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GENERALIZATION IN FIRST-ORDER LOGIC

HUGUES LEBLANC

Dealing initially with QC,, the standard quantificational calculus of
order one, I shall comment on a shortcoming, reported in 1956 by Montague
and Henkin [18], in Church's 1944 account [2] of a proof from hypotheses,
and sketch three ways of righting things.* The third, which exploits a trick
of Fitch's and for this reason will be called Fitch's account, is the simplest
of the three. I shall investigate it some, supplying fresh proof of UGT, the
Universal Generalization Theorem. The proof holds good, it will turn out,
as one passes from QC to QC*; the presupposition-free variant of QC.
Turning next to QC=, the standard quantificational calculus of order one
with identity, and to the presupposition-free variant QC2 of QC=, I shall
establish the lemmas needed there to obtain UGT. That given Fitch's
account of a proof from hypotheses UGT holds for QCί was argued in my
recent Truth-Value Semantics [14], but the argument is circular, as Robert
J. Cosgrove found out to my dismay.

The results submitted here are elementary, to be sure; but the dif-
ficulty that Montague and Henkin reported was quite a serious one, and
ways of meeting it accordingly deserve attention. The results, by the way,
are readily adapted to suit most (if not all) logics with quantifiers.

1.1 In most treatments of the calculus, QC has as its primitive signs:

(a) for each d from 0 on, aleph-zero predicate variables of degree d
(to be referred to by means of 'F**')1

(b) aleph-zero individual variables, say, 'x', 'y', (z', V , ζy", (z", etc.
(to be referred to by means of X and Y)

(c) the three logical operators: '~', ' ! ) ' , and 'V
(d) '(', <)', and ', ' .

1.2 It has as its formulas all finite sequences of primitive signs of QC

* Thanks are due to Robert J. Cosgrove, Michael J. Duffy, and Nyles McNally for reading and
spotting errors in an earlier draft of the paper.
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(said sequences to be referred to by means of Ά9, 'B9, and ζC'). And it has

as its well-formed formulas (wffs) all formulas of QC of any of the follow-

ing four sorts:

(i) Fd(Xί9 X2, . . ., Xd), where d > 0

(ii) ~A, in case A is a wff of QC

(iii) (A 3 B), in case A and B are wffs of QC2

(iv) (VX)A, in case A is a wff of QC.

1.3 Further, any wff of QC counts as a well-formed part of itself; A counts

as a well-formed part of the wffs ~A and (VX)A;A and B count as well-

formed parts of the wff A 3 B; and any well-formed part of a well-formed

part of a wff A counts as a well-formed part of A. An occurrence 0 of an

individual variable X of QC in a wff A of QC is said to be bound if 0 is in a

well-formed part of A of the sort (VX)B; 0 is said to be free in A if 0 is not

bound in A; and the variable X itself is said to occur free in A if at least

one occurrence of Xin A is free. And I shall refer by means of Ά(Y/xy to

A itself when at least one free occurrence of X in A is in a well-formed

part of A of the sort (VΫ)B, otherwise to the result of replacing every free

occurrence of X in A by an occurrence of F.

So much (at this point) for the primitive vocabulary and the grammar

of QC.

1.4 There are numerous axiomatizations of QC in the literature. An

especially serviceable one reckons as the axioms of QC all wffs of QC of

any of the following six sorts:

Al. A^(B^ A)

A2. (AΌ(B^ C)) 3 {(A => B) 3 U D C))

A3. (~A D ~B) 3 (5 3 A)

A4. (VJf) (AΏB)Ώ ((VX)A 3 (VX)£)

A5. A 3 (VX)A

A6. (VX)A 3 i4(r/A),

where in the fifth case X does not occur free in A.

1.5 Given some such axiomatization, the pre-1956 literature would gen-

erally3 own as a proof in QC from a finite set S of wffs of QC any column

Ax

A2

Ap

of wffs of QC such that, for each i from 1 through p: (i) Az belongs to S,

or (ii) Ai is an axiom of QC, or (iii) Ai is preceded by a wff Ag 3 Ai for

some g smaller than i9 in which case Ai is said to follow from Ag and

Ag 3 Ai by MP (= modus ponens), or (iv) Ai is of the sort (VJO^for some

ft smaller than i and some individual variable X of QC that does not occur

free in any member of S, in which case Ai is said to follow from A^ by UG
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(= Universal Generalization) and X is said to be {universally) generalized
upon.

A wff A of QC would then be declared (a) provable in QC from a finite
set S of wffs of QC if there is a proof φ in QC from S such that the last
entry in ψ is A, (b) provable in QC from an infinite set S of wffs of QC if A
is provable in QC from at least one finite subset of S, and (c) provable in
QC if A is provable in QC from 0.

