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SIGNIFICANCE LOGICS

ROSS T. BRADY

1 Introduction* Over the last few years, there have been a number of
papers supporting the adoption of a 3-valued significance logic. Some of
these papers carry the logic further and look into theories of classes and
relations. Goddard [2] and Routley [7] give justification for a 3-valued
significance logic and delve into its effects on predicates, relations, and
classes. Routley [7], p. 188-189, also gives an axiomatisation of a func-
tionally complete predicate logic. Goddard [3] contains an account of two
sentential 3-valued significance logics, TΊ and T2. Routley, in [8], develops
a number of significance logics. Routley [9] and Goddard [4] give further
evidence in favour of a 3-valued significance logic in reply to a criticism
from Lambert [6]. Philosophical problems regarding significance, espe-
cially that concerning sentences and statements, are sorted out in Part I
of Goddard and Routley's book, [5].

In this paper I want to take for granted the 3-valuedness of significance
logic and the characterisation of the three values given by Goddard and
Routley for atomic sentences, i.e., sentences with no logical connectives or
quantifiers. Although the assignment of values to atomic sentences is not
always clear, I propose to examine the assignment of values to compound
sentences, taking for granted some assignment of values to atomic
sentences.

I want to follow up Goddard's systems T1 and T2 in [3] and Routley's
significance logic in [7] and present a sequence of significance logics, each
with a characterisation of its own. The problem of determining the value to
assign to a compound sentence leads to the problem of determining a
subset of the set of all 3-valued connectives and quantifiers such that these
and only these connectives and quantifiers are used in determining the
values'of compound sentences. One then needs criteria to characterise the

*Much of the material in this paper is taken from my Ph.D. Thesis, "A 4-valued
Theory of Classes and Individuals," supervised by Professor L. Goddard and sub-
mitted to the University of St. Andrews in 1970.
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part icular subset of the set of all 3-valued connectives and quantifiers.

1 will present various c r i te r ia and determine which subsets they char-

acter i se and prove the functional completeness of a set of primitives with

respect to each characterisat ion.

2 The classical system SO Goddard, in [3], p. 239 introduced the cr i te r ia :

II (a) Any compound expression with a non-significant component is non-

significant.

(b) Any compound expression in which all the components a r e significant

is itself significant.

III The definitions of the three-valued connectives should " c o n t a i n " the

class ical connectives of the two-valued sentential calculus.

These a r e necessary and sufficient to define the classical1 connectives.

The main ones a r e :

~ & 1 0 n v 1 0 ft 3 1 0 f t Ξ i o r c

1 0 1 1 0 f t l l l n 1 1 0 f t 1 1 0 f t

0 1 0 0 0 f t 0 1 0 f t 0 1 1 f t 0 0 1 f t

ftft ftftftft ft n ft n n n n n n n n n

Here ζV represents truth, '0' represents falsity, and 'ft' represents non-

significance.

If one adopts criterion IV, [3], p. 240, "A formula expresses a logical law

if, and only if, it comes out true for all possible values of the variables",

then one takes *Γ as being the only designated value. This yields the

sentential part of the classical significance logic, which I wish to consider.

However, if one adopts criterion IV*, [3], p. 240, "A formula expresses

a logical law, if, and only if, it does not come out false for any values of the

variables (but may be either true or non-significant)" then ζV and Ή' would

both be designated values. In this case unintuitive results follow, as

Goddard points out. It seems a rash thing to designate non-significance

anyway.

The connective C(pu ••-, Pn) belongs to the set of classical connectives

iff (i) 'V or <0' is substituted for all of Pl9...,pn then C(/>χ, ...,/>») takes

a value ' 1 ' or '0' and (ii) (n9 is substituted for any of />!,...,/>„ then

C(Pu •••> Pn) takes the value *n\

Theorem The set of all connectives2 which can be defined from the

primitive set, {~, &}, is the set of all classical connectives.

Proof: In 2-valued sentential calculus the primitive set, {~, &}, is a

1. This term was introduced in [7], p. 189.

2. I will be using the word 'connective' instead of 'wff throughout this paper for all
the wffs definable from a primitive set of connectives.



SIGNIFICANCE LOGICS 163

functionally complete set, all 2-valued connectives being definable from it.
Given a classical connective C(plf..., pn) there is a 2-valued connective
Cr(p!,..., pn), definable from{~, &}and taking the same values as C(pl9 ..., pn)
for 2-valued substitutions for plt ...,pn. If C is extended so that pl9 ..., pn

can take the value n as well then whenever n is substituted for some p{ then
C'(Pι, ..., pn) takes the value n, by induction on connectives ~ and &, where
if A takes the value n then ~A and A & B both take the value n. Hence
C'(pl9 ..., pn) takes the same values as C{pu ..., />„), C'(pl9 ..., />w) is defined
using ~ and & only, and C(/?1?..., />w) is definable using ~ and & only.

Conversely, if ~ and & are both classical connectives and if A and B
are classical then ~A and A &, B are classical. Hence all connectives
definable from {~, &} are classical.

Also clearly, ~ and & are independent connectives. To these connec-
tives, one can add the quantifier, A, such that {kx)f{x) takes the value 1 if
f(x) takes the value 1 for all x, (Δx)f(x) takes the value n, if f(x) takes the
value n for some x, and (Δx)f(x) takes the value 0 if f(x) takes the value 0
for some x and does not take the value n for any x. The domain over which
the variable x ranges can be taken as any non-empty domain of individuals.
The quantifier satisfies extended versions of the criteria, 11 (a), ll(b), and
III, where f(x) is regarded as a component of (Ax)/(#), and hence is taken
as a "classical'' quantifier. Also, if A(x) is classical then (Δx)A(x) is
classical. In this paper, I will regard 'for all xy and 'for some x' as
exhausting the possible quantifiers, and since (Ex)A(x) =of ~(Ax) ~A(x) in
2-valued predicate calculus, it can be extended to a definition of 'for some
x9 in the 3-valued predicate logic. Hence the primitive set {~, &, A}
exhausts the connectives and quantifiers of the classical 3-valued predicate
logic.

But the trouble with this classical significance logic is that it has no
valid wffs, as Goddard points out in [3], p. 240. Hence the system is
useless as it is, and other connectives (and perhaps quantifiers) must be
added to the classical ones. Goddard, [3], pp. 240-244, adds the operators,
T, F, and S and the connective =, and develops a 2-sorted system TΊ. I
will consider a 1-sorted form of T1, for the sake of uniformity. Routley in
[8] also develops a 2-sorted system with primitives {~, &, T}.

3 The extended classical system SΊ Goddard, in [3], p. 237, presents the
criterion:

I To say of any sentence that it is true, that it is false or that it is
non-significant, is to make a significant statement; and in particular, to say
of a non-significant sentence that it is true or that it is false, is to make a
false statement.

