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A CALCULUS OF MATRICAL DESCRIPTORS

DAVID MEREDITH

We present a formal system which, in a particular and limited sense,
contains but is not contained in propositional calculus. Section 1 of our
paper discusses the motivation underlying the system's development.
Section 2 and section 3 present the system itself, and the final section
establishes its relationship to propositional calculus. The aim of our paper
is simply to arouse interest, and no attempt has been made to treat the
subject exhaustively.

1 What Matrical Descriptors Are Anyone who has used matrices for the
separation of propositional axioms will be aware of some properties of
matrices necessary and sufficient for the verification of certain formulae.
To verify Cpp, for example, a matrix need merely have designated values
on its diagonal. To verify CpCqq, all that is needed is that the elements ίj,
where; appears on the diagonal, take designated values. Observations like
these can be made about formulae in more than a single dyadic functor.
The formula NCpp will be verified if and only if all the values on the
diagonal of the matrix used for the dyadic functor take designated values
when they are treated as elements of the matrix used for the monadic
functor, and the formula CpNCqr will be verified if and only if the values of
elements ij are designated, when j is the value on the monadic matrix for
any element that occurs as a value in the dyadic matrix. As the complexity
of formulae increases, so does the cumbersomeness of the type of
observation we have been making. Propositional formulae are structured
so as to interpret readily as statements about propositions, and not as
statements about matrices. This latter role is the one that matrical
descriptors are designed to play: the system aims to encompass the
minimal formal apparatus required to state for any given propositional
formula, the necessary and sufficient conditions for a matrix to verify it.
A precursor system of the present one was proposed in an RCA Corpora-
tion technical report, "The System RCV", distributed by this author in
1966. That system's structure, however, differs fundamentally from the
present system's, and constitutes a much less fruitful approach to the
problem.
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2 System Morphology

Signs The most elementary expressions in the system are value variables

u , υ , . . . , K , /cL , tf2

There is a single undetermined constant value 'S', an indefinite number of
monadic value operators Ύ', 'Γy, T2' . . . and an indefinite number of
dyadic value operators 'Δ', 'Δ^, 'Δ2' . . .. Other signs used, are signs for
arithmetic relations '=', '**', '>', propositional connectives V, 'D', paren-
theses <(', 0', and quantifiers 'IP, <Σ\

Formation Rules The rules governing formation of well-formed formulae
are as follows:

Rule 1. Let£ be any of the following

a) A value variable,
b) The undetermined constant value,
c) A monadic value operator followed by one value variable,

d) A dyadic value operator followed by two value variables,

then£ is a value expression, and the variables in E are free in E.

Rule 2. A value formula is defined recursively in three steps.

I Let Ei and Ej be value expressions, and let F be any one of the following

a) Ei = Ej,

b) Ei ^ Ej,

c) Ei > Ej,

then F is a value formula, and the variables free in E{ and Ej are free in F.

II Let Fi and Fj be value formulae, and let Fk be either of the following

a) (Fi Fj),
b) (Fi D Fj),

then Fk is a value formula, and the variables free in F{ and Fj are free
in *V

IΠ Let F; be a value formula in which a is a free variable, and let Fj be
either of the following

a) ΪLaFi,
b) ΣaFi9

then Fj is a value formula, and a is not free in Fj.

Rule 3. A matrical descriptor is defined recursively in two steps.

I Let F be a value formula in which there are no free variables, then F is
a matrical descriptor.

II Let Di and Dj be matrical descriptors, then Dj-Dj is a matrical
descriptor.
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Conventions To avoid unnecessarily complex expressions we make use of
the following conventions:

Convention 1 In a descriptor in which only one dyadic value operator
occurs, that operator may be omitted.

Convention 2 In accordance with the rule that o j takes precedence over '•'
and that a string of conjuncts is left associative, parentheses may be
omitted where they are not needed to define quantifier scope.

Convention 3 A series of quantifier-variable pairs where the quantifiers
are of the same type, may be replaced by a single quantifier followed by the
variables.

These conventions enable us to write

Iiab(Σcde(a = cb b = cd c = ed) z> ab ^ S)

in place of

UaIib{ΣcΣdΣe((a = Δcb b = Δcd) c = Δed) D Δab ^ S).

Simple Descriptors We focus attention on a particular class of matrical
descriptor—simple descriptors—which can be defined with the aid of two
auxiliary definitions.

Definition 1 Let L be a value formula of either of the following forms:

a) (FrF2 . . .Fn),
b) Σaλa2 . . . am(F1-F2 . . . Fn),

where n, m ^ 1 and each F{ (1 ^ i ^ n) is of the form Ej = Ek neither of
these components being the undetermined constant value: then L is a
simple left value formula.

