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A SPECIES-ALGEBRAIC INTERPRETATION OF THE
INTUITIONISTIC PROPOSITIONAL CALCULUS

JEKERI OKEE

The topological and lattice-theoretical interpretations of the intui-
tionistic propositional calculus (see [4] and [5]) differ from the set-
algebraic interpretation of the classical two-valued propositional calculus
in that, in the former cases, the intuitionistic propositional calculus is
interpreted by means of classical theories which are definable in the
second order classical predicate calculus, but, in the latter, the classical
propositional calculus is interpreted by means of a classical theory which
is definable in the monadic classical predicate calculus of the first order.

The algebra of species is the intuitionistic analogy to the Boolean
algebra of sets (for details, see [1] and [2]). The aim of this article is to
give a species-algebraic interpretation of the intuitionistic propositional
calculus analogous to the set-algebraic interpretation of the classical
propositional calculus. By using the method of logical matrix, it will be
shown that the intuitionistic propositional calculus is equivalent to the
algebra of species, of all subspecies of any infinite species, in the sense
that, if the intuitionistic propositional functors —, v, A, ~, are interpreted
as the corresponding species-algebraic operators, namely: species-impli-
cation =, species-union U, species-intersection N, and species-comple-
ment —, then the formulae of the propositional calculus can be mapped
one-to-one onto the formulae of the algebra of species, in such a way that a
formula H of the intuitionistic propositional calculus is provable in the
intuitionistic propositional calculus if and only if the corresponding formula
$ of the algebra of species is valid in every algebra of species of all
subspecies of any infinite species.

1 The intuitionistic propositional calculus In the formulae of the proposi-
tional calculus variables of only one kind occur, namely, propositional
variables, the letters P,, P,, ..., P, will be used. In addition to the
variables, four constants occur in the propositional calculus: the implica-
tion sign —, the disjunction sign v, the conjunction sign A, and the negation
sign ~, (a fifth constant, the equivalence sign <>, may also be used).
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Definition 1.1 The formulae of the propositional calculus will be defined
inductively as follows:

1. Propositional variables are formulae.

2. a) If His a formula, then 1H is also a formula.

b) If H, and H, are formulae, then (H, — H,), (H,v H,), (H,A H,), are also
formulae.

3. A sequence of symbols is a formula of the propositional calculus if and
only if it is the case according to 1 and 2.

Definition 1.2 A formula H is called an axiom of the intuitionistic proposi-
tional calculus if there are formulae H,, H,, H;, such that H satisfies one of
the following equalities or identities:

1. H=H,~ (H, — H)

2. H=H,— (H, —» H,). — .H, — H,

3. H=H,— H,. — .(H,— H,;) — (H, — H,)

4, H=H,rH, — H,

5. H= HiaH, — H,

6. H=H,— H,. — .(H, — H;) — (H, = Hy s H;)
7. H= H,— H,v H,

8. H=H,— H,v H,

9. H=H,— H,. — .(H,— H,) — (H,v H, — H,)
10. H=(H, — 1H,) — (H, — 1H,)

11. H=H, — (1H, — H,)

Definition 1.3 If H,, H,, and H; are three formulae such that H, = H, — Hj,
then H; is said to be the result of the detachment of the formulae H, from
the formula H,.

2 The algebra of species Here only the basic concepts of the intuitionistic
algebra of species will be given (for further details see [1]). In the algebra
of species, we consider the relations and operations of the theory of
species which are definable in the monadic intuitionistic predicate calculus
of the first order.

As basic concepts we define, in the monadic intuitionistic predicate
calculus of the first order, the following relations and operations:

The element relation €: a €A =p; Aa

The species-inclusion C: A C B =, Va(ae A .—. ae B)
The identity: A=B=;; ACBABCA

The species-implication =: ae A= B=p; ac A— aeB
The species-union U: ae AU B=p; acAvaeB

The species-intersection N: ae AN B=p; ac Arace B
The species-complement —: ae€ A =pf T(ae A)

The universal species 1: ael=p; aeA—acA

The empty species : ae =p; WaeA— aecA)

We shall define the terms of the algebra of species inductively as
follows:
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Definition 2.1

1. A species variable 4,(k=0,1,2,3,...) is a term, the universal
species 1, and the empty species @ are terms.

2. a) If T'is a term then T is also a term.

b) If T, and T, are terms, then T,=>T,, T,U T3, and T, N T, are also
terms.