This contradicts criterion 11 (a) in that a sentence like 'It is true that
Saturday is in bed', which contains a non-significant component, 'Saturday
is in bed', is significant because it is false. Criteria ll(b) and III are very
plausible ones as they ensure that the 2-valued logic goes through as a
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subsystem of the 3-valued logic. Also the assignment of values according
to criterion I is also very plausible because of the metatheoretic nature of
T, F, S, and = and the fact that metatheoretic sentences like ' 'Saturday is in
bed' is true' are obviously 2-valued. The matrices for T, F, S, = are as
follows:

T I F I S 1 Ξ 1 1 Q n

1 1 1 0 1 1 1 1 0 0
0 0 0 1 0 1 0 0 1 0
n 0 n 0 n 0 ^ 0 0 1

ζTp9 is to be interpreted as 'It is true that p.'
ζFp> is to be interpreted as 'It is false that p.7

'Sp' is to be interpreted as 'It is significant that p.'
(p = q' is to be interpreted as (p and q have the same significance value,
i.e., the same value in a 3-valued significance logic '

Note that: Fp =Df T ~A, SA =D/ TA vFA, A = B =Df (TA & TB) v (FA & FB) v
(~SA & - SB).

Hence the addition of the extra primitive T to {~, &, A] seems to suffice.
Moreover, the following can be proved:

Theorem The set of all connectives which can be defined from the
primitive set {~, &, τ\ is the set of all connectives C(pι, . . ., pn) satisfying
the property ψ: for some subset S of all the variables in C(p1, . . ., pn),
C(pi, . . ., Pn) takes the value n iff at least one of the variables in S takes
the value n.

[The variables in S have at least one place uncovered and the variables not
in S have all their places covered* (i.e., uncovered or covered by 7\). The
subset S can be empty and also can consist of all the variables, pl9 . . ., pn.
In the latter case, C(pi, . . ., pn) is a classical connective.)

Proof: ~, &, and T are connectives with the property φ and if C(/>i, . . . , pn)
and D(qι, . . ., qm) are connectives with property φ then ~C(pi, . . .,pn)
(with the same subset of the variables), C(pu . . .,pn) & D(qi, . . ., qm)
(with the subset being the union of the subsets for C and D), and TC(ply. . .,
ρn) (with the empty subset) are all connectives with the property φ .

Conversely, let C(pι, . . ., pn) be a connective with the property φ . Let
S be the corresponding subset and let T be the subset of the variables which
is the complement of S. Let ql9 . . ., q{ be the variables in S and rl9 . . ., rm

the variables in T.

Note that pv ~p has the matrix:

1 1

0 1
n n

3. The terms 'covered' and 'uncovered' are from [8], p. 5.
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Also p & ~p has the matrix:

1 0
0 0
n n

Let j l 9 . . ., ji be the values of a particular assignment to qu . . ., #*,
where qλ, . . ., q{ take the values 1 or 0 only, and let kl9 . . ., km be the
values of a particular assignment to rl9 . . ,,rm, where rl9 . . .,rm9 can
take any value. Let Lju...ίU, kl9...,km be ( ^ v - qγ) & . . . & (#,- v ~ q{) if
C(/>i, . . ., Pn) takes the value 1 under the above assignment, and let

£/!,...,/,•, *i,...,*OT

 b e (tfi & ~#i) & . . . & ( ? , - & ~0i) if C(/>!, . . ., Pn) takes
the value 0 under the above assignment. For each assignment of values,
form the formula Jγqγ & . . . & J4q{ & K1r1 & . . . & # w r m 3 Ly1?... j7 ., k19...,km,
where Jl9 . . ., J f are T or F according to the value 1 or 0, respectively, of
the ji, . . ., Λ , and where Kl9 . . ., Km are T, F, or ~S according to the
value 1, 0, or n, respectively, of the kl9 . . ., km. C(pl9 . . ., pn) can then be
defined as the conjunction, using &, of all of these formulae, one formula
corresponding to each assignment of values to pl9 . . .,/>„, with ql9 . . ., qϊ

taking the values 1 or 0 only. Given one such assignment, one and only one
expression of the form Jγqx & . . . & J ^ & Kιrι & . . . & Kmrm will be true
while all other such expressions will be false; and also each expression
^/f ,...,/,-> k19...9km appearing in the conjunction will be true or false. Hence,
by 2-valued logic, the formula Jγqγ & . . . & J{q{ & K1rι & . . . & Kmrm Ξ)
Lj19...9ji9k19...9kmi corresponding to the particular assignment under con-
sideration, will take the same value as L ; 1 ? . . . > ; ^ . . . ^ while all the other
conjuncts will be true. Hence, the conjunction of the formulae, defined to
be C(pu . . .,/>„), will take the value of (<71v~tf1) & . . . & (q{ v ~q{) or
(#i & ~<7i) & . . . & ( # , - & ~qi), according as C(pl9 . . ., pn) takes the value 1
or 0, respectively. Hence the definition is satisfactory for C(pi, . . .,/>»),
where #u . . ., q{ takes the values 1 or 0 only.

If at least one of ql9 . . ., q{ take the value n9 then in the proposed
definition for C(pί9 . . ,Pn) each expression L ; i j # .# ) / 2 . ?^ l j # # #^w will take the
value n and hence the proposed definition will be satisfactory in this case
as well. Hence any connective C(pl9 . . ., pn) satisfying the property φ can
be defined in terms of ~9 &, and T.

Theorem The connectives ~9 &, and T are independent.

Proof: (i) & cannot be defined in terms of ~ and T, since they are both
monadic.
(ii) Let Δ(p) be defined in terms of ~ and & only. If p has the value n then
A(p) has the value n. Hence T is not definable from ~ and & only.
(iii) Let Δ(£) be defined in terms of & and T only. If p has the value 1 then
A(p) has the value 1. Hence ~ is not definable from & and T only.

As before, one can add the quantifier A to the primitives to give
{~, &, T, A}. This is defined as in the previous system. The quantifier E
can also be defined as in the previous system.
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Now I will give an axiomatisation for the system SI with the primitives
{~, &, T, A}, firstly axiomatising the sentential system and then the
predicate system.

SI: Sentential calculus So as to be able to apply one of the rules, I need to
axiomatise the 2-valued system P first.

System P

Primitives

1. py qf r, . . . (2-valued sentential variables).

2. ~, D (negation and implication connectives).

Formation Rules

1. A 2-valued sentential variable is a wff.

2. If A and B are wffs, then ~A and A i> B are wffs.
Definitions

A & B =D/ ~(A D - 5 ) .
AvB =of ~A ^> B.
A=B=Df(A^B)& (B^A).
TA =DfA.
FA =Df T ~ A.
SA =Df TAvFA.

Axioms

1. p D. tf D />.
2. /> D (q^>r)^.p D # D. /> D r .
3. ~£ ^ ~q Ώ. q Ώp.

Rules

1. Uniform Substitution for sentential variables.
2. hp-A>hp-A => £=#V.B.

System S1

The system P is used in the construction of the system SI. Note that the
two systems have the common symbols p, q, r, etc. for sentential variables,
and ~, D for connectives. It will be clear from the context which system
the symbol is being used in.

Primitives

1. p, q, r, . . . (3-valued sentential variables).
2. ~, &, T (connectives).

Formation Rules

1. A sentential variable is a wff.
2. If A and B are wffs then ~A, A & B and TA are wffs.
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Definitions

AvB =Df ~(~A & ~J9).
A D B =Df ~AvB.

