, vey, u # v. Then it
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follows that y is linearly ordered by S. So by hypothesis, y has an S-upper
bound. It follows from the preceding argument that either x has an
S-maximal element or y has an S*-upper bound. Now, we have shown that
either x has an S-maximal element or every S*-ramified subset of ¥ has an
S*-upper bound. If the latter alternative holds then it follows from Z(P, R)
that ¥ has an S*-maximal element. Consequently, we have shown that
Z(P, R) — Z(TR & C, L). Q.E.D.

Using a similar argument we can show that Z(P, F) — Z(TR & C, W).

Qur final result of this section is a rather unusual transitivity property
for principles of cofinality and, therefore, for the corresponding forms of
Zorn’s Lemma.

Lemma 2.9 If @, is at least trvansitive and @, is at least trvansitive and
connected then C(Qi, Q2) & C(Q2, @3) — C(Q1, Q3).

Proof: Suppose x is a set @,-ordered by R. Then, by C(@,, @,), ¥ contains
a quasi-cofinal subset y which is @,-ordered by R. Also, by C(Q., @), v
contains a quasi-cofinal subset z which is @;-ordered by R. It remains to
be shown that z is quasi-cofinal in x. Suppose not. Then there isa bex
such that for all #ez, u + b and uRb. But y is quasi-cofinal in x, so there
is a v €y such that TvRb. If there is a u e z such that vRu, then, since R is
transitive on x, we would have vRb which contradicts the definition of v.
Consequently, since R is connected on y, we must have uRv for all ue 2.
But this contradicts the fact that z is quasi-cofinal in y». Thus, it follows
that z is quasi-cofinal in x.

Corollary 2.10

(a) C(TR & C, L) & C(L, W) =C(TR & C, W).
() C(D, L) & C(L, W) =AC.

Similar results hold for the corresponding forms of Zorn’s Lemma.

We summarize the results of this section in Figure 2.3. (See also
Figure 4.1.)

A F c H ACWO
7

A={2(Q,U): =T, P, R, F,or T,and U= W, L,

TR&C,AS &C,C,orD;or @=Dand U = W},
B={2(Q,U): Q=LorR,and U=For T;or @=L and U = W},
C={Z(Q, R): = P or D},
D={2(Q U): Q=PorD,and U= F or T},
E ={Z(TR, U): U= P or AS},
F={2Z(D,U): U=C,AS&C, TR&C,or L},
G={Z(TR&C,U): U=W, F,or T},



VARIATIONS OF ZORN’S LEMMA 577

H={Z(TR & C,U): U= AS, AS&C, P, D, R,or L},
I ={Z(TR,U): U= For T},
J ={Z(TR, R)},

Not (NBG® - ACY® — H)

Not (NBG®° B — A)
NBG° A = AC
NBG°+(H & B) = G
NBG® - (F & B) = AC

Figure 2.3

3 Varviations of Hausdovff’s Maximal Principle In this section we consider
variations of Hausdorff’s Maximal Principle [13], which may be stated as:

Every partially ovdeved set contains a C-maximal chain.

Again we vary two parts of the statement: the type of order on the set,
and the type of C-maximal subset. We denote such a variation by H(Q, U)
to stand for the statement:

Every Q-ovdeved set contains a C-maximal U-ovdeved subset.

As possibilities for @ and U we consider A, AS, TR, C, AS& C, TR & C, P,
L, D, R, W, F,and T.

Using the fact that if @ — U then H(Q, U) is provable in NBG® and that
H(F, T) is provable by Lemma 2.1, we see that the following 66 statements
are all provable in NBG®:

H(@Q, U) for @ =10,
H(Q@, A) for all @,

H(@, AS) for@ =AS&C, P,L,D,R,W, F,and T,
H(Q, TR) for@ = TR & C, P, L, D, R, W, F,and T,
H@,C) forQ=AS&C, TR&C,L,and W,

H@, AS&C) for @ =L and W,

H(@Q@, TR & C) for @ = L and W,

H@Q, P) forQ=L,D,R,W, F,and T,
H@, L) for@ =W,

H(@, D) for@=L and W,

H@,R) for=L,W, F,and T,
H(@, F) for @ =W and T,

H(Q, T) for @ =W and F.