Definition 2 Let R be a value formula of the form

φna1 . . . anr S

where n = 1, 2; φn is an rc-adic value operator; r is either < or >; and S is
the undetermined constant value: then R is a simple right value formula.

Definition 3 Let L and R respectively be simple left and right value
formulae whose only free variables are au . . . , an(n =1,2); and let M be a
matrical descriptor of either of the following forms:

a) Παf! . . . an(L => R),
b) Σa, . . . an{L-R),

then M is a simple descriptor.

Four types of simple descriptor have the relations of the classic square of
opposition, and it is appropriate therefore to name them as follows. (In all
four cases: n = 1, 2; φn is an w-adic value operator; and L is a simple left
value formula whose only free variables are alf . . . , an).
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Definition 4 An A-descriptor is a simple descriptor of the form

Ua, . . . an(L^ φna, . . . an^S).

Definition 5 An I-descriptor is a simple descriptor of the form

Σαfi . . . and'φ"^ . . . an^ S).

Definition 6 An E- descriptor is a simple descriptor of the form

Παi! . . . αw(L ^ 0*0?! . . . an > S).

Definition 7 An O-descriptor is a simple descriptor of the form

Σa, . . .OniL φ"^ . . . an>S).

3 Intended System Interpretation For purposes of system application, we
assume that matrices are one or two dimensional arrays of integral values
ranging from 1 to m, and that a continuous subset of the values, always
including 1, is chosen as designated, the highest designated value being less
than m. As is customary, we shall speak of the matrix 30U' when Wli is in
fact a set of matrices each of which has m values, and for each of which the
same subset of values is designated. The basic relationship between
matrices and matrical descriptors is simply defined.

Definition 8 A matrix 9Jϊ matches a descriptor D, if and only if when Sis
taken as the highest designated value of Wl, there is a one to one assign-
ment of value operators in D to functors defined by Wl such that D is true.

We may illustrate this definition by taking the matrix 30!l which has only a
single designated value

0 2 I 1 2 3 4 10 1

*1 1 2 3 3 4
*W1 2 1 1 3 3 3

3 1 2 1 1 3
4 1 2 1 1 1

and considering the descriptor

Dl Uab(Σc(b = ca) 3 ab ^ S)

taking φ2 as Δ. Here the only values of a and b for which a value c can be
found to satisfy the descriptor's antecedent are the following:

a b
1 1 where c may be 1, 2, 3, or 4
2 1 where c may only be 2
2 2 where c may be 1, 3, or 4
3 1 where c may be 3 or 4
3 3 where c may be 1 or 2
4 1 where c may be 3 or 4
4 3 where c may be 1 or 2.
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In a l l these c a s e s , the value of Δab i s designated, and 3W1 there fore
matches Dl. Similar ly it i s easy to see that $JU m a t c h e s the d e s c r i p t o r

D2 Uab(ab^ S α ^ S ^ k S )

since with φ2 again taken a s Δ, t h e r e i s no case where Δab and a both take a
designated value and b does not. (D2 defines the conditions for a m a t r i x to
satisfy the Modus Ponens rule.) Finally we can cons ider 3W1 and the
descriptor

D3 Uab(Σcd(b = cd c = Ta) D ab ^ S).

VUlX does not match this descriptor since with Δ assigned to φ2 and Γ to φ1

the values a = 1, b = 2, c = 4, and d = 2—among others—make the antecedent
of D3 true, and the consequent false.

In dealing with simple descriptors it is sometimes easier to take
advantage of their form and simply consider all combinations of values for
their value variables, rather than examine each element of the matrix in
turn. Thus, for example, given the matrix XFJ2

φ2 1 2

mz TΓ l 2

2 1 1

and the descr iptor

D4 Uab(Σc(b = cc b = ca) D ab ^ S)

we might proceed in this manner to show that 5JJ2 matches D4.

1 2 3 4 5

ab c b = cc b = ca ab ^ S 1.2 4 ^ 3
1 1 1 1 = 11 1 = 11 11< 1 T T
1 1 2 1 = 22 1 - 2 1 1 1 ^ 1 T T
1 2 1 2 = 1 1 2 = 1 1 1 2 ^ 1 F T
1 2 2 2 = 2 2 2 = 2 1 1 2 ^ 1 F T
2 1 1 1 = 1 1 1 = 1 2 2 1 ^ 1 F T
2 1 2 1 = 22 1 = 22 21 < 1 T T
2 2 1 2 = 1 1 2 = 1 2 2 2 ^ 1 F T
2 2 2 2'= 22 2 = 22 2 2 ^ 1 F T

4 Matrical Descriptors and Propositίonal Formulae We define a relation-
ship of correspondence between matrical descriptors and propositional
formulae.