A^B =Df(A^B)& (B Ί>A).
A 3 B =Df TA 3 TB I For the purpose of using o>
Av B =of A vB J and V of system P in Rule 3.
FA =DfT~A.
SA =DfTAvFA.

Axioms

1. STp.
2. ~Sp ^ ~ S ~p.
3. ~Sp v~ Sq^ ~ Sip & <?).
4. ~S/>D FT/?.

Rules

1. Uniform substitution for sentential variables.

2. hsfA, fsi-A z> £=^>lir # .
3. 4 hrA(A, . ., A) =̂ > FsΓ S 5 i D D SBn^A(Bl9..., Bn}, where A,. . . , ^ are
all the variables in A.

Theorems (without proof):5

SFp; SSp; Fp ^ T ~ p; Tp ̂  Sp; Tp D F ~ />; F/> D S/>; Tp & T^
^T(p&q); Tp & Fq ^ F(p & q); Fp & Sq O F(p & q); Tp ^ TTp; Fp
D FT/?; TpvFpv~ Sp; (Tp ̂  Tq) & {Fp ^ Tq) & (~Sp ^ T^)
3 T^; fsrTA=ΦfsΓA.

The completeness proof with respect to the 3-valued matrices is one
adapted from that of Church, [1], pp. 97-99, for the 2-valued sentential
logic.6

Lemma Let B be a wff of SI and let pi,..., pn be the distinct variables
occurring in B. Let A{ be Tpiy Fp{ or ~Spi according as the value aι of pi
is 1, 0, or n. Let Bf be TB, FB, or ~SB according as the value of B, for
values au a2,..., an of pλ, p2,..., pn is 1, 0, or n. Then Y^Aγ & ... & An ^ Br.

Proof: By induction on the number of variables. It is trivial in the case of
a single variable.

(i) B is ~Bγ By ind. hyp., Aγ & - & An 3 B[. If Bγ has the value 1, 0, or n,
then B has the value 0, 1,-or », respectively. So, if B[ is TBlt FBλ or ~SBU

then B1 is F ~ Bγ, T ~ Bγ or ~S - Bly respectively. By T.5, T.3, and A.2,

4. This is the idea of R. Routley.

5. The following theorems will be referenced in the sequel as T.I, T.2, . . . , T.13
and D.R.I, respectively.

6. This adaptation was suggested by R. Routley.
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TBι 3 F ~ Bl9 FBι D T ~ B1 and ^SBι ^> ~ S ~ B±. Hence £{ 3 Bτ and, by
using P and R.3, A1 & ... & An 3 £ ' .

(ii) B is Bi& B2 By ind. hyp., Ax & - & Aw 3 £{ a n d A ^ - f e ^ D ^ ,
where p19 ->-, pn are all the distinct variables in Bλ & B2.

(a) If I?! and B2 have the value 1, then B has the value 1. So, if B[ is T^!
and Bl is T£ 2 , then Br is T(#! & £ 2 ) . By T.7, Tp h Tq^ T(p & a). Hence
£{ & £2' 3 £ ' and by using P and R.3, Ax & ... & An 3 Br.
(b) If Bγ has the value 1 and J32 has the value 0 then B has the value 0. So,
if B[ is TBγ and B'2 is F £ 2 , then £ ' is F(Bι & £ 2 ) . By T.8, Tp & Fq ^
F(p & #). Hence B[ & £ 2

 D B' and, using P and R.3, Ai & ... & An 3 .β'.
(c) If i?! has the value 0 and B2 has the value 1 or 0 then B has the value 0.
So, if B[ is FB, and ^ is TB2 or FB 2 , then 5 f is F(Bi & ^ 2 ) . By T.9,
Fp & S^ >̂ F(p & ^). By T4, P, and R.3, Fp & Tq ^> Fp & Sq. Hence, by P
and R.3, Fp& Tq 3 /(/> & q). By T.6, P, and R.3, Fp & Fq ^ F(p & q).
Hence 5J & B'2 3 5 ' and Ax & ... &ΛΛ => 5 ' .
(d) If Bλ or 5 2 has the value n then i? has the value n. So, if B[ is ~S£i or
Bi is ~SE 2 then 5 f is ^siB, & E 2). By A.3, ~Spv~Sq 3 ~S(/> & <?). By P
and R.3, ~S/> =) ~S(/> & ^) and ~ S ^ 3 ~S(p & q). Hence B{ i> ^ f and Aι &
... &ΛW 3 ^ f .

(iii) 5 is T#! By ind. hyp., Ai & ... & An 3 £{. If ^ has the value 1, 0, or
«, then B has the value 1, 0, or 0, respectively. So, if B[ is TBl9 FBU or
~SBl9 then .Bf is TTBl9 FTBU or ~STBU respectively. By T. 10, T.I 1, and
A.4, TB, 3 TTBU FBX 3 F T ^ 1 ? and ~SBX 3 FTJBlβ Hence B[ 3 JBf and Ax &
... & A n 3 J β ' .

Metatheorem If B is valid according to the 3-valued matrices, then B is a
thesis ofSλ.

Proof: Let pl9..., Pn be the distinct variables of 5. Let Ai,..., Aw be as in
the Lemma. Since B is valid, B1 is TB, independently of the values of
Pl9...,Pn. Hence, ^ A! &...&AW.! & TPW 3 TS. By P and R.3, ^•A1 & ... &
A-i D (TPW 3 T£). Similarly, ^ A i & ... & An.x 3 ( F P W 3 TB) and hsfAi &
... & Aw_x 3 (~SP β 3 TB). By P and R.3, \^AX & ... & A ^ 3 . (TPn 3 T£) &
(FP« 3 TB) & (~SPW 3 TB). Using T.13, ^ A i & ... & Aw_x 3 TJ5. By repeat-
ing this procedure for each Ai9 1 ^ i ^ n - 1, |^- TB. Hence, by D.R.I, Y^B.

SI: The Predicate Calculus

System P

Extra Primitives The following are added to the sentential system P.

3. x, y, z, . . . (individual variables).

4. /, g, h (predicate variables).
5. A (universal quantifier).

Extra Formation Rules

3. If / is an rc-ary predicate variable and xl9 ..., xn are individual variables

then/(* ! , ...9xn) is a wff.
4. If 5 is a wff and # an individual variable then (Ax) B is a wff.
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Extra Definition

(Sx)A =D/~(A#) ~A.

Axioms (The axioms of the sentential system P are written in schematic
form.)

4. (kx)A(x) ^ A(y), where y is substituted for the free occurrences of x in
A such that y, on substitution, does not become bound thereby.

Extra Rule

3. YpΆ => B=^]-p-A 3 (Ax) B, where x is not free in A.

System SI

The following are added to the sentential system SΊ:

Extra Primitives

3. x, y, z, . . . (individual variables).
4. f,g,h9... (predicate variables).
5. A (universal quantifier).

Extra Formation Rules

3. If / is an w-ary predicate variable and xl9..., xn are individual variables,
thenf(xι, ..., xn) is a wff.

Extra Definitions

(Ex) A =D/~(A#) ~A.
(Sx) A =Df (Ex)A. (For the purpose of using the 'S' of system P in R.3.)