3. A sequence of symbols is a term if and only if it is the case according to
1 and 2.

Definition 2.2 The formulae of the algebra of species are formed, with the
help of the terms, as follows:

Formulae of the first kind are of the form T = 1 (where T is a term).
Formulas of the second kind are formed by applying the propositional
functors: —, v, A, ~, and the quantifiers, to the formlae of the first kind.

Definition 2.3 A formula $ = (T = 1) of the algebra of species is called an
axiom of the algebra of species, if there are terms T,, T,, T such that $
satisfies one of the following equalities:

1. =T,=T,=T)=1

S =[T=(T=T)]=(T\=T,) =1

S =(T=T)=[(T,=T)=(T,=Ty]=1
H=(T'NT)=T,=1

@=(T10T2)=$T2=1
H=(M=T)=[(T,=T)= (1= (T'NTp))] =1
H=T,=(T,UT) =1

O =T,= (T,UTy) =1

9. 9 =(T\=T) = [T, =Ty) = (T\UT) =Ty)] =1
10. = (T'=T,)=(T,=T)=1

11. $ =T,= (T, =T,) =1

12. 9 = (T, =T)=D)n@=(T.=T)) =1

O =J O U N

Definition 2.4 If A is a species with at least one element, S a system of
subspecies of A, such that S is closed with respect to the species-algebraic
operations of species implication =>, union U, intersection N, and comple-
ment —, then the sextuple

A=<(S, A4, ==,U, N, —>

is an algebra of species. Here the term variables range over subspecies
of A, and the universal species 1 is the species A itself.

Corollary 2.5 If A is a species with at least one element, and S is a system
of all subspecies of A, then

A=(S, A, =,U,N, -
is an algebra of species of all subspecies of A.
Definition 2.6 If
A, =S, A4, =,0U,N, -
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and
mz = <82, A: ==, U, m; —>

are two algebras of species such that S, C S,, then U, is said to be a
subalgebra of AU, and U, is said to be an extension of A,.

In an algebra of species U = (S, A, =, U, N, —) of subspecies of a given
species A, the following lemmas can be proved.
Lemma 2.7
a) Forany A;, ApeS, A; = A, =A. <> A; CAyg
b) Forany AjeS,Aj = A=A; A= A; =A;; A=A; UA; ANA; = A

Lemma 2.8 Let S, be a system of subspecies of a species B C A such that
A =Sy, B, =>, U, N, —) is an algebra of species, then:

a) W=(S,, A, =, U,N, =) is also an algebra of species, wheve S, =S, U

{4}

b) IfAthe saeczes algebraic operations in U, and A, are denoted =$» U, n
and =, U, N, vespectively, then we have the following velations:

-B

(i) zfAk,A eSlandAk=>A + B, then Ak=>A AkﬁA zfAk—v%A = B,
then AkgA = A; A; @A A, for every A;eS,; A= Aj=A;, for every
AjeS,.

A B A A
(if) Aj UAp=A; UA,, for every A;, AyeS;; AjUA=AUA; for every
A,’ € Sz.

A B
(iii) A; NAp = A; N Ay, for every Aj, Ay €S,.

(iv) if A; €S, and A;®+ B, then A}A =A% ifA; €S, and A,'.B + B, then A;A =
A; A4 = BB,

Proof: a) Since U is an algebra of species, S, is closed under =, U, N, and
A
—, and since S, = S, U{A}, it suffices to show that for any A;eS,, A, = A,

’

A A
AUA;, AnNA;,A;,= A, and A are elements of S,; then the proof follows
from the fact that B C A, and Lemma 2.7.

b) Lemmas 2.7 and 2.8a imply points (i), (ii), and (iii) at once. Since %,
and A, are algebras of species, B-B=¢ = A'A, and since if A;B + B, then
A; #+ 9, by Lemma 2.8a, point (iv) follows.

Lemma 2.9 Ifaandb, (a +b), are any two positive prime numbers, then
fov any natuval numbev n and m, a” + b".