By using the set of integers in their natural order as a counter-
example, we see that the following 30 statements are all false in NBG°:
H@, U) for @ = A, AS, TR,C, AS&C, TR&C, P, L,D,or R,and U =W, F,
orT.

We shall show that each of the remaining 73 statements are implied by
AC; 52 of these statements imply AC, of the remaining 21, 10 imply AC if
LO is assumed and the strength of the other 11 statements has not been
determined.
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To show that each of the 73 statements is implied by AC, we give
another maximal principle called the principle of finite chavacter. But first
we define what it means for a property to be of finite chavacter.

Definition 3.1 A non-empty property £ is of finite character if a class X
has the property P iff every finite subset of X has the property 2.

Each of the properties AS, TR, C, AS& C, TR & C, P, L, D, and R are
properties of finite character while W, F, and T are not. The principle of
finite character,

FC: Fov every set x and every property P of finite character, theve exists
a C-maximal subset of x with the property P,

was shown independently by Teichmuller [28] and Tukey [29], to be
equivalent to AC.

If being U-ordered is a property of finite character then FC — H(Q, U)
for any @. Also H(@, L) =H(®, W) for @ = F or T. Thus, FC implies each
of the following 73 statements:

H(A, U) for U= AS, TR, C, AS&C, TR & C, P, L, D, and R,
H(AS, U) for U= TR, C, AS&C, TR & C, P, L, D, and R,
H(TR, U) for U= AS,C, AS&C, TR & C, P, L, D, and R,
H(C, U) for U= AS, TR, AS&C, TR & C, P, L, D, and R,
H(AS & C, U) for U= TR, TR & C, P, L, D, and R,

H(TR & C, U) for U= AS, AS& C, P, L, D, and R,
H(P,U) forU=C,AS&C, TR &C, L, D, and R,
H({D,U) forU=C,AS&C, TR &C, L, and R,

H(R,U) foru=C, AS&C, TR &C, L, and D,

H(F,U) forU=C,AS&C, TR &C, L, D,and W,
H(T,U) forU=C, AS&C, TR &C, L, D, and W.

We shall prove first that each of the 28 statements in the preceding list
for which @ = P, D, R, F,or T implies AC. Using the fact that if @, — @,
then H(Q., U) — H(®,, U) for all U, we obtain the following implications:

H(P, L) = H(D, L),
H(P, L) = H(R, L) = H(F, L),
H(P, D) — H(R, D) — H(F, D),
H(P, R) — H(D, R).

We also have that H(D, L) — H(P, L) because a partially ordered set can be
directed by simply adding on a greatest element. If @ = P, D, or R then in
a @-ordered set C, AS & C, TR & C, and L are equivalent,and if @ = For T
then in a @-ordered set C, AS& C, TR & C, L, D, and W are all equivalent.
Thus, we have,

H(@, C) =H(Q, AS & C) =H(Q, TR & C) =H(Q, L)
for = P, D, or R, and
H(@,C)=H(Q, AS&C) #H(Q, TR & C) =H(Q, L) =H(Q, D) = H(®, W)
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for @ = F or T. Moreover, a directed subset of a ramified set is a chain
so that

H(R, D) =H(R, L),

and it follows from Lemma 2.1 that H(F, W) = H(T, W). It is well-known
and easy to prove that H(P, L) — Z(P, L). Z(P, L), as mentioned in section
2, is the original form of Zorn’s Lemma and is equivalent to AC. To
complete the proof that each of the 28 statements implies AC it is sufficient
to show that H(T, W) — WO and H(D, R) - WO. (Felgner, [2], has shown
that H(P, D) — AC and H(P, R) — AC.)

Lemma 3.2 H(T, W) — WO.

Proof: Let x be a non-empty set and w, the set of well ordered subsets of
x. wy is a tree under the initial segment relation, 7. By H(T, W), w, has a
maximal well ordered subset, w*. Now U(@(w*)) ordered by U(ﬁk(w*)) is a
maximal well ordered subset of x. This must be a well ordering of all of x.
Therefore, H(T, W) — WO. Q.E.D.

Theorem 3.3 H(D, R) — WO.