Axioms (The axioms of the sentential system S1 are written in schematic
form.)

5. (Δx)A(x) ^ A(y), where y is substituted for the free occurrences of x in
A such that y, on substitution does not become bound thereby.
6. (Sx) ~ SA(x) => ~S(Δx)A(x).

Extra Rules

4. fsΓ A 3 £ = > ["sf A D (kx)B, where x is not free in A.

• l̂,*V ~* ~* ̂ A^W )ij ••• , XnΛnJ Sβn\Xn> IJ , Xn, in) ^ ^ ( Λ I U I . U J ^l./'j)?

. . . , ^ W ( Λ : W ( I , . . . , Xn.ij)), where A 1 ?..., An are the only wff-schemata in cA and
ΛΓyt ]_,..., Xjtij are the only variables (i.e., free or bound by <=4) in A ; and the
only free variables (i.e., free or bound by c4) in £j. (The <A and <#/s are
schemata for the wff-schemata A, JB, etc.) (This rule is a generalisation of
Rule 3.)

Theorems (without proof):

FsfA^fsr(Ax) A; IsfA D ,B =£> fsf(A.r) A =) (A x) B; (Ax) TA(x)
=) Γ(Ajf)AW; S(Ax)A(x) 3 (A.T)SA(Λ:); (SAT)JFVl(AT) & (Ax)SA(x)
^ F(AX)A(ΛΓ); ^(Aλ^AM D (Sx)FA(x); T(Sx)A(x) D (SAT) TAW.
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Metatheorem 1 The Deduction Theorem holds in S1 for n>, i.e., if Al9...,

An hsf B then Al9..., An^\^ An D 5,provided Rule 4 zs rcoί &sed to generalise

on any variable of An.

Metatheorem 2 If B is valid according to the 3-valued matrices and the
properties stated for A, then B is a thesis of the axiomatic system SI.

Sketch of the proof: The proof is modelled on the proof for the complete-
ness of the 2-valued predicate calculus given in Church, [l], pp. 238-245.
If Γ is any class of wffs and B is any wff, then YhB if there is a finite
number of wffs A19...,An of Γ such that Au ..., An hB. A class Γ of wffs is
called inconsistent if there exists a wff B such that YhB and Γ h~B. If no
such B exists, then Γ is consistent. If Γ is any class of wffs and C is any
wff, then C is consistent with Γ if the class {c} U Γ is consistent; otherwise
C is inconsistent with Γ. A class Γ of wffs is called a maximal consistent
class if Γ is consistent and if C is consistent with Γ then C e Γ.

Lemma Every consistent class Γ of wffs can be extended to a maximal
consistent class Γ, i.e., there exists a maximal consistent class Γ
containing Γ.

Proof: Similar to that in [1].

As in Church, we consider an infinite sequence of applied predicate logics,
50> S1? S2, . . ., which have as primitive symbols all the primitive symbols
of the system S and in addition certain individual constants. Viz., the
primitive symbols of So are those of S1 and the individual constants
Wo,o> ^i,o> 2̂,o> •> the primitive symbols of Sw+1 are those of Sn and the
additional individual constants W0,n+l9 Wι>n+1, W2,n+i, . .. Also let Sω be the
applied predicate logic which has as its primitive symbols the primitive
symbols of all of the systems So, Si, S2, . . .. All the wffs of Sω can be
enumerated and so can the wffs of each S» by deleting from the enumeration
of the wffs of Sω the wffs not in S«. Let Γo be a given consistent class of
wffs of So which have no free individual variables. We define the classes
Yζ as follows: Γ? is Γo. If the (m + l)'st wff Sn, n>0, has the form
{Sx)A(x) and is a member of Γ ,̂ then Γ^+1 is the class whose members are
A(Wm>n) and the members of Γ£; otherwise C + 1 is Γ™. Also Γ£+1 is Δw

where Δw is the union of the classes Γ°, Γ*, . . .. The members of Γ^are
wffs of Sw and Γ£+1 is a maximal consistent class of wffs of S«. One can
prove that, if Yζ is consistent then Yζ γ is consistent. This makes use of
some of the theorems stated and of Rule 5, particularly.

Let Γω be the union of the classes Y°u Γg, Γj, . . .. Then Γω is a
maximal consistent class of wffs of Sω. The following are properties of Γω:

(a) If AeYω, then ~A/Γ ω .
(b) If SA € Γω and A { Γω, then -A € Γω.
(c) If A{Γω, then ~TAeYω.
(d) At least one of TA, FA, ~SA is a member of Γω.
(e) At most one of TA, FA, ~SA is a member of Γω.
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Now we can make an assignment of values to each member of So. If
TA e Tω> then A has T, if FA e Γω, then A has F, and if ~SA e Tω then A has

To show that the assignment is a consistent one, one must show that
the primitive connectives satisfy the matrices and that the quantifier
satisfies its property.

(i) ~. One needs: TA ^ F ~ A; FA ^ T ~ A; ~SAΞ> ~S ~A.
(ii) &. One needs: TA & TB D T (A & B); TA & FB => F (A & i?); FA &
S ί ^ F ^ f e 5); ~SΛ v ~S£ => ~S (A & J5).
(iii) T. One needs: TA D TTA; FA D FΓA; ~SΛ => FTA.
(iv) A. One needs: (kx)TA(x) ^ T{Δx)A(x); S(Δx)A(x) => (Δx)SA(x);
(Sx)FA(x) & (Δx)SA(x) => F(AΛΓ)A(ΛΓ)#

Since Γo was chosen as an arbitrary consistent class of wffs of So

without free individual variables, every consistent class of wffs of So

without free individual variables is simultaneously satisfiable in a denu-
merable domain. This extends to every consistent class of wffs of SI. Let
B be a valid wff of SI. Then TB is valid and the class consisting of ~ TB
only is not simultaneously satisfiable and hence it is not consistent. Hence,
for some wff A, - TBv A and - TB h~A. By the Deduction Theorem, hTB.
Hence \-B. This completeness proof assumed the consistency of the system
SΊ, which can easily be proved using the domain of one individual. In this
proof, there is no difference between (Δx)A(x) and A(x0), where x0 is that
individual. Thus all the quantifiers can be removed and the system reduced
to a sentential one.