Proof: Since for any two natural numbers ¢ and d it can be decided whether
c=dor ¢ #d, and for any natural number #z it can be decided whether # is
prime or not, we can apply indirect proof.

(i) Suppose that for some two positive prime numbers « and b, (a # b), and
for some two natural numbers %k and j, a*=b’, then for k= j we have
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k k
a* = b*, Z— =1= % =1%,%=1,a=b, which contradicts the hypothesis that

SR

a+b.
(ii) Suppose that % #j, say k > j, then it follows from a* = b’ that a* 7’ =
, . i , i
b’ thus i = L . Since a*'is an integer, it follows that 2 , and b are
a a a

also integers, hence b is divisible by @, which contradicts the hypothesis
that b is a prime number. This concludes the proof.

Lemma 2.10 Let N be the species of all natural numbers, then for every
natuval number n theve ave n infinite paivwise disjoint subspecies of N.

Proof: Leta,, ..., a,be any positive prime numbers and A, the species of
all the natural numbers of the form af with ie N (that is all the numbers
ay, a3, a3, di, a3, . . ., etc.), and A; the species of all the natural numbers of
the form af with je N, then, by Lemma 2.9, the species A, ..., 4, are
pairwise disjoint infinite subspecies of N as required.

Lemma 2.11 For any infinite species A and any natuval number n, theve
ave n paivwise disjoint infinite subspecies A.

The proof of the lemma follows from Lemma 2.9 and the fact that every
infinite species has a countable infinite subspecies.

3 The matvix method

Definition 3.1 Let W be any given species, an element Ae W, three binary
operations -, v, and A, and one unary operation ~, such that W is closed
under the above operations and that the following holds: if Ye W and
A»Y =A, then Y= A, Under these assumptions, the ordered sextuple

M =<w’ Ay P, v, A, ~>
is called a (normal logical) matrix.
Definition 3.2 Two matrices:

M, = <w1’ Ay, et Ta Ay

1 1

and

M, = <w2’ Ay, eyl :’ ;', Y
are said to be isomorphic if there is a function F which maps W, one-to-
one onto W,, and is such that F(4)) = A;, F(XY) = F(X) - F(Y),
F(ler Y) = F(X)*sz(X), F(X»;Y) = F(X) Jsz(Y) and F(/le) = ?F(X), for all
X, Ye W,. (The isomorphism is reflexive and transitive.)

Definition 3.3 Let M = (W, A, », v, A, ~) be a matrix and Ha formula of
the intuitionistic propositional calculus. The following formulae define
(recursively) a function Fy g which correlates an element Fy gn(X,,. .., Xy,
.. .)€ W with every infinite sequence X, ..., X,, . . .€ W:
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a) FH,W(XD‘ ..,Xn. ..)=Xp1fH=Hp(p= 1,2. ..).

b) FH,W(XI) “ . oey Xn, .. .) hcand Fszm(Xl’ o« o ey Xﬂ’ .. .), if H-= H1 nd Hz (Where
H,, H, are formulae of the propositional calculus).

¢), d) Analogously for the operations v and v, or ~ and A.

e) FyuaoXu, « o oy Xy o o)) = FHi,Wl(Xlg e ey Xpy .. .)if H= ~H; (where H; is
a formula of the propositional calculus).

We say that a formula H is verified by the matrix M, in symbols He E(M),
if Fga(Xy, . . ., X, .. ) =Aforall X, ..., X,. The matrix M is said to be
adequate for the system S of propositional formulae if E(M) = S.

Corollary 3.4 If the matrices M, and M, are isomovphic then E(M,) =
E (My). [By 3.1, 3.2, 3.3]

Definition 3.5 If M, = (W, A, +>, v, &, ~) and My = Wy, A, »>, v, &, ~)
are two matrices and if W, C W,, then M, is called a submatrix of M,.

Corollary 3.6 If M, is a submatrix of M,, then E(M,) C E(M,).
Definition 3.7 We denote by ZK the ordered sextuple
<w5 13 o, r, A, ~>

where W ={0, 1}, x> y=1-x+%x-9, Xxvyy=x+9y-x-9, X Ay=x.y, and
~x=1-x,forall x, yelW.