Proof: Let x be a set and w, ordered by I the tree of well ordered subsets
of x under the initial segment relation. (We will often write ulv for
(u, R,) I (v, R,) in this proof.) Since w, is directed downwards by I, wx
ordered by I*, where wul*v iff vlu, is directed upwards. By H(D, R), w, has
a C-maximal I*-ran(iied subset, . 7 # ¥ so there exists (y, Ry)ey, and
since 7 is ramified (y, R,) is linearly ordered. Moreover, this(_set contains
elements (, R,) such that ylu. Denote (y, R,) by y. Since y is linearly

ordered we can form U u and order this by U R,. We claim that
(wRy) €y (wRyY €y

UR,, well orders Uu and that Uu =x. This is obvious if one recognizes
that § is a quasi-cofinal I-chain in w,. But here is a verification.

Denote URu by R* and Uu by u*. Let ® #s C u*. Then there exists
{u, Ru)eﬁ)— such that s Nu #P. Let nes Nu. If mR*n and mes, then m eu
because « is an initial segment of u*. Thus J, = {m es: mR*n} C u. Since
R* and R, agree on u, the R, -least element of J, is the R*-least element of
J, and also the R*-least element of s. Therefore, R* well orders u*.

Suppose x ~u* #+ P. Letnex ~u*. Consider #', ordered by I*, where
7' =7 U{(un R,)}, with the order R, on u, =u* U{n} being R* U {{, n):
veurtU {(n, n)}. We claim #»' is a larger ramified subset of (ws, I*).
Clearly, » C#'. Suppose 7' is not ramified. Then some initial segment
containing (u,, R,) is not linearly ordered. So there are pairs (v, R,) and
{(w, R,y €7 such that vIu, and vIw, but w and u, are not [-related. Now yIu,,
so yIv or vly. If ylv, then yw. But then by construction of u,, wlu,. On the
other hand, suppose vly. We have that v, y, and w are in # which is
ramified. As ¥y and w are both elements of v, , both are extensions of (v, R,).
v is linearly ordered so wly or yIw. If wly then wlu, because ylu,. Whereas
if ylw, then wlu, by construction of u,. Thus every initial segment of #'is
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linearly ordered and hence 7' is ramified. This contradicts the maximality
of . Therefore, u* = x, and x is well ordered by R*. Q.E.D.

This completes the proof that the 28 statements in the list for which
@ =P,D, R, F, or T are each equivalent to AC.

Now we consider the remaining 45 statements from our list. In a
transitive and connected set AS, AS & C, P, D, and R are each equivalent to
L. Thus

H(TR & C, U) =H(TR & C, L)

for U= AS, AS & C, P, D, and R. In an antisymmetric and connected set
each of TR, TR & C, P, D, and R is equivalent to L, so

H(AS & C, U) =H(AS & C, L)

for U= TR, TR & C, P, D, and R. In a connected set AS and AS & C are
equivalent, TR and TR & C are equivalent, and each of P, D, and R is
equivalent to L. Thus

H(C, AS) =H(C, AS & C),
H(C, TR) =H(C, TR & C),
H(C, P) =H(C, D) =H(C, R) =H(C, L).

In a transitive set AS and P are equivalent, C and TR & C are equivalent,
and AS & C and L are equivalent. Therefore,

H(TR, AS) = H(TR, P),
H(TR, C) =H(TR, TR & C),
H(TR, AS & C) = H(TR, L).

Similarly, we have

H(AS, TR) = H(AS, P),
H(AS, C) = H(AS, AS & C).
H(AS, TR & C) = H(AS, L).

It is sufficient, therefore, to consider the following 24 statements:

H(A, U) for U= AS, TR,C, AS&C, TR&C, P, L, D, and R,
H(AS, U) for U=P, C, L, D, and R,

H(TR, U) for U=P,C, L, D, and R,

H(C,U) for U= AS, TR, L,

H(Q, L) for @ = AS & Cand TR & C.