4 The system S2 with the positive s-n sublogic The system S1 allows one
to deal with sentences containing the classical connectives and allows one
to state their truth, falsity, or non-significance. However, there are cases
of sentences of ordinary discourse that require connectives and quantifiers
outside the scope of those of SI. To obtain the system S2 I wish to add a
disjunction and a corresponding existential quantifier. The disjunction, v,
is obtained from the criterion, "If one disjunct in a disjunction is non-
significant then this disjunct is ignored when assessing the value of the
disjunction." That is, if 'ρ9 is non-significant, then ζpvq' has the same
value as (q\ This gives the matrix:

v 1 0 n

1 1 1 1
0 1 0 0
n 1 0 n

The disjunction is formally justified by regarding it as an existential
quantifier over a finite range. This quantifier, S, has the property that the
value of (Sx)φ(x) is assessed by examining only the significant φ(x)'s and
that (Sx)φ(x) is only non-significant if φ(x) is non-significant for all x. When
assessing the value of (Sx)φ(x) from the significant φ(x)'s the classical
2-valued logic applies, in accordance with Goddard's criterion ll(b).
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If one formalises 'Something is happy' as (Sx)H(x), using the above
quantifier S, then (Sx) H(x) will be true since some person in this world is
happy and the quantifier has the effect of restricting the variable x to items
of the "right" category (i.e., animals). 'Something is happy' seems to me
to be true because there is a happy person who is certainly a "thing" in
whatever broad sense this has. However, if an existential quantifier E is
used in place of S, where E satisfies Goddard's criterion II(a), so that
(Ex)φ(x) is non-significant if φ(x) is non-significant for some x, then
(Ex)H(x) is non-significant because it is non-significant for stones to be
happy and "thing" would include all material objects. In fact, (Ex)fx is
always non-significant, except for rare predicates which have the universe
as their significance range (e.g., 'is a thing'). Thus the quantifier S is
necessary to represent 'Something is happy' and to ensure the significance
of existential sentences. If the quantifier S is used over a finite range then
(Sx)φ(x) would be equivalent to a finite disjunction where the connective
would be 'v\ Similarly to 'S' and 'v', one can introduce a universal
quantifier V and a conjunction +, as follows:

P + q =Df ~(~pv~q); (Vx)φ(x) =Df ~($x) ~φ(x).

' + ' is represented by the matrix:

+ | i o n

1 1 0 1
0 0 0 0
n 1 0 n

Similarly to (Sx)φ(x), the value of (Vx)φ(x) is assessed by examining
only the significant φ(x)'s and (Vx)φ(x) is only non-significant if φ(x) is
non-significant for all x. Also, when assessing the value of (Vx)φ(x) from
the significant φ(x)ys the classical 2-valued logic applies, in accordance
with Goddard's criterion II (b).

Consider the example, 'Not all that glitters is gold.' The intended
meaning is that not all material objects that glitter are gold. By using the
quantifier V the sentence can be formalised without mention of material
objects because of the automatic restriction to the significance range of
'x glitters' and (x is gold'. If the quantifier A is used in place of V where A
satisfies Goddard's criterion ll(a), so that (Δx)φ(x) is non-significant if φ{x)
is non-significant for some x, then the variable x must be restricted to
material objects otherwise the sentence formalised as '~(A#)(G1# Ξ> Gάx)'
will be non-significant which it clearly is not. So the quantifier V allows a
more direct and natural formalisation of 'Not all that glitters is gold.'
Again, if such quantification ranges over a finite domain then it can be
replaced by a finite conjunction using the connective, +.

There is another use of the disjunction, v. Consider the compound
predicate, 'is a holiday or likes cheese'. If 'x is a holiday' is true (say, x
is New Year's Day) then ζx is a holiday or likes cheese' is true. If 'x is a
holiday' and (x likes cheese' are both non-significant (say, x is a piece of
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wood) then (x is a holiday or likes cheese' is non-significant. If 'x is a
holiday' is false and 6x likes cheese' is not true (say, x is my birthday) then
(x is a holiday or likes cheese' is false. Letting ζx is a holiday' be p,
'x likes cheese' be q and cx is a holiday or likes cheese' be pϋq, the
matrix for D as determined above is:

D I 1 0 n

1 1 1 1
0 1 0 0
n 1 0 n

which is exactly the matrix for v. Thus fxvgx has the same value as (/or
g)x and the disjunction v can be used in representing a predicate disjunc-
tion. This does not mean that (/ or g)x can be interpreted as fxvgx, where
the tfor' is a classical sentential connective. The sentence ζx is a holiday
or x likes cheese' would always be non-significant because whenever ^ i s a
holiday' is significant, ζx likes cheese' is non-significant, and vice versa.

Thus the disjunction v is formally useful and has some application in
ordinary discourse. Hence I will consider the system S2 obtained by adding
v to the primitive connectives of S1 and S to the primitive quantifier of SI.
The system S2 with primitives {~, &, T, v, A, S} will be shown to have all
of its connectives exhausting all the "positive" connectives which can be
used to form a n s - w sublogic and which contain a 2-valued connective
of the sentential calculus. An s - n sublogic is obtained by grouping
together the significant values, 1 and 0, and calling it the value 5, while the
non-significant value n remains intact. In order to be able to perform this
on a connective one must be able consistently to assign the value s or n in
the 2-valued matrix of the connective. One can do this for the connectives
~, &, T, and v as follows:

~ & s n T v s n

s s s s n s s s s s
n n n n n n s n s n

A connective C{pι,..., pn) satisfies the positive property if for any i, if
C(Pι,..-, Pn) takes the value n and£; takes the value 1 or 0 then C(pl9..., pn)
takes the value n with p{ taking the value n and with the pfs (j Φ i) left
intact.

To give some idea, all the monadic and dyadic positive connectives
which can be used to form an. s - n sublogic and which contain a 2-valued
connective of the sentential calculus can be represented by the following
s - n matrices:

Monadic

(1) (2)

n s n n
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Dyadic

(1) (2) (3) (4) (5)

s n s n s n s n s n

s s s s s s s s s s s n s s n

n s s n s n n n n n s n n n n

Note that, for a connective C(pu ..., pn) to contain a 2-valued connective of
S.C., on substituting a significant value for all the Pu--,pn, C(pu...,pn)
must take a significant value.

Theorem The set of all connectives which can be defined from the primi-
tive set {~, &, T, v} is the set of all positive connectives which can be used
to form an s - n sublogic and which contain a connective of the 2-valued
S.C.

Proof: Call the conjunction of these three properties, the property ψ.
~, &, T, and v contain a connective of the 2-valued S.C. and, as shown
above, can be used to form a n s - w sublogic. The positive property is
vacuously true for monadic connectives and it is the case for &. Ifpvq
takes the value n while p takes the value 1 or 0, then pvq still takes the
value n when p takes the value n. If C(pι,.., pn) and D(q1} •.., qm) satisfy the
proper ty φ then ~C(pl9..., pn), C(pl9..., pn) & D(ql9..., qm\ TC(pu ..., pj and

C(p1,...,pn)vD(q1,..., qm) satisfy the p r o p e r t y ψ .

First consider the monadic and dyadic cases for the converse result.
The classical connectives ~ and & can be used to define all the monadic
connectives of type (2) and all the dyadic connectives of type (5). The
connectives T, F, S, Tpv~ Tp (taking the value 1 only) and Tp & ~Tp
(taking the value 0 only) can be defined as in SI. Lett/) denote Tpv~Tp
and let \p denote Tp & ~Tp. The monadic connectives of type (1) are
obtained in the form (~ Tp v (tp or ip)) & (~Fpv (tp or 1p)) & (Sp v (tp or ip)),
where substitutions of tp or ip in the places indicated will yield the eight
required connectives. The dyadic connectives of type (1) are obtained in
the form (~(Tp & Tq) v (tp or ip)) & (~(Tp & Fa) v (tp or ip)) & (~(Tp &
~Sq) v (tp or ip) & (~(Fp & Tq) v (tp or ip)) & (~(Fp & Fq)v(tpvip)) &
(~(Fp & ~Sq) v (tp or ip)) & (~(~S/> & Tq) v (tp or ip)) & (~(~S/> & Fa) v
(t/> or f/>)) & (~(~Sp & ~Sq)v(tp or f/>)), where substitution of t£ or fp in
the places indicated will yield the 29 required connectives.