Definition 3.8 Let M ={W, B, >, v, A, ~) be a matrix and A any element
which does not belong to W. We put:

a) W*=w ui{Al

b) then X »* Y=X Y if X, YeW and X » Y # B, if X, Ye W and
X » Y=B, then X =% Y=A; X»* A=A, for all X e W* A »* Y=Y,
for all Ye W*.

c) Xy*Y=X~yY,forall X, Ye W*; Zxv*A=A~*Z=A, for Ze W*.

d) XaxY=XaY,forall X, YeW; Zr*¥A=Arx*¥Z=Z, for Ze W*.

e) if Xe W and ~ X # B, then ~* X = A; if Xe W and ~ X = B, then ~* X = A;
~*A = ~B.

The ordered sextuple (W*, A, »*, v*, a¥ ~%*) is denoted by IM*.

Corollary 3.9 If M is a matrix, then M* is also a matvix and E(M*) C
E(M); if the matrices M, and M, are isomorphic, then M¥ and M¥ are also
isomorphic. [By 3.1, 3.2, 3.4, 3.7]

Definition 3.10 Let # be a natural number and M = (W, A, >, v, &, ~) a
matrix. We put:

(i) W" = the system of ordered n-tuples: X, ..., X, with X;, ..., X, e W;
(i) A" =(Xy, ..., X, where X, =, . . ., X, = 4;

sss n

(iif) (X1, ooy, X = (Yy, ous, V) = (X, » ¥y, ..., X, = ¥, for all X,,...,
Xn, Y1,...,X,,E ?,l/,
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(iv), (v) analogously for v and 4;
(Vi) 2 (X, o0, X ={(~X1, ..y ~Xp, forall X,,..., X,e W

W", A7, 55, v, X, %)
is called the »n’th power of the matrix M and is denoted by ‘D™ .

Corollary 3.10 If n is a natuval number and M is a matvix, then M" is also
a matrix and we have E(M")=E(M); if M, and M, are isomovphic
matvices, then M} and M, are also isomovphic. [By 3.1, 3.2, 3.3, 3.9]

Definition 3.12 (i) IK, = ZK, and (ii) 1K, = ((IK,)")*.

Theorem 3.13 LetU =<S, A, =, U, N, —) be an algebra of species of sub-
species of A, then W is a matrix, [By 3.1, 2.4, 2.2]

We shall denote by E () the set of formulae verified by the matrix .

Theorem 3.14 Let AU, and W, be two algebras of species as defined in 2.3.
If M, and M, arve two matrices such that M, and U, and M, and U, are
isomorphic vespectively, then M, = M¥. [By 3.8, 2.3]

Lemma 3.15 If:

(i) A is an infinite species;

(ii) Bi, ..., Byave paivwise disjoint subspecies of B;

(ii) By, ..., B, =B CA;

(iv) S, is a system of subspecies of B, (p =1, .. ., n) and for each p

By Bp Bp Bp
62‘Bp= <SP} BP’ ==, U, N, ">

is an algebrva of species isomovphic with the matvix
M = <wa A: T,y A, ~>;
(v) Uy and g, satisfy the conditions in 2.9;

and
(vi) S is a system of all species X =X, U...UX, where X,€S,, .. .,
X,€S,,...,X,€S,and the algebra

B B B B
mB = <SB3 B: ==, U, N, ">
is isomovphic with a matvix P;
then B is a matvix isomorphic with M”, and if S, = Sg U {A} then the species

algebra A A 4

A
WUy = <SA,Ay =,U, N, _>
is isomovphic with the matvix B* which is isomorphic with (M")*.

Proof: Since I is isomorphic with each ‘113,,, by 3.2, there are isomor-
phisms F,, . . ., F, which map W one-to-one onto S,,..., S,. Then:

1. We put F(U)=F,(U)U...UF,U,) for U=(U,, ..., UyeW”. Since
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Fy(Up) eSp(p=1,2,...,m), Fp(Uy) C By and since the species By, ..., Ba
are pairwise disjoint, by (v), we conclude that F maps W” one-to-one onto
S.

By 3.2, 3.10,
2. FA) =F(A)U...UF,4) =B,,U...UB,=B.
3. Further,let U={(U,, ..., UyeW" and V=(V,,..., V,) e W".