Definition 9 Let D be a matrical descriptor and P a propositional formula,
then D and P correspond if and only if for all matrices 3W, 30Ϊ matches D if
and only if Wi verifies P.

On the basis of this relationship the two following theorems concerning
propositional calculus and the calculus of matrical descriptors can be
asserted.
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Theorem 1 For every propositional formula P, an A-descriptor D can be
found such that P and D correspond.

Theorem 2 There exist A-descriptors which have no corresponding propo-
sitional formulae.

In proof of the first of these theorems we will describe a procedure for
obtaining A-descriptors from propositional formulae and show that the
A-descriptor must correspond to the formula from which it was obtained.
In proof of the second theorem we will instance some A-descriptors for
which corresponding propositional formulae cannot be constructed.

In describing our procedure for obtaining A-descriptors from proposi-
tional formulae, we utilize the following meta-notation.

cφn' (n = 1, 2) is an n-adic propositional functor.
'a', 'β' denote propositional formulae or non-elementary expressions

formed from propositional formulae by the replacement of well-formed
components by value variables from the calculus of matrical descriptors.

ζx', 'y\ ιz\ '^i', ζz2> . . . are value variables of the calculus of matrical
descriptors.

% ' , Έ2

9, . . . are expressions of the form x = a.
ζ[f/g]h' denotes the expression obtained from h by replacing every

occurrence of / with g.
'* ' denotes a substitution operation defined as follows:

a) If a and β are independent, * is a/zl9 β/z2.
b) If β occurs in a, * is a/zl9 [β/z2]a/z1, β/z2.
c) If a occurs in β, * is a/zl9 β/z2, [a/z1]β/z2t

d) If a and β are identical, * is a/zx.

Our procedure involves application of the following six rules. After
applying whichever of Rule 1 or Rule 2 is appropriate, Rules 3 and 4 are
applied repeatedly until they can be applied no more. A single application
is then made of either Rule 5 or Rule 6.

Rule 1 If the given formula is φιa (φι null for the assertion function)
replace it by

F z) Ta ^ S

where F is:

a) a = a if a is elementary,

b) a = a if a is non-elementary;

Γ being in both cases the value operator assigned to φ1.

Rule 2 If the given formula is φ2aβ replace it by

F i) Δab ^ S

where F is:

a) a = [β/b]a b = [a/a]β if a and β are distinct and neither is elementary,
b) a = a if a and β are distinct and both are elementary,
c) a = a b=aiίa and β are identical and non-elementary,
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d) a = b if a and β are identical and elementary,

e) b = [a/a] β if a is elementary and β is not,

f) a = [β/b]a if β is elementary and a is not;

Δ being in all cases the value operator assigned to φ2.

Rule 3 In any antecedent ending with

x = φιa or x = φιa - Eλ . . . En

and not containing zu replace these expressions by respectively

a) x = Tzγ z1 = a and x = Tzλ zγ = a- *EY . . . *En if a is non-elementary,

b) x = Tzλ and x = Tzγ- *£Ί . . . *£•„ if a is a propositional variable;

and in any antecedent ending with

x = φ1y or x = φιy Eγ . . . En

replace these expressions by respectively

c) x = Ty and x = Ty Eγ . . . En;

Γ being in all cases the value operator assigned to 01.

Rule 4 In any antecedent ending with

x = φ2aβ or x = φ2aβ Eγ . . . En

and not containing zγ or z2, replace these expressions by respectively

a) x = Δ£]£2 £i = [/3/;z2]a z2 = [a/z^β and ΛΓ = Δzγz2 ^ x = [β/z2]<x ^ 2 =
[α/^ijβ *Eι . . . *£"„ if oί and β are distinct and neither is elementary,
b) x = Δzγz2 and x = ΔiZ1z2-*E1 . . . *En if a and 3 are distinct and both are
propositional variables,
c) x=Δz1Zι'Zι = a and x = Δzγzx -zγ = α *^ x . . . *En if α and β are identi-
cal and non-elementary,
d) x = Δ s ^ i and ΛΓ = Δ^^x *£Ί . . . *En if Qfand /3 are identical propositional
variables,
e) x = Δ^1£2 £2 = [α/^iJ/3 and # = Δ^^s £2 = [a/zi]β' *EX . . . *En if en is a
propositional variable and β is non-elementary,
f) x = Δ£i22 £! = [j3/^2]« and x = Δ^i^2*^2 = [ i 3 / ^ ] ^ - *£Ί . . . *En if β is a
propositional variable and a is non-elementary;