Next consider the connective defined by (pv~p) v (qv ~q). It has the
matrix:

1 0 n

1 1 1 1
0 1 1 1
n 1 1 n

Take each of the dyadic connectives of type (1) in turn and form the
conjunction, using &, of it and (pv ~p) v (qv ~q). All the places in the
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matrix of the dyadic connective of type (1) will remain intact except for the
n - n place, which will be converted to an ζn\ By using this method all the
dyadic connectives of type (2) can be defined.

Next consider the connective defined as (pv ~ p) & SSq. It has the
matrix:

1 0 n

1 1 1 1
0 1 1 1
n n n n

As above, take each of the dyadic connectives of the type (1) in turn and
form the conjunction, using &, of it and (pv ~p) & SSq. All the places in the
matrix of the dyadic connective of type (1) will remain intact except for the
n - 1, n - 0, and n - n places, which will be converted to Ή's'. By using
this method all the dyadic connectives of type (3) can be defined. Similarly,
by using the connective SSp & (qv ~ q) all the dyadic connectives of type (4)
can be defined.

Next consider the generalisation to rc'adic connectives. The type (1)
monadic and dyadic connectives can be generalised to w'adic connectives by
representing each place (al9 ..., an) in the matrix by a conjunction Kγpγ &
. . . & Knpn, where K{ is T, F, or ~S according as α, is 1, 0, or n,
respectively, and by forming the conjunction of all expressions of the form
(~(K1p1 & . . . & Knpn)v(Xpι or fΛ)), where substitutions of tpλ and 1pι in
the places indicated will yield all the required connectives. By forming
arbitrary disjunctions and conjunctions of the formulas ptfv ~piy for i = 1,
..., n, so that if pj v ~pj does not occur in it then the formula is conjoined
with SSpj, all the formulae generalising the formulae, {pv ~p) v (qv ~ q),
(pv~p) & SSqf SSp & (qv~q), and (pv ~p) & (qv~q) of the dyadic case, can
be obtained. (We could have used (pv ~p) & (qv ~q) in an alternative
method of obtaining the dyadic connectives of type (5).) In the case of n = 3,
(pίV ~pί) v(p2v ~p2) v (p3 v~p3) has a single value n when pl9 p2, and p3 all
take the value n, ((pλ v ~pj v (p2 v ~p2)) & SSp3 has a " l ine" of values n
when pγ and p2 take the value n, and (pλv ~pγ) & SSp2 & SSp3 has a "plane"
of values n when pγ takes the value n. By forming conjunctions of these
formulae, one can form 2 or 3 "planes" of values n, 2, or 3 "l ines" of
values n, and a "plane" and "l ine" intersecting at (ny n, n). So, in general,
the disjunctions of the atomic elements p{V~p{ determine the "simplex"
and the conjunctions of these disjunctions superimpose the "simplexes" to
form the configuration of the n's.

All of these formulae take the value 1 whenever it is significant and so,
using the same method as was used in the dyadic case, any significant value
can replace a value 1 in any of these formulae. This completes the proof.

It is clear for the quantifiers A and S that they contain a 2-valued
quantifier of predicate logic, that they can be used to form an s - n
sublogic, and that they have the positive property (in the sense that if
(A#)0(#) [or (Sx)φ(x)] takes the value n with φ(x0) taking the value 1 or 0 then
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(Δx)φ(x) [or (Sx)φ(x)] still takes the value n when φ(x0) takes the value n with
the rest of the φ(x)'a left intact.).

Theorem The connectives ~, &, T, and v are independent.

(i) Let Δ(p) be defined in terms of &, T, and v only. If p has the value 1
then A(p) has the value 1. Hence ~ is not definable from &, T, and v only,
(ii) Let Δ(p) be defined in terms of ~, &, and v only. If p has the value n
then Δ(£) has the value n. Hence T is not definable in terms of ~, &, and v
only.
(iii) Let A(p, q) be defined in terms of ~, &, and T only. If p takes the
value n and q takes a significant value then, in order for A(p, q) to take a
significant value all occurrences of p must be covered by a T. If one then
lets p take a significant value and q take the value ft then, in order for
Δ(P, Φ to take a significant value all occurrences of q must be covered by a
T. But then Δ(/>, #) takes a significant value when both p and # take the
value n. Hence v is not definable in terms of ~, &, and T only,
(iv) Let Δ(p, q) be defined in terms of ~, T, and v only. If p takes a
significant value and q takes the value n then Δ(/>, #) takes a significant
value. Hence & is not definable in terms of ~, T, and v only.

The axiomatisation of system S2 is very similar to that of SI. For the
sentential part one only needs to delete the definition, Av B =Df AvB (since
the v of S2 is just as good as v for the purpose of using Rule 3) and to add
the axioms:

(5) (~Sp & Tq) v (Tp & ~Sq) ^ T(pvq).
(6) (~Sp& Fq)v(Fp& ~Sq) => F{pvq).
(7) {~Sp& ~Sq)^ ~S(pvq),

and the Deduction Theorem and Completeness Theorem follows as for SI.

For the predicate system, one needs to delete the definition (Sx)A =pf (Ex)A
and replace it by (Vx)A =of ~{$x) ~ A, and to add the axioms:

(7) (Sx) TA{x) 3 T(Sx)A(x).
(8) (AΛΓ) - TA(x) & (Sx)FA(x) => F(Sx)A(x).
(9) (A*) - SA(x) D - S(Sx)A(x),

and the Deduction Theorem for => and Completeness Theorem follow as for
SΊ.

5 The system S3 with the s - n sublogic The system S2 (and SΊ) has the
property of having an 5 - n sublogic, which in effect ensures a certain
symmetry of truth and falsity with respect to non-significance. Instead of
there being a gradation of values, starting with truth, through falsity to
non-significance, non-significance is a different type of value to truth and
falsity. This is indicated by the fact that true and false sentences can
express propositions whereas non-significant sentences do not. The s - n
sublogic is really a logic which determines whether a sentence can express
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a proposition or not, i.e., with the s-value designated. So it is desirable
for a system to have an s - n sublogic.