1.6 The account stems from Church [2], and so will be called Church's
account of a proof from hypotheses.4' As mentioned in the introductory
paragraphs, it has a serious shortcoming. Indeed, Montague and Henkin
have shown in [18] that—given Church's account—the wff c{Vy) (g{y) 3 g(y))',
though a semantic consequence of the set {gO)}, is not provable in QC from
{g(y)}>5 So the following result, known of course as the Strong Complete-
ness Theorem for QC and in which (S h A' is to be understood as short for
Ά is provable in QC from S':

(A) If a wff A of QC is a semantic consequence of a set S of wffs of QC,
then S h A,

cannot be had in [2].

1.7 It is easy to spot, incidentally, where (current versions of) Henkin's
1949 proof of (A) would break down in [2].β Having constructed an infinite
array So, Sl9 S2, etc., of sets of wffs of QC, one goes on to show that Σ S,

1=0

is sure to be syntactically consistent if each one of So, SΊ, S2, etc., is; and
one does so by arguing that if Σ/ 5, were syntactically inconsistent, then so

1=0

would be some finite subset of £) S, , hence so would be some finite subset
1 = 0

of one of So, Su S2, etc., and hence so would be one of So, Sl9 S2, etc. Now
this last step appeals to a familiar result:

(B) If S h Af then Sr h A for any superset Sr of S,

which cannot be had in [2]. For proof, consider again the Montague-Henkin
wff '(V y) (g{y) D g(y))9. Given Church's account of a proof from hypotheses,
ζ(Vy)(g(y) ^ g(y)V is provable in QC (= provable in QC from 0). Yet, as
Montague and Henkin showed, the wff is not provable in QC from the super-
set {g(y)} of 0.

1.8 Now for three solutions to this difficulty.7

There is a new (and welcome) trend in logic writings: (1) using for
each type of variables one array of letters as bound variables and another
array as free variables, and (2) reserving the label 'variables' for the
letters that serve as bound variables and calling the other letters param-
eters.8

Under this convention, which I heed throughout the balance of the paper,
several changes must be brought to the preceding material:

first, clause (a), Section 1.1, must be edited to read
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(a) for each d from 0 on, aleph-zero predicate parameters of degree d
(to be referred to by means of cFd');

second, clause (b) must give way to the double clause
(bl) aleph-zero individual variables, say, 'x', 'y>, 'z', 'x", 'y'\ {z",

etc. (to be referred to by means of X and Y),
(b2) aleph-zero individual parameters, say, V, '&', 'c', (a", V , (c",

etc. (to be referred to by means of *P');
third, clause (i), Section 1.2, must be edited to read

(i) Fd(Pl9 P2, . . ., Pd), where d > 0;
fourth, clause (iv) must be edited to read

(iv) (VX)A, in case the result A(P/X) of putting an individual param-
eter P of QC everywhere for X in A is a wff of QC;9

fifth, Section 1.3, which deals with the well-formed parts of a wff and with
bound and free (occurrences of) individual variables, is needless;
sixth, the restriction on the individual variable X of axiom schema A5 (in
Section 1.4) is similarly needless; and
seventh, axiom schema A6 must be edited to read

A6. (VX)A DA(P/X).

1.9 Using two arrays of individual signs disposes of the Montague-Henkin
difficulty. First, draft the letter I to refer to the individual signs (i.e.,
the individual variables and the individual parameters) of QC; and then,
generalizing the Ά(P/X)' twice used in the preceding paragraph, draft
'[(A) (Γ/I)]' (when no ambiguity threatens: '[A(/'//)]', ({A) (Γ/l)', or plain
Ά(Γ/I)') to refer to the result of putting (individual sign) /' everywhere for
(individual sign) / in (formula) A. This done, edit clause (iv), Section 1.5,
as the distinction between variables and parameters requires:

(iv) Ai is of the sort (VX)[Ah(X/P)] for some h smaller than i and
some individual parameter P of QC that is foreign to each member
of S,10 in which case Aj is said to follow from Ah by UG and P to
be quasi-generalized upon; and the Montague-Henkin problem is
solved.

Proof that (B) holds true given this account of things can indeed be re-
trieved from [13], a text published some ten years after [18] and in which
I used only one array of individual signs but met the Montague-Henkin
difficulty in essentially the same manner as above.11

1.10 I have grown dissatisfied with the account, though. Deviating in this
from Church, I would rather characterize provability from sets of hypoth-
eses at a stroke rather than distinguish as [3] and [13] do between finite
sets and infinite ones. Unfortunately, if you delete the qualifier 'finite'
from the second line of 1.5, edit clause (iv) of 1.5 to read as in the previous
paragraph, and take a wff A of QC to be provable in QCfrom a set S (be S
finite or infinite) of wffs of QC if there is a proof ψ in QC from S such
that the last entry in ψ is A, then (B) no longer holds true. Indeed, a
slight adaptation of the Montague-Henkin argument in [18] will show that
'(Vy)(g(y) ^> g(y))9, though provable in QC from φ, is no longer provable
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from the infinite superset {#(#),#(&),#(c),#(αO,#W,^(cO, . . .} of 0.12