Using the preceding results plus the fact that if @, — @, then
H(Q., U) — H(Q,, U) we obtain the following:

/ H(TR, P)\
3.4 H(A, AS) H(TR &C, L)
\H(C Ay
H(AS, P)
3.5 H(A, TR)/ \H(AS &C, L)
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/H(AS C)\

3.6 H(A, C) (P, C) = AC
\H(TR c)/

3.7 H(A, AS & C) — H(AS, C) — H(P, C) = AC

3.8 H(A, TR & C) — H(TR, C) — H(P, C) = AC

H(AS P)\H(AS&C L)

L) =/

3.9 H(A, P)=/— s
\H(TR P)/H(TR &C, L)

_—H(P, U)=AC

/H(AS N=— T PH(AS & C, L)
3.10 H(A, U<H(C v) =/, ———H(R &C, L)

HOR, 0=—""4(p, 1) = AC
forU= L, D, and R.
Lemma 3.11 H(AS, C) = H(C, AS).

Proof: A relation is antisymmetric if and only if its complement is
connected.

Consequently, it follows from 3.11 and 3.7 that H(C, AS) = AC.
Lemma 3.12 H(TR, P) — AC.

Proof: Let x be a non-empty set of non-empty pairwise disjoint sets.
Define a relation S on Ux such that for a, b e Ux whereaeuex and beve x,
aSh iff u = v. S is transitive and a maximum S-antisymmetric subset of

is a choice set for x. Q.E.D.

Next, suppose ACLO is the axiom of choice for linearly ordered sets.
That is, ACLO is the statement:

For each non-empty, linearly ovdeved set of non-empty paivwise disjoint
sets, theve is a choice set.

Lemma 3.13 H(TR & C, L) = ACLO,

Proof: Let {(x, <) be a non-empty, linearly ordered set of pairwise disjoint
non-empty sets. Define a relation S on Ux such that for a, & eUx, where
acuexand bevex,aSb iff u <v. S is transitive and connected. A maximal
S-antisymmetric subset of Ux is a choice set for x.

Conversely, suppose ACL0 holds. Let x be a set, and R a relation on x
which is transitive and connected. Define a relation S on x such that for
U, Vex,

uSv iff wRv & VRu) ov u = v.
S is an equivalence relation on x. For uex, let [u] = {vex: vSu} and let
y ={[u]: uex}. Since R is transitive, if u, vex, u' u” [«] and v', v"" €[],
then #'Rv’ if and only if #”’Rv"". Thus, we can define a relation 7 on y so
that if u, vex,
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(u) T[o] iff (' e[u])(V" e [v]u'Ro".

The relation T linearly orders y and a choice set for y is a C-maximal
linearly ordered subset of x. Q.E.D.

Now, it follows that each of the following maximal principles is
equivalent to AC in NBG©°:

H(A,U) for U= AS,C,AS&C, TR &C, P, L, D, and R,
H(AS, U) for U=C, AS&C, TR &C, L, D, and R,

H(TR, U) for U= AS,C, AS&C, TR & C, P, L, D, and R,
H(C, U) for U= AS and AS & C,

H(P,U) forU=C,AS&C, TR&C, L, D, and R,
H(D,U) forU=C,AS&C, TR &C, L, and R,

HR,U) forU=C, AS&C, TR &C, L, and D,

H(F,U) forU=C,AS&C, TR &C, L, D, and W,
H(T,U) forU=C,AS&C, TR&C, L, D, and W.

It follows from 3.5 and the preceding results that,

H(AS, TR) = H(AS, P)
AC — H(A, TR) / \A
\H(C R) =H(C, R & C)—

where
A={HAS &C,U): U= TR, TR &C, P, L, D, or R}.

Each statement in A is equivalent to H(AS & C, L).
Using 3.9 and Lemma 3.13 we obtain

A
/
AC——-—B\
C = ACLO

where

B={H(C,U): U= P, L, D, or R},
C={H(TR & C,U): U=AS,AS &C, P, L,D,orR}

Each statement in B is equivalent to H(C, L), and each statement in C is
equivalent to H(TR & C, L). (Also see Figure 4.2.)

It is also true that H(TR & C, AS) — Z(TR & C, AS). For let x be a set
and R a transitive and connected relation on x such that every anti-
symmetric subset of x-has an R-upper bound. H(TR & C, AS) implies that x
has a C-maximal antisymmetric subset y. It is easy to see that an R-upper
bound for y is an R-maximal element for x. Thus, it follows from Lemma
3.13 that ACLO — Z(TR & C, AS).