The positive property of system S2 is a rather restrictive property
which was introduced to characterise the disjunction v. In forming the
system S3, this property will be omitted so that the connectives of S3 will
consist of all of the connectives which can be used to form a n s - w sublogic
and which contain a 2-valued connective of the sentential calculus. The
connective which is added to the primitive set {~, &, T, v, A, S}of S2 is -*,
which is represented as:

-> I 1 0 n

1 1 0 n
0 1 1 n
w i l l

To a certain extent, this ' 'implication" is a 3-valued extension of the
2-valued material implication in that 'a false proposition implies any
(significant) proposition' is extended to 'a non- significant sentence implies
any sentence' and 'it is false for a true proposition to imply a false
proposition' is extended to 'it is non-significant for a significant sentence
to imply a non-significant sentence'. To a certain extent, this implication
can be used in ordinary discourse reasoning involving non-significant
sentences because the following are valid:

P& q-* P; P & q-+ q\ P-> P; p-+ pvq; q-* pvq\ p-+ q->. q-*r-+.p-+r;
p -+ q -+. p & r -* q & r; p->q->.pvr-*qvr;p&(qvr)^>(p& q) v (p &
r); pv(q & r)^^(pwq) & (/>vr); (p — q & -q) — ~ Tp; (p -» q) & ~Sq->
~Sp; (p-> q & ~q) & (~j> — r & ~ r ) -> ~Sp. (A^>B is defined as {A -»
B) & (B-+A).).

Using &, v, and —», all the theses of Hubert's Positive Propositional
Calculus7 (the negation-less fragment of Intuitionistic Propositional Cal-
culus) can be obtained because the matrices for &, v, and —> are the same
as those that are the second in the infinite sequence of matrices for I.P.C
Also the equivalence <->, defined above, can be used for a Substitutivity of
Equivalents Rule because Λ<->JB is true iff A and B have the same values.
It is because of these nice properties that I want to maintain that -» is the
best implication for ordinary discourse, under the restrictions of using a
3-valued matrix.

Note that, using ~, &, and —* only, one can define T and v as follows:

TA =Df~(A-> ~(A-*A)).
AvB=Df ((A -+ B)-> B) & ((B - A)- A).

Hence, let S3 have the primitive set {~, &, —>, A, S}.

7. Cf. Church [1], pp. 140-141.
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Theorem The set of all connectives which can be defined from the primi-
tive set {~, &, -•} is the set of all connectives which can be used to form an
s - n sublogic and which contain a connective of the 2-valued S.C.

Proof: ~, &, and -» can be used to form a n s - w sublogic and contain a
connective of the 2-valued S.C. Assume C(p!, ..., pn) a,naD(qlf..., qm) satisfy
the two properties. Then ~C(pl9..., &,), C(pu...,pn) & D(ql9...,qm) and
C(pi, --">Pt)-*D{qu ...,#O T)also do. In order to prove the converse,consider
the followingrc'adic connectives: pγ &...&&*_!->pn, pι & ...& pn-2 -* Pn-ivpn,
• 9 Pi -* P2 v... v pn, pi v... v pn. The first one has the property that it takes the
value w iff />!,..., A*-i all take a significant value and pn takes the value n. In
general, the &'th one takes the value n iff pl9..., pn_k all take significant
values and pn-k+n •••» Pn a ^ take the value n. By permuting the p{'s in each of
the above and forming all possible conjunctions, using &, one obtains a set
Δ of connectives which is such that each "connective" of s - n logic, with
the property that if s is substituted for each variable then the value 5
results, is represented, with the exception of a connective taking significant
values only. It remains to construct connectives which exhaust the two
possibilities 1 and 0 in the cases where, in the s - n logic, s appears.
Consider the example, C(ply ••.,/>„) € Δ, where C(pl9 ..., pn) takes the value n
iff ρl9..., pk all take significant values and pk+1,..., pn all take the value n.
This will be a particular connective taking certain values, 1 or 0, where it
takes a significant value. Form the following: (Spγ &...& Spk & ~Spk+ι &
...&~Spn-*C(pί,...,pn))&(Tpl&...&Tpn->(tplor1pι)) & (Γp1&...& Tpn^ &
FPn — (tίi or ipd) & (Tpx &...& Tpn.γ & ~S/>Λ - (Xp1 or f^)) &...& (^Sp1 &
... & ~S/>W -* (tpi or f£i)), so that any conjunction implying Spλ &...& Spk &
~SPk+i &...& ̂ 5p w is omitted. By considering all possible cases of tp and
\p in the indicated positions, all connectives having the same 5 - n logic
connective as C(pι,..., pn) can be constructed. All connectives taking
significant values only can be constructed as follows: (T/)1&...& Tpn—>
(tpλ or f£χ)) & (Tp! &... & Tpn-i & Fpn -> (tp! or 1px)) &...& ( - S ^ &...&
~Spn—> (tp! or f/>i)), which gives all possible significant values for each
substitution into the variables />i,..., pn. Hence all connectives which can be
used to form a n s - w sublogic and which contain a 2-valued connective of
the sentential calculus can be constructed.

Theorem The connectives ~, &, and —> are independent.

Proof: (i) Let A(p) be defined in terms of & and —» only. If p has the value
1 then Δ(p) has the value 1. Hence ~ is not definable.
(ii) Let Δ(/>, q) be defined in terms of ~ and & only. If p and q both take
the value n then A(p, a) takes the value n and —* is not definable.
(iii) Let A(p, q) be defined in terms of ~ and —> only. If p takes a significant
value and q takes the value n then, for Δ(/>, q) to take the value w, Δ(£, #)
must have the form A —» £ , preceded by a finite number of ~'s, where A
takes a significant value and 5 the value n. B must also have this form,
provided B has an —>. Repeating this, a single variable q, with or without
~'s, is obtained on the extreme right. However, if q takes a significant
value, Δ(/>, a) will be significant. Hence & is not definable.
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The axiomatisation of S3 is similar to that of SΊ andS2. One adds the
definitions, TA =Df ~ (A -> ~(A -> A)) a n d i v ΰ =Df ((A — B) -> B) & ((B —
A)—»A), and the axioms for —% deleting the ones for T and v in S2.
The Deduction Theorems for D and Completeness Theorems can then be
shown for the sentential and predicate systems.

6 The system S4 containing the 2-υalued connectives of S.C. Goddard and
Routley, in [5], deal with a system whose connectives are all those which
contain the 2-valued connectives of S.C, although initially it was given as
two systems instead of one, they not realizing that they were identical. The
connective that needs to be added to S3 is >̂, given by the matrix:

3 I 1 0 n

1 1 0 n
0 1 1 1
w i l l

(p D q' can be read as 'If it is true that/) then q\ where (p ^> q' takes the
value of q if p is true and takes the value 1 otherwise. (p ^> q' is partly
metatheoretic in that truth is involved. Also ^ is a stronger implication
than the —> of system S3 in that/) -»#—>. p D q is valid in S4. As will be
shown in the next section, D can be used to restrict the range of quantifica-
tion for the quantifier A.

The systemS4is a significance-preserving system in that if C(pu ->,pn)
is a connective of S4 and the p{ all take significant values then C(pι,..>,pn)
takes a significant value and if A(x) takes significant values for all x then
(Δx)A(x) and (Sx)A(x) take a significant value. This applies equally to the
previous systems but S4 contains all such connectives.

Note that, using ~, &, and D only, one can define -* as follows:

TA =D/~(A => -(A Z) A)).
FA =Df T ~A.
SA =Df TAvFA.

A — B=Όj [~FAvSB ^ (A D B)] & [FA & ~SB => (A & 5)].

Hence, let S4 have the primitive set {~, &, D, A, S}.