and in any antecedent ending with

x = φ2ay or x = φ2ay - Ex . . . En

and not containing zλ, replace these expressions by respectively

g) x = Δztf -zγ = a and x = Δz^y zx - a- *Eχ . . . *En if a is non-elementary,
h) x = Δzλy and x = Δzλy - *Eι . . . *En if a is a propositional variable;

and in any antecedent ending with

x = φ2ya or x = φ2ya - Eγ . . . En

and not containing^, replace these expressions by respectively
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i) x = Δyzγ - zγ = a and x = Δyzλ > zι = a *Eif . . . ,*En if a is non-elementary,
j) x = Δyzγ and x = Δyzγ *Eι, . . . , *En if a is a propositional variable;

and in any antecedent ending with

x = φ2yz o π = φ2yz El} . . . , En

replace these expressions by respectively

k) x - Δyz and x = Δyz El9 . . . , En

Δ being in all cases the value operator assigned to 02.

Rule 5 Given an expression

El9 . . . , En^ Ta *s S

replace it by

a) Πa(El9 . . . , En ^ Γα ^ S) if α is the only variable and is free,

b) Ua(Σzι . . . £W(£Ί, . . . , En) ^ Ta ^ S) if a, zl9 . . . , zm are the only var-
iables and all are free.

Rule 6 Given an expression

# ! , . . . , £ „ = > Δab ^ S

replace it by

a) Παδ(E1? . . . , En 3 Δβδ ^ S) if α and δ are the only variables and both are
free,
b) ϊlab(Σz1 . . . zm{Eu . . . , En) D Δab ^ S) if β, b, zl9 . . . , ^ are the only
variables and all are free.

In the following illustrations of this procedure Δ is the value operator
assigned to C, Δλ the operator assigned to K, and Γ the operator assigned
to N. The rule used to obtain each line from its predecessor is noted to its
right.

Ex. 1 CCpCpqCpq
a = Cpb - b = Cpq => Δab ^ S (2a)
a = Δcb b = Ccq D Δαδ ^ S (4h)
a = Δcδ . 6 = Δcd D Δαδ ^ S (4j)
Uab(Σcd(a = cb b = cd) ^ ab *z S) (6b)

Ex. 2 CCNppp
a - CM>δ 3 Δαδ ^ S (2f)
a = Δcδ -c = Nb ^ Δab ^ S (4g)
β = Δcδ c = Tb z> Δβδ ^ S (3c)
Παδ(Σc(α = cδ . c = Γ6) =) «5 ^ S) (6b)

Ex. 3 CKpqp
a = Kbq Z) Δαδ ^ S (2f)
α = Δfic 3 Δ«δ ^ S (4j)
Iiab(Σc(a = Δfic) z> Δ«δ ^ S) (6b)
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It is not difficult to establish that our procedure will always lead to an
A-descriptor which corresponds to the formula from which it was obtained.
Rules 1 and 2 assign names to the arguments of the formula's major
functor, preserving the relationship between these arguments in the
descriptor's antecedent, and providing an always true antecedent for
formulae with a single monadic functor and one variable or with a single
dyadic functor and two distinct variables. Rules 3 and 4 continue the
breakdown of complex arguments, ensuring that the same argument,
wherever it occurs, receives the same name, and that distinct arguments
receive distinct names. The last two rules merely provide the appropriate
quantifiers. The relationship between the arguments of all functors in the
original formula is thus preserved in the descriptor's antecedent, and since
value operators can always be so chosen that there is a one to one cor-
respondence between them and functors of the formula, this antecedent will
be true if and only if there is an assignment of values to the variables in
the propositional formula that gives the whole formula the value of the
major functor for i in case this is monadic and for ίj in case this is dyadic.
The descriptor's consequent is true, however, if and only if this value is
designated, and correspondence is thus assured.

As an instance of an A-descriptor with no propositional correspondent we
can cite

05 Iiab(a = ab z> ab ^ S).

A matrix matches this descriptor if and only if the value of φ2ab is
designated whenever it is identical with a. For a propositional formula to
be verified by all matrices satisfying this condition, the whole formula
would have to be identical with the first argument, which is impossible.
The descriptor D4 given in the previous section is also one with no
propositional correspondent, since we cannot construct a formula whose
value will be designated whenever the value of the second argument occurs
both as the value of any element ίj, where j is the value of the first argu-
ment, and as the value of the diagonal element it. (Note that CpCpp
corresponds, not to D4, but to its subinstance below.)

Do Uab(b = aa ^ ab ^ S).
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