(We can also show that H(AS & C, TR) does not imply AC in NBG®, by
using the standard Fraenkel-Mostowski model [19] with a countable set of
urelements U. The group is the set of all permutations on U and the filter
is generated by subgroups which leave a finite number of urelements fixed.
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Suppose x is a set in the model and R a relation on x which is anti-
symmetric and connected. Define a function f on the two element subsets of
x such that ifu, vex, u 2v,

flu, v} = u iff uRv.

Suppose R is also reflexive. f is in the model and has finite support. Let
S = (support of ) U (support of x). S is a finite subset of U. We claim that
for u e x, (support of u) C S. For suppose not. Let a € (support of ) ~S and
let be U ~ ((support of #) US). Let o be a permutation which permutes a
and b and leaves all the other urelements fixed. Let v = o), then since
o(x) =%, vex. Furthermore, o(({u, v}, u)) = ({u, v}, v), but this is a contra-
diction because o leaves f fixed.

Let $ be the group of all permutations which leave S pointwise fixed.
Then $ leaves x pointwise fixed so it follows from properties of Fraenkel-
Mostowski models that x can be well ordered. Thus, we may choose a
C-maximal transitive subset of x. Therefore, H(AS & C, TR) holds in the
model but it is well known that AC does not. In fact, H(C, P) does not hold
in this model. For let x be the set of all finite sequences of urelements
without repetition. Order x by the relation R so that if u, v ex, uRv iff
length of u# < length of v. R is connected. If there were a C-maximal
partially ordered subset of x, then we could choose a countably infinite
subset of U. But this is impossible.

Moreover, in this same Fraenkel-Mostowski model, Z(L, W) is true but
ACYO js false. Thus we can strengthen the result Not(NBG°+ B — AC) in
Figure 2.3 to Not(NBG® - B — AC¥9). See also Figure 4.1.)

Let H'(Q, U) be the statement:

In every Q-ovdeved set, every U-ovdered subset can be extended to a C~
maximal U-ovdered subset.

Then it is easy to see that FC — H'(Q, U) for all properties @ and U, where
U is a property of finite character. Also, H/(@, U) — H(Q, U) for all @
and U.

Lemma 3.14 H'(A, TR) — AC.

Proof: Let x be a non-empty set of non-empty pairwise disjoint sets.
Suppose x has at least two elements. Define a relation S on Ux such that if
a, beUx, where aeuex and b ev € x, then

aSb iffa = b ov u # v.

Letu,vex,u+v,andaeu, bev. Then {a, b} is an S-transitive subset of x.
Any C-maximal S-transitive subset of x which contains {a, b} is a choice
set for x. Q.E.D.

Let AC g be the statement:

Theve is a choice set for each non-empty set of non-empty paivwise
disjoint linearly ovdeved sets.
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Lemma 3.15 H'(C, TR) — AC_p.

Proof: Let x be a non-empty set of non-empty pairwise disjoint linearly
ordered sets. (< is the linear ordering.) Define a relation S on Ux such
that for a, beUx,aeu and b ev,

aSb iff u=v &a <b) or u £v).

S is connected on Ux Suppose u, v ex, u #v, acu, and b ev. A C-maximal
transitive subset of Ux containing {a, b} is a choice set for x. Q.E.D.

We have no further information about the relative strength of the
statements H(A, TR), H(AS, TR), H(C, TR) or H(AS & C, TR).

4 Appendix The following is a list of statements used in this paper with the
abbreviations used to denote them.

AC: For each non-empty set x of non-empty sets theve is a function f (called a
choice function) such that for each u € x, f(u) € u. (Equivalently, for each
non-empty set x of non-empty paivwise disjoint sets, theve is a set c(called
a choice set) such that for each u € x, ¢ N u is a singleton.)

ACLO:  Theve is a choice function (set) for each non-empty, linearly ovdered set of
non-empty (paivwise disjoint) sets.

ACig: Theve is a choice function (set) for each non-empty set of non-empty, (paiv-
wise disjoint) lineavly ovdeved sets.

ACYO. Theve is a choice function (set) for each non-empty, well ovdeved set of
non-empty (paivwise disjoint) sets.

AR: For each non-empty set x theve is a y € x such that y N x =@.
BPI: Every Boolean algebra contains a prime ideal.
Cof: Every linearly ovdeved set contains a cofinal well ovdered subset.