1.11 Another account, one which handles provability from hypotheses at a
stroke, can be retrieved from pp. 94-98 of [10], which—Kleene tells me—
were written up by 1942. Kleene's account is complicated, however, and
Montague and Henkin accordingly devised a substitute one, to which I
restrict myself.13 To quote almost verbatim from [18], "where <£ and®'
are columns of wffs of QC, call <S a subcolumn of<£' if and only if the wffs
of <£ appear among those of <£' in the same order which they have in <£. (It
is not required that two consecutive wffs in <£ appear consecutively in <£'.)"
Next, tailoring matters to suit the distinction drawn here between variables
and parameters, you understand

1. by a proof in QC any finite column <£ of wffs of QC such that, for any
wff A in <£, A is an axiom of QC, or follows by MP from two earlier entries
in <£, or follows by UG (reading as in 1.5) from an earlier entry in <£, and

2. by a proof in QC from a set S of wffs of QC any finite column <£ of
wffs of QC such that, for any wff A in <£, A belongs to S, or is an axiom
of QC, or follows by MP from two earlier wffs in <£, or is of the sort
(VX) [B{X/P)\ where B is the last entry in a subcolumn of <£ that qualifies
as a proof in QC.

A wff A of QC is then declared provable in QCfrom a set S of wffs of QC if
there is a proof P̂ in QC from S such that A is the last entry in φ.

That (B) holds true given this second account of things is immediately
evident.

1.12 As for Fitch's account, it stems from [5], a paper published in 1948
and hence antedating [18] by eight years. (Fitch, by the way, was unaware
in 1948 of the difficulty eventually reported by Montague and Henkin,14 and
the latter were unaware in 1956 of Fitch's paper.) The account, tailored
here to suit our distinction between variables and parameters, is of the
simplest. You identify the axioms of QC recursively, first declaring any
wff of QC of any of the sorts A1-A6, for example, an axiom of QC and
next declaring any wff of QC of the sort (VX) [A(x/P)] an axiom of QC if A
itself is one.15

You then acknowledge as a proof in QC from a set S of wffs of QC any
finite column <£ of wffs of QC such that, for any wff A in <$, A belongs to S,
or is an axiom of QC (in the sense just defined), or follows by MP from two
earlier entries in <£; and you declare a wff A of QC provable in QC from a
set S of wffs of QC if there is a proof ψ in QC from S such that A is the last
entry in^ . 1 6

That (B) holds true given this third account of things is immediately
evident.

1.13 Proof of (A), the Strong Completeness Theorem for QC, calls for a
number of lemmas besides (B). One of them is the Universal Generaliza-
tion Theorem mentioned in the introductory paragraph. It runs:

(C) If S \-A, then S h (VX)[A(X/P)], so long as X is foreign to A and P is
foreign to S,
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and helps to show that if any one of the sets So, Su S2, etc. (Section 1.7),
say set Sw, were syntactically inconsistent, then so would set Sw_! be.

That (C) holds true given Leblane's account of a proof from hypotheses
is immediately evident. That it holds true given Montague and Henkin's
account is shown in [18], pp. 133-134. And that it holds true given Fitch's
account readily follows from (3.7.12) on pp. 336-337 of [17].

As perusal of [13], [18], and [17] will show, further lemmas needed to
prove (A) and the various lemmas needed to prove the converse of (A):

(A') If S h A, where S is a set of wffs and A is a wff of QC, then A is a
semantic consequence of S, (= the Strong Soundness Theorem for QC)

all hold true given Leblanc's account, given Montague and Henkin's, and
given Fitch's. Each of our three accounts thus puts things to rights.

These preliminaries over with, I limit myself henceforth to Fitch's
account, and with an eye to further results prove (C) anew.

2 I first establish (C) for the case where X is foreign to S (= Theorem 1),
and obtain as a corollary that if A(P/X) is provable in QC, then (VX)A is
sure to be (= Theorem 2). With Theorem 1 on hand, I then establish (C) for
the general case (= Theorem 3). The resulting demonstration of (C) is
admittedly longer than that of (3.7.12) in [17]. But the portion of it that
yields Theorem 1 {and hence Theorem 2) does without axiom schema A6.
In the lemmas and theorems that follow 'S h i ' is to be understood as (A is
provable in QC from S (in Fitch's sense)', and 'K4' as (A is provable in QC
(in Fitch's sense)'.