Theorem T ^ set of all connectives which can be defined from the primi-
tive set{~, &, z>} z5 the set of all connectives ivhich contain a connective of
the 2-valued S.C.

Proof: ~, &, and 3 all contain a connective of the 2-valued S.C. and this
extends to all connectives definable in terms of them. To prove the con-
verse, consider Γ(/>i, ...,/>«), an arbitrary classical connective, and form
the following: (Sp^.^Sz Spn^ Γ(pu ..., pn)) & (Tp λ &...& ~Spn => (t/>χ or f^)
or Γ(/>!, ..., />J) &...& (~Spχ &...& -S/)w 3 ( t^ or f/>x) or Γ(/>1? ...,/>„)).

The three possibilities Xpu ipu and Γ(pl9..., pn) allows one to insert 1,
0, and n, respectively, in each of the positions given by the conjunctions.
This gives all the connectives containing the 2-valued part of T(pu ..., pn).
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Since T(plf ..., pn) is classical, all 2-valued sentential calculus connectives

can be represented and hence the theorem follows.

Theorem The connectives ~, &, and 3 are independent.

Proof: (i) ~ is not definable from &, and 3, as for S3.
(ii) 3 is not definable from ~ and &, as for S3.
(iii) Let A(p, q) be defined in terms of ~ and 3 only. It is not the case that
if p takes a significant value and q takes the value n then A(p, q) takes n and
if p takes n and q a significant value then Δ(/>, q) takes n. Hence & is not
definable.

The axiomatisation of S4 is obtained from S3 by adding the definitions,
TA=Df~(A Z) ~(A oA)),FA=DfT ~A, SA =DfTA vFA, A — B =Df[~FAvSB z>
(A => B)] & [FA & ~S£ => (A & £)] , deleting the definitions for TA and for 3
in S3, adding the axioms for 3 , and deleting the axioms for —>. The
Deduction and Completeness Theorems follow as before.

7 Γ/ze system S5, which is functionally complete All the connectives and
quantifiers, up to now, have had some intuitive appeal, in that there is some
interpretation that can be given them. As soon as one deals with connec-
tives which do not contain a 2-valued connective of S C. one introduces
counter-intuitive connectives, which fail Goddard's criterion ll(b). Routley,
in [8], defines the connective 0 as follows:

0
1 1
0 n
n 0

and uses the primitive set {~, 3>, S, 0} to provide a functionally complete
set of connectives. He shows that 0 is formally useful only. I will
introduce a connective Tn which will also serve the purpose and which can
be used to restrict quantification.

Although, as already pointed out, restricted variables are not always
necessary because of the type of quantification where variables are
automatically restricted to the significance ranges of their predicates,
there are many cases where they are necessary. Within the framework of
a general system with variables ranging over everything or over a wide
range, one may want to restrict the theory to a particular context. For
example, in a theory of sets or classes, one may want to restrict con-
sideration to ordinals, cardinals, integers, etc. To do this formally, one
has to restrict the quantifiers to the required class of things so that all the
original logical laws of the general system still hold in the restricted
system.

In the 3-valued predicate logic we must find similar connectives to the
3 and & of the 2-valued logic to restrict the variables. The 3-valued
connectives required are D and &, defined as follows:
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3 I 1 0 n & I 1 0 n

1 1 0 n 1 1 0 n
0 1 1 1 0 n n n
T z l l l n n n n

O' satisfies the property that if B(x) is true, B(x) => 0(#) is equivalent to
0(ΛΓ), and if B(x) is not true, B(x) 3 0(#) is true. For a particular #0, if
B(x0) ^ 0(ΛΓO) is true then the value of (Δx){B(x) ^ φ(x)), which is determined
from all the values of the B(x) ^ φ(x)9s, is the same whether B(x0) 3 φ(x0) is
considered in the valuation or not. So, whenever B(x) is not true, B(x) =>
φ(x) is ignored when assessing the value of (Δx)(B(x) z> φ(x)). Since there
must be at least one x such that B(x) is true, not all of the B(x) ^ φ(x)'s are
ignored. Hence, to evaluate (Δx)(B(x) ^> φ(x)), one only has to consider x's
such that B(x) is true and the values of φ{x) for these x's.

'&' satisfies the property that if B(x) is true, B(x) & φ(x) is equivalent
to 0W, and if B(x) is not true, B(x) & 0(#) is non-significant. For a
particular ΛΓ0, if B(x0) & 0(#o) is non-significant, then the value of (Sx)(B(x) &
φ(x)), which is determined from all the values of the B(x) & φ(x)'s, is the
same whether B(x0) & φ(x0) is_considered in the valuation or not. So,
whenever B(x) is not true, B(x) & φ(x) is ignored when assessing the value
of (Sx)(B(x) & φ(x)). Since there is at least one x such that B(x) is true, not
all of the B(x) & φ(x)'s are ignored. Hence, to evaluate (Sx)(B(x) & φ(x)),
one only has to consider the x's such that B(x) is true and the values of φ(x)
for these x's.

Since these properties uniquely determine the connectives =) and &,
these are the only connectives that can satisfactorily restrict variables
when the quantifiers A and S are used. It can be seen that if all variables
are restricted using a given predicate B(x) such that (Sx) B(x) is valid, then
all the valid wffs of the 3-valued predicate logic will be preserved.

Introduce the connective Tn, defined as follows:

1 1

0 n
n n

& and Tn are inter definable using D and &. TnA =Df A & (A D A); A & B =Df

TnA & B. Hence (Sx)φ(x) can be restricted using B(x);(Sx)(TnB(x) & φ(x)).

The following definitions can be given, using the primitive set,

{~, ^ , Tn}.

L4 =Df A^ A.

iA =of ~ tA.
nA =D/ Tw - tA.
TA =D/~(A=>fA).
FA =Df T ~ A.
A v 5 =Df (A 3 J5) D 5.
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A & B =Df ~ {~A v ~ 5).

A & £ =D/ (SA & SB 3 . A & B) & (~ SA v - SB 3 n A).

Theorem The set of all connectives which can be defined from the primi-

tive set {~, 3 , Tw} is functionally complete.

Proof: Form the following:

(Tpλ &... & Tpw D ( t ^ or f^ or n/O) & ( T ^ &... & T γ ^ & î />w D

(t/>! or f/>! or n/)i)) &. . .&(- S ^ & . . . & - S/?w =) ( t ^ or 1ρλ or n^i)).

There is one conjunct for every assignment of values to pu.. ,pn and by

inserting tρl91ρl9 or x\pι one can obtain every possible value for each

assignment. Hence all 3-valued connectives can be constructed.

Theorem The connectives ~ , D, and Tn are independent.

Proof: (i) If Δ(p) is defined using 3 and Tn only, then Δ(/>) takes the value 1

when p takes the value 1. Hence ~ is not definable.

(ii) 3 cannot be defined from monadic connectives alone.

(iii) If Δ(£) is defined using ~ and 3 only, then Δ(£) takes a significant value

when p takes the value 0. Hence Tn is not definable.

The axiomatisation, Deduction Theorem and Completeness Theorem

follow the same pattern as before.
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