C(Q,U): Every Q-ordered set contains a quasi-cofinal U-ordered subset.

FC: For every set x and every propevty of finite chavacter P, theve is a
C-maximal subset of x with the property P.

GKA: For every non-empty set x = {(u, Su): Sy iS a partial ovdeving on u}, there is
a function f on x such that for each (u,s,) € x, f{u, s,) is a C-maximal anti-
chain in u. ‘

H(Q,U): Every Q-ovdeved set contains a C-maximal, U-ovdeved subset.

HNQ,U): Every Q-ovdered set has the property that each U-ordeved subset can be
extended to a C-maximal U-ovdeved subset.

KA: Every partially ovdeved set contains a C-maximal antichain.
LO: Every set can be linearly ordevred.

LW: Every linearly ovdeved set can be well ovdered.

OE: Every partial ovdering can be extended to a linear ovdering.

Wo: Every set can be well ovdered.



2(Q,U): Every non-emplty Q-ovdeved set, in which each U-ovdeved subset has an
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upper bound, has a maximal element.

2(Q,U,1): Every non-empty Q-ovdered set, in which each U-ovdeved subset has a least

uppev bound, has a maximal element.

In Figures 4.1 and 4.2, see pp. 591 and 592, we summarize our results.
So, for example, from Figure 4.1 we see that 7Z(AS, TR) is provable in
NBG®, while Z(p, R) is in the set C and the diagram at the bottom

describes the relative strength of statements in this set.
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2(Q, U) AS | TR
Q & | &
U A|JAS| IR|C| C C P L| D R | W F T
A X | X X | X| x X X | x X X | x X X
AS o| X El]o| x| H X | X X X | x X X
TR o| o X|lo| o X X | X X X | x X X
C olo|AC|xX| x| x |AC|x | F|AC|x|AC|AC
AS&C | o| o |AC|o| x| H|AC|x | F|AC| x| AC|AC
TR&C | o o |AC|o}| o | x |AC|x | F| AC| x| AC|AC
P ol o Elo| o| H X | X X X | x X X
L o|lo|AC|lo| o|H|AC|x | F|AC | x|AC| AC
D o|lo|AC|o| o | H|AC|x | x| AC|x|AC| AC
R o] o Jjolo|H| C|ix|C X | x| x X
w o|o|AC|o]| o| G |AC|B|AC|AC | x |AC|AC
F ol o I lo| o|G B|D X | X X
T ot o I jojo| G| D|B|D X | x X

o = The negation is provable in NBG°®

x = Provable in NBG® AC = Equivalent to AC in NBG®

/ACLO H Acwo
AC F —

C
I ===F
%/D/G B—2E. Ac

Not(NBG® - B — ACY¥%)  Not(NBG® - AC¥0 — )
NBG°+(H & B) = G NBG° - (F & B) = AC

Figure 4.1
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H(Q, U) AS [ TR
Q & | &
U A|AS|TR| C c|C PlL D R |W| F T
A X X X | X | X [{x] X|x| X X | x| X X
AS AC| x |AC|AC| x |C| x|x| x| x|x]| x| x
TR D|E| x| F|A|x| x|x]| x X | X | X X
c AC|AC|AC| x| x| x |AC[x |AC|[AC| x |AC|AC
AS&C |AC|AC|AC|AC| x |C |AC|x |AC|AC| x |AC|AC
TR&C |AC|AC|AC| F | A | x |AC|x|AC|AC | x |AC|AC
P AC| E|AC|{B|A|C| x|x| x| x|x]| x| x
L AC|AC|AC| B | A |C|AC|x|AC|AC | x |AC|AC
D AC{AC|AC| B | A |C |AC|x| x [AC|x |AC|AC
R AC|AC|AC| B | A |C|AC|x|AC| x|x| x| x
w 0 o|lo|oflolo] oflof o o | x |AC|AC
F o (o] o|jof[fojo|] ojo]| o o | X | x X
T () o o o oo ofo o o | X | X X

o = The negation is provable in NBG®

X = Provable in NBG® AC = Equivalent to AC in NBG®

A
AC / Ac—»n/ T~
P~ acwo T~r—
Not(NBG° - A — B)
Figure 4.2
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