Lemma 1 (a) If A is an axiom of QC, then so is A(Y/X)> so long as Y is
foreign to A.
(b) If A belongs to S or is an axiom of QC, then S \- A.
(c) If S \-A and S \- A ~D B, then S h B.
(d) If S \- A, then there is a finite subset Sf of S such that Sr H A.
(e)IfSh A, then Sf \- A for any superset S' of 5.
(f) IfS\- {VX) {A => B), then S H {VX)A D (VX)B.
(g) //S h {VX) (A D B) and S \- (VX)A, then S h (VX)B.
( h ) / / S h Ay then S h (VX)A, so long as X is foreign to A.

Proof: (a) Proof of A is by cases. It uses three easily verified facts:
(i) (~A)(Y/X) is the same as ~[A(Y/X)]; (ii) (A DB)(Y/X) is the same as
A(Y/X) D B(Y/X); (iii) ((VX)A)(Y/X) is the same as (VY)[A(Y/X)]; and
(iv) if A is a wff of QC, then so is A(Y/X), so long as Y is foreign to A.
(b)-(h) Proofs of these, when not immediate, are routine.

Lemma 2 Let X be foreign to S and to A. If there is a proof in QCfrom S
whose last entry is A, then there is one to which X is foreign.

Proof: Let the column made up of Blf B2, . . ., and Bp constitute a proof in
QC from S whose last entry is A, and let Y be an individual variable of QC
foreign to all of Bly B2, . . ., and Bp. (i) A routine induction shows that the
column made up of Bλ(Y/X), B2(Y/X)9 . . ., and Bp(Y/X) constitutes a proof
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in QC from S whose last entry is Bp{Y/X). For suppose B{ (1 ̂  i ^ p)
belongs to S. With X foreign to S, Bi(Y/X) is sure to be the same as B{ and
hence to belong to S. Or suppose B{ is an axiom of QC. With Y foreign to
Bi7 Bi(Y/X) is sure by Lemma l(a) to be an axiom of QC as well. Or
suppose Bi is the ponential of, say, Bg andJ3/>, where B^ isBg ^>Bi. Since
Bh(Y/X) and Bg(Y/X) D B{(Y/X) are the same, B{(Y/X) is sure to be the
ponential of Bg(Y/X) and Bh{Y/X). (ii) Since X is foreign to B^Y/X),
B2(Y/X)y . . ,9 and BP{Y/X), there is sure in view of (i) to be a proof in QC
from S whose last entry is Bp(Y/X) and to which X is foreign. But, with X
foreign to A (= Bp), BP(Y/X) is sure to be the same as Bp and hence as A.
Hence there is sure to be a proof in QC from S whose last entry is A and to
which X is foreign. Hence Lemma 2.

Theorem 1 Let X be foreign to S and A, and P be foreign to S. If S h A,
then S h (VX)[A(X/P)]. (UGT for QC, Special Case)

Proof: Suppose S \- A. Since X is foreign to 5 and A, there is sure by
Lemma 2 to be a proof in QC from S whose last entry is A and to which X
is foreign. Let the column made up of Bl9 B2, . . ., and Bp constitute then
such a proof. A routine induction shows that S I- (VX) [Bi(X/P)] (1 ̂  i < p),
and hence that S h (VX)[BP(X/P)] (= (VX)[A(X/P)]). For suppose that B{

belongs to S and hence by Lemma l(b) that S h Bi. Since X is foreign to JBf ,
S h (VX)Bi by Lemma l(h). But, with P foreign to S, B{ and B^iX/P) are
sure to be the same. Hence S H (VX)[Bi(X/P)]. Or suppose J5f is an axiom
of QC. Since X is foreign to B{, (VX)[Bi(X/P)] is sure to be well-formed,
and hence by the inductive clause in Fitch's account of an axiom of QC to
qualify as an axiom of QC. Hence 5 h (VX)[Bi(X/P)] by Lemma l(b). Or
suppose Bi is the ponential of, say, Bg and B^ where B^ is Bg D Bi. By the
hypothesis of the induction S h (VX) [Bg(X/P)] and S h (V-X) [{Bg z> ^(X/P)] .
But (VX)[(^ D β , )U/P)] and (VX)(Bg(X/P) D B^X/P)) are the same.
Hence S h (VJf)(5g(A/P) z> Bi{X/P)), and hence S h (VX) [5/U/P)], by
Lemma l(g).

Theorem 2 Let X be foreign to A. If h A, then \-(VX)[A(X/P)].

Proof by Theorem 1, with 0 serving as S.

The reader will have noticed that, as promised, the foregoing proof of
Theorem 1 (and hence that of Theorem 2) does without A6.

Lemma 3 h(VF) ((VX)A z> A(Y/X)).