By 3.2, 3.10, 3.15.1, and 2.3, we get:

4. F(U-»n—> V) = F(U, Vi, oo, U, » V,,))
= F (U, » V) U...UF,(U,» V,)

= (FUU) 2 F (V) U .. U (FulT) = Fou(V,)
= (FUU) 2 FuVD) . . . (FuU,) = Fu(V,).
By 2.3 and 3.15.1:
FU 5 V) = F(D) = F(V).
Thus for all U, Ve W", F(U = V) = F(U) = F(V).
In an analogous way we obtain the formulae:
5. F(UYV) = F(U) U F(V) and F(U XV) = F(U) F\F(V), for all U, Ve W".
6. F(~"U) = F(U)™B, for all Ue W".

By 3.10 the matrix P is isomorphic with the matrix ", and, by 2.3, 3.8,
and 3.2, A, is isomorphic with P* and since P is isomorphic with IM” it
follows, by 3.9, that B* is isomorphic with (I”)* as required.

Lemma 3.16 Let A be any species with at least one element, and S = {A, P}.
Then

A = <S: A,=,U, N, —>
is an algebra of species.
Proof: Since A=>0 =0e¢S,p=>A=AeS,AUA=AeS,ANP=0PeS,AU
@=AeS,and A=PeSand P = A, hence, by 2.4,Uis an algebra of species.

Lemma 3.17 Let A =4S, A, =, U, N, —) be an algebra of species of all
subspecies of an infinite species A, then fov evevy natuval number n= 1,
theve is a subalgebra W, of W which is isomovphic with the matrix IK,.

Proof: We shall prove the lemma by giving a method of constructing U, for
any given natural number 7z >1. To construct U, for the given natural
number 7 > 1 we proceed as follows:

a) We construct n! subalgebras which are isomorphic to IK;. Then for

1
each of the natural numbers m (2 < m < n) we construct 7:2—' algebras which

1
are (starting with m = 2) isomorphic with IK,. After constructing (;ii—l—

)!
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algebras which are isomorphic with IK,.; we then construct %, in accor-
dance with 3.7, 3.2, and 3.14.

b) If n = 1, then, by 3.12, IK, = ZK, and, by 3.7 and 3.2, ZK is isomorphic
with U = (S, A, =>, U, N, —) where S = {4, ¢}.

¢) If n = 2; then, by 2.5, there are two pairwise disjoint infinite subspecies
By, Bo, of A. Let S, = {By, #}, S, = {B,, }. Then the algebras

By B, By B
m11=<51;B1, ==, U, N, _>

and

By By Bz B

62l12 = <82’ Bz, =, U, ﬂ, '—>

are both isomorphic with IK; (by 3.7, 3.2). Further,let B,UB,=BandSa
system of subspecies X = X, U X,, with X, €S, and X, €¢S,. Then

B B B B

A, = <S’ B, =, U, N, —>

and, by 3.14, ¥, is isomorphic with IK,. Moreover, if $' =S U{A}, then, by
3.14,

A A A A
m2 = <S" A} =, U, ﬂ, —>
is isomorphic with IK,.

We have shown that the construction is valid for » = 1 and #» = 2. Now
suppose that the construction is valid for any number #, then we construct
!
(ﬁ—;—'—l)-; subalgebras of % which are isomorphic with IK,. Then we construct
A,., which is isomorphic with IK,,; in accordance with 3.14 and 3.14c as
required.

1. Let H=H, — (1 H, — H,) where H,, H, are propositional formulae. We
construct, in accordance with 3.3 and with the help of 3.13, the functions
Fy, % Fy,,us Fuyu. We consider further an arbitrary sequence of sets
X, ..., Xy€S and put

2. Fyu (Xl, LEEEEY) Xn) = X,
Fﬂl"u(Xl" . .,Xn,...)= Y,
Fﬂz,ﬂ(Xls"'yXﬂy--')z .

By 3.13(ii), 3.13(v), and from 3.17.1 and 3.17.2 we have X = ¥ = (¥ = 2);
and, by 2.3.11, X =1; from 2.4, X=1=A. Thus we have Fp % (X,,..
X,,...)=A, forall X,, ..., X,,...eS. Hence, by 3.3, He E().