Proof: Let P be an individual parameter of QC foreign to A. (VX)A D
A(P/X) counts as an axiom of QC. But, with (VY)((VX)A Ό A(Y/X)) pre-
sumed to be well-formed, (VY)[((VX)A z> A(P/X)) (Y/P)] is likewise sure to
be well-formed. Hence, by the inductive clause in Fitch's account of an
axiom of QC, (VY) [{(VX)A 3 A(P/X)) (Y/P)] counts as an axiom of QC. But,
with P foreign to A, ((VX)A D A(P/X))(Y/P) and (VX)A Ώ A(Y/X) are sure
to be the same. Hence {VY)((VX)A ^> A{Y/X)) counts as an axiom of QC.
Hence Lemma 3 by Lemma l(b).
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Lemma 4 Let Y be foreign to (VX)A. If S h (VX)A, then S h (VF) [A(F/X)].

Proo/: Suppose S h (VX)A. Then (VX)A is sure to be well-formed. But,
with (VX)A well-formed and F foreign to (VX)A} (VY)((VX)A ^A(Y/X)) is
likewise sure to be w e l l - f o r m e d . Hence \-(VY)((VX)A 3 A(F/X)) by
Lemma 3, hence \-(VY)(VX)A D (VF)|yl(F/X)] by Lemma l(f), and hence
S h (VY)(VX)A D (VF)[A(F/X)] by Lemma l(e). But, since S I- (VX)A
and F is foreign to (VX)A, S h (VY)(VX)A by Lemma l(h). Hence S h
(VF)|>(F/X)] by Lemma l(c). Hence Lemma 4.

Theorem 3 Let X be foreign to Ay and P be foreign to S. If S h A, then
S h (VX) [A(X/P)]. (UGT for QC, General Case)

Proof-. Suppose that S \- A, and hence by Lemma l(d) that Sr h A for some
finite subset Sτ of S; and let F be an individual variable of QC distinct from
X and foreign to 5' and A. Then 5' h (VF) [A(Y/P)] by Theorem 1, and
hence S h (VY)[A(Y/P)] by Lemma l(e). But, with X foreign to A and F
distinct from X, X is sure to be foreign to (VY)[A{Y/P)]. Hence S h
(VX) [(i4( F/P)) (X/F)] by Lemma 4. But, with F foreign to A, (A(F/P)) (X/Y)
and A(X/P) are sure to be the same. Hence S i- (VX) [A(X/P)]. Hence
Theorem 3.

The reader will have noticed that, though the proof of Lemma 3 resorts to
A6, that of Lemma 4 and hence that of Theorem 3 do not. They merely
presuppose that (VX){(VX)A 3 A(Y/X)), when well-formed, is provable in
QC. The point will prove crucial further on.17

A version of Theorem 2 and one of Theorem 3 can be had which are
closer to the interlim rule VI of Natural Deduction. Proof of Lemma 5 is
immediate.

Lemma 5 Let P be foreign to A. Then A and (A(P/X)) (X/P) are the same.

Theorem 4 (a) Let P be foreign to (VX)A. If v-A(P/X), then \-(VX)A.
(b) Let P be foreign to S and to (yX)A. If S h A(P/X), then S h (VX)A.
(VI for QC)

Proof: (a) Suppose \-A(P/X). Since X is f o r e i g n to A(P/X), h(VX)
[(A(P/X))(X/P)] by Theorem 2. But, being presumed to be foreign to
(VX)A9 P is sure to be foreign to A. Hence h(VX)A by Lemma 5. Hence (a),
(b) Proof like that of (a), but using Theorem 3 in lieu of Theorem 2.

The foregoing proof of Theorem 4(a), the reader will have noticed, does
without A6; and that of Theorem 4(b) merely presupposes that (VY)((VX)A 3
A(Y/X)), when well-formed, is provable in QC.

Now for QC*, the subcalculus of QC that grew out of [15] and [8], and
is commonly known as free logic (without identity). Space prevents me
from supplying a full-fledged semantics for QC*. From a model-theoretic
stance, suffice it to note that (i) 0 counts in QC* as a domain and (ii) when
the domain is non-empty, the individual parameters 'a9, 'b\ ςc\ etc., may
go in QC* without values.18 A Strong Soundness Theorem for QC* and (as
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established in [14], pp. 136-145) a Strong Completeness one can be had if
A6 in Section 1.8 is weakened to read

A6*. (VY)({VX)A^A(Y/X)),19

and the Commutation Law for Universal Quantifiers, to wit:

A 7*. (VX) (V7)Λ D (VF) (VX)A,

is adopted as an extra axiom schema.20

Wffs of QC* of the sort {VY)((VX)A D A(Y/X)), once made into axioms
of QC*, are sure of course to be provable in QC*. So, as announced in the
introductory paragraph, the foregoing demonstration of Theorem 3 (and
hence that of Theorem 4 as well) holds good for QC*; and, starring V to
signal that the calculus at issue is QC*, I conclude:

Theorem 5 (a) Let X be foreign to A, and P be foreign to S. If S h* A} then
S h* (VX)[A(X/P)l (UGTfor QC*)
(b) Let P be foreign to S and to (VX)A. If S h*A(p/X), then S h* (VX)A.
(Vΐ for QC*)

Fitch's account of a proof from hypotheses thus yields UGT (and VI) for
both QC and QC*.21

3'1 QC=, the (standard) quantificational calculus of order one with identity,
has the same primitive signs as QC, plus of course the identity predicate
'='. Its formulas are all finite sequences of primitive signs of QC=. Under
our convention regarding variables and parameters, its well-formed
formulas (wffs) are all formulas of the sort (i) in Section 1.8, plus all those
of the sort (P = P'),2 2 plus all those of either of the sorts (ii)-(iii) of
Section 1.2 (with *QC-' substituting there for 'QC'), plus all those of the
sort (iv) in 1.8 (with 'QC=' substituting there for 'QC'). And its atomic wffs
are all those of the sort (i) in 1.8, plus all those of the sort P = P' above.
(For brevity's sake I shall write '{A = B)' in lieu of (~{{A z> B) ̂ ~{B 3 A))',
and ((3X)A' in lieu of ζ~(VjQ~A'.)

Among the numerous axiomatizations of QC_, three—retouched to suit
the distinction between variables and parameters—rate mention at this
point. The oldest and best known of them would own as the axioms of QC=

all wffs of any of the sorts A1-A5 (in 1.4), plus all those of the sort A6
in 1.8, plus all those of the sort

P=P (1)

or the sort

P = P ' => (A^A(P'//P)), (2)

where A(P'//P) is like A except for exhibiting P f at zero or more places
where A exhibits P. Another, supplied by Tarski in [21], dispenses with
A6, uses in lieu of (1) the axiom schema

(3X)(X=P),
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and uses in lieu of (2) the axiom schema

P = P' D (A D AiP'/rP)), (3)

where (i) A is atomic and (ii) A(P''/\P) is like A except for exhibiting P'
at exactly one place where A exhibits P. 2 3 And yet another, exploiting a
suggestion of van Fraassen's,24 is like the second, but uses in lieu of (3) the
following two axiom schemata:

P = P' D (A z> A(Pr/P))

and

P =P' D (A(P!/P) -DA),

where in either case A is presumed to be atomic.25

Given any of these axiomatizations, the pre-1956 literature would
generally understand proofs from hypotheses in the manner of Church,26

which of course blocks the Strong Completeness Theorem for QC'=:

(D) If a wff A of QC= is a semantic consequence of a set S of wffs of QC=,
then S H A

Here as in QC things can be mended in at least three different ways:
Leblanc's way, Montague and Henkin's, and Fitch's. Opting again for
Fitch's, I shall acknowledge as the axioms of QC= all wffs of any of the
five sorts A1-A5 (Section 1.4), all those of any of the following three sorts:

Bl. (BX)(X = P),
B2. P =Pr D (A ΌA(P'/P)), where A is atomic,
B3. P =P' D (A(Pr/P) DP), where A is atomic,

and all those of the sort (VX)[A(X/P)], where A is an axiom of QC=; and
I shall understand proofs from hypotheses as in 1.12, paragraph 2 (with
ΌC = ' substituting there for 'QC').

Here as in QC my concern is with UGT, one of the main lemmas
needed to obtain (D). Following Tar ski's precedent in [22], I shall first
establish

P =P' D(A ΏA(P'/P))

for any wff A of QC=, atomic or not. Borrowing from [15] and [22],27 I shall
then establish

(3X) (X=P)Ό ((VX)A D A(P/X))9

and get therefrom the counterpart for QC= of Lemma 3 in II:

(vy)((vx)A=)A(r/x)).

Since the proof of Theorem 3 in II uses only Lemma 3 and axioms whose
counterparts for QC= are available here, the way will be clear for UGT.
Proofs of the other lemmas needed to obtain (D) will be found in [15],

In what follows I write 'h_' to signal that the calculus at issue is QC=.
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Lemma 6 (a) H=A 3 ((A 3 B) D 5).
(b) // H=A D B and h=B 3 C, /ftew K ^ 3 C.
(c) // h=A 3 (B 3 C), ffcew h = £ D (A 3 C).

(d) // h-=A 3 (5 D C) αrcd H=C 3 C , ίΛen h=A 3 (£ 3 C ) .
(e) // K=A 3 (B Ξ c), tfzen h=A D (5 D C) αrcd H=A D (C Z> B).
(f) // ϊ-=A Ώ ( B Ώ C) and h=A 3 (C 3 5), tfzen h-=A 3 (£ = C).
(g) // K=A 3 (B Ξ J5f) αwrf h=A D (C Ξ C ' ) , then \-=A D ((5 D C) = ( 5 ' z> Cr)).
(h) H = U ^ B)^ {~B D -A).
(i) // h = ~ 4 D J5, ί/zβn h=~JB D A.
(j) // Y-=A D (β Ξ C), ffcew h=Λ D (-5 Ξ ~C).

Proof: left to the reader.

Lemma 7 (a) if v-Jί{P/X) D B(P/X)y then h=(\/X)A D (VX)5, SO Z O ^ as P
is foreign to (VX)A and to (VX)B.
(b) // H=A D (VX) (5 D C), ί^βn h=A D ((VX)5 D (VX)C).

(c) // h=A =) (B(P/X) Z) C(P/X)), ίΛew H=A =) ((VX)5 D (VX)C), SO Zoag as P
is foreign to A, (VX)B, and {VX)C, and X is foreign to A.
(d) // \-=A D (B(P/X) = C(P/X)), then h=A Ώ ((VJQB = (VX)C), so long as P
and X are as in (c).
(e) h=(VX)(A D B) D ((3X)A D (3X)5).
(f) // H=A(P/X) D B(P/X), ίtew H=(3Jf)A => {3X)B, so long as P is foreign
to (3X)A and to (BX)B

(g) h=(3X)A D A.
(h) H=(3X) (A D B) D ((VX)A D 5), so Zorĉ  as X zs foreign to B.

Proof: (a) Suppose H J ( P A ] D B ( P / 4 and hence h=(A D 5)(P/X). Sup-
pose further that P is foreign to (VX)A and to (VX)J5, and hence to (VX) (A D
B) as well. Then h=(VX) (A 3 J5) by Theorem 4(a), and hence h=(VX)A D
(VX)β by Lemma l(f). Hence (a).

(b) Suppose h=A D (VX)(B D C). With (VX)(5 z> C) presumed here to be
well-formed, (VX) {B D C) => ((VX)JB D (VX*)C) is sure to be well-formed and
hence to count as an axiom of QC=. Hence h=(VX)(B D C) ^ ((VX)B D
(VX)C) by Lemma l(b). Hence h=A 3 ((VX)JB 3 (VX)C) by Lemma 6(b).
Hence (b).

(c) Suppose H=A D (JB(P/X) D C(P/X)), and hence h=A 3 {B D C)(P/X).
Suppose further that X is foreign to A. Then A and A(P/X) are the same,
and hence \-=A{P/X) D {B D C) (P/Of). Suppose finally that P is foreign
to A, (Vu )̂J5, and (VX)C. Then P is sure to be foreign to (VX)A and to
(VX)(B D C). Hence h-=(VZ)A D (VX)(S D C) by (a). But, with A presumed
here to be well-formed and with X foreign to A, A D (VX)A is sure to be
well-formed and hence to count as an axiom of QC=. Hence h_A D (VX)A
by Lemma l(b), hence h=A D {VX)(B => C) by Lemma 6(b), and hence
h=A => ((VJQB ^ (V^)C) by (b).

(d) Suppose \-=A D (B(P/X) = C(P/X)). Then h=A D (B(P/JQ D C(P/J!Q) by
Lemma 6(e). Suppose further that P is foreign to A, (VJQB, and (VJQC,
and X is foreign to A. Then h=A => ((VJQB D (VJQC). But by the same
reasoning and under the same assumptions \-~A D ((VJΓ)C 3 (VJΓ)B). Hence
h=A 3 ((VJQB = (VJQC) by Lemma 6(f).
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(e) Let P be an individual parameter of QC= foreign to (VX)(A D β ) and
to (VX)(~β z> ~A). h=(A(P/X) D B(P/X)) D (~[β(P/X)] D ~[A(P/X)]) by
Lemma 6(h). But (Λ(P/X) D £(P/-X)) => i~[B{P/X)] D ~[A(P/X)]) and
(A D #)(P/X) D (~β D ~A)(P/J£) are the same. Hence ι-=(A ΏB)(P/X) D
(~β D -A) (P/X), hence h=( VX) (A D #) D (V*) (-5 D ~A) by (a), and hence
!-=(VX)(A D β ) D ((VX)~5 D (VX)~A) by (b). But h((VX)~B D (VX)~A) D
((3J*0A D (3^)5) by Lemma 6(h). Hence (e) by Lemma 6(b).
(f) Suppose \-=A(P/X) D B(P/X), and hence h=(A Dβ)(P/X); suppose
further that P is foreign to (3X)A and to (3X)B, and hence to (VX)(A D β ) .
Then h=(VX)(A DJB) by Theorem 4(a). Hence h=(3X)A D (3X)β by (e) and
Lemma l(c). Hence (f).
(g) With (3X)A D A presumed here to be well-formed, ~A D (VX)~A is sure
to be well-formed and hence to count as an axiom of QC=. Hence h=~A D
(VZ)^A by Lemma l(b), and hence \-=(3X)A 3 A by Lemma 6(i).
(h) Let P be an individual parameter of QC= foreign to (VX)A and to
(VX) ((A D 5 ) D β). h= A(P/X) D ((A(P/X) D 5(P/X)) D β(P/JSΓ)) by Lemma
6(a). But (A(P/X) D B(P/X)) D β(P/X) and ((A D β) D β) (P/x) are the
same. Hence h=A(P/X) => ((A D 5) D B)(P/X), and hence h=(VX)A D
(VX)((A ^ B)ΏB) by (a). But h=(VX)((A D 5 ) D β) D ((3X) (A D J5) D
(3X)β) by (e). Hence h=(VX)A D ((3X)(A D B) Ώ (3X)B) by Lemma 6(b),
and hence \-=(3X){A Ώ B) ^ ((VX)A D (3X)J5) by Lemma 6(c). Suppose
further that Jί i s foreign to β. Since B is presumed here to be well-formed,
(3X)B D 5 is sure to be well-formed, and hence h=(3X)B D 5 b y (g). Hence
(h) by Lemma 6(d).

Lemma 8 (a) h=P = Pr Ό (A = A(P'/P)).
(b) H=P = P r D (A D A(P'/P)).
(c) h=P = P' D (A(P/^) D i4(Pf/-X)), so long as P is foreign to A.

Proof: (a) Proof of (a) is by mathematical induction on the number n of
logical operators in A.
Basis: n = 0, in which case A is atomic. Then P = P* ^> (A ^> A(Pr/P)) and
p = p' D (A(P'/P) 3 A), being presumed here to be well-formed, count as
axioms of QC=. Hence (a) by Lemma l(b) and Lemma 6(f).
Inductive Step: n > 0.
Case 1: A is a negation ~β, and hence A(Pr/P) is (~β)(P'/P).
h = P = P f D (J5 = B(Pf/P)) by the hypothesis of the induction, and hence

h = P = p> D ( ĵ5 = ~[β(p'/p)]) by Lemma 6(j). But ^[β(P'/P)] and (~β)(P'/P)
are the same. Hence h = p = P' D (-5 Ξ (~β) (Pf/P)).
Case ^: A is a conditional B D C, and hence A(P'/P) is (J5 =) C)(P'/P).
h JP = P f D (β = β(P f/P)) and h-=P = P f D (C = C(P'/P)) by the hypothesis
of the induction, and hence h=P = P' D ((β =) C) = (B(P'/P) D C(Pf/P))) by
Lemma 6(g). But B(P'/P) D C(P'/P) and (β D C)(P'/P) are the same.
Hence h = P = P' D ((β D C) = (β D C ) ( P 7 P ) ) .

Case 3: A is a quantification (VX)β, and hence A(P'/P) is ((VX)β)(PVP).
Let P" be an individual parameter of QC= distinct from each of P andP',
and foreign to (VA)β. h = P = P f D (B(P"/X) = (β(P'7X)) (P'/P)) by the
hypothesis of the induction. But, with P" distinct from each of P and P',
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(B(Pn/X))(P'/P) and (B(P'/P))(P"/X) are the same. Hence h=P = P' D
(B(P"/X) = (B{P'/P))(Pn/X)). But P" is sure to be foreign to P = Pf,
{VX)B, and (VX)[B(P'/P)], and X is of course foreign to P = P'. Hence
H=P = P ' D ((VX)J5 Ξ (VA) [£(P'/P)]) by Lemma 7(d). But (VX)[B(P'/P)]
and ({VX)B){P'/P) are the same. Hence \-=P = P' D ((VX)£ S ((VX)£) (P'/P)).
(b) By (a) and Lemma 6(e).
(c) h = P = P' z> (A(P/X) D (A(P/X)) (P'/P)) by (b). Now suppose P to be
foreign to A. Then (A(P/X)) (P'/P) and A(Pf/X) are sure to be the same.
Hence (c).

Lemma 9 (a) h=(3X) (X = P) => ((VX)A D A(P/X)).
(b) h=(VF) (3X) (X = F) D (VF) {(VX)A D A(F/X)).

Proof: (a) Let P' be an individual parameter of QC= distinct from P and
foreign to (VX)A. h=P=Pr D (A(P'/A) D A(P/X)) by Lemma 8(c). But, with
P' distinct from P and foreign to {VX)A (and hence to A), Pr = P and
(X= P)(P'/X) are sure to be the same, and so are A(P'/X) 3 A(P/X) and
U => A(P/X))(Pf/X). Hence h=(X = P)(P'/X) z> (A z> A(P/X))(P'/X), and
hence h= (3X) (X = P) D (3A) U D A(P/X)) by Lemma 7(f). But, as X is
foreign to A