bl

Lemma 4.2 Let A be any algebra of species of subspecies of a given
species A, and let H, H,, H, be formulae of the intuitionistic propositional
calculus such that H = H, — H,. If H, H e EQ), then also Hye E(). In
other words, E(U) is closed undevr the opevation of detachment.,

Proof: In accordance with 3.3 and with the help of 3.13, we construct
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functions Fy o, Fy,u, Fy,u. Then we have: for all species X,,...,
Xn, ... €S

FH,Q[(XI,- ..y Xn,. ..) = FHI.‘II(le' . .,Xn,. . ) ==>F,,2,~;1(X1,. . Xn,. . )

and, since H,, H, € E(N),
FyulXy, .., Xn,...) =A =Fy oXy,..., X)),
for all X,,...,X,,... €S, and since, by 2.2,
FHZ,Q,(Xl,. .., X)) =Aforall X,,..., X,€S,

we have, by 3.3, H,e E(M). Thus E() is closed under the operation of
detachment.

Theorem 4.5 Let IK be the species of all provable formulae of the intui-
tionistic propositional calculus. Then for any species algebva U, IK C E(NA).
[By 1.5, 4.2]

The following theorem was proved by JaSkowski (see [3] and [5]):

Theorem 4.6 In ovder that HelK it is necessavy and sufficient that
He E(IK,) for every natuval number n, in othey wovds:

nrJlE(lK,,) = IK.

Corollary 4.7 An algebra of species W of all subspecies of any infinite
species A is an adequate matvix fov the system of all provable formulae of
the intuitionistic propositional calculus.

Proof: By 3.16, 4.6, 3.3(v), and 3.4.

Definition 4.8 Let ¥ =(S, A, =, U, N, —) be an algebra of species and T a
term of the algebra of species. The following formulae define (recursively)
a function Fp, which correlates an element Fpg(Xy, ..., X, ...) €S with
every infinite sequence of elements X,, ..., X,¢S:

() FrulXy,.. X, ...)=Xif T=Typ=1,2,...);

(i) FraXy, .. Xpy o) = Fr Xy, .o, Xpy o) = Fr, (X0, 0, X, .00, i
T =T,=>T, (where T,, and T, are terms);

(iii) and (iv) Analogously for the operations U and N;

W) FruXy.. X, ...)=Fr aXy,. .., X,,...), i T="T.

We say that a term T is verified by the algebra U, in symbol T € E(), if
Fr (X, ..., X,,...)=Aforall X,,..., X,€S.

Note 4.9 Definition 4.8 means that if the algebra of species is considered
as a matrix, then the definition of verifiability of a term by % is the same
as the verifiability of a propositional formula by %, and the resulting
theorems and corollaries in section 3 hold in both cases.

Definition 4.10 A formula $ = (T = 1) of the algebra of species is said to be
valid in an algebra U, if T is verified by A.
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Theorem 4.11 (i) ¢ is a function which assigns a formula © of the
algebva of species to every formula H of the propositional calculus;
(ii) ¢(H) = & = (T = 1) wheve T is a tevm obtained from H as follows: every
propositional variable p; and every propositional functor —, v, a, ~ occuy-
ring in H is veplaced by the corresponding element a; and the covvespond-
ing species-algebraic opevation =, U, N, —.

Then undev the above conditions ¢ maps the formulae of the propositional
calculus one-to-one onto the formulae of the algebva of species in such a
way that a formula H of the intuitionistic propositional calculus is provable
in the intuitionistic propositional calculus, if and only if the covvesponding
formula $ of the algebva of species is valid in every algebra of species A
of all subspecies of any infinite species A.

Proof: Let H be a formula of the intuitionistic propositional calculus and %
an algebra of all subspecies of any infinite species. If H is provable in the
intuitionistic propositional calculus then, by Corollary 4.7, He E() and, by
4.8, 4.1(i), and 4.1(ii), ¢(H) = © is valid in Y. Conversely, if ¢(H) = $ is
valid in A, then, by 4.10, 4.8, and 3.3, He E(A) and, by 4.7, H is provable in
the propositional calculus as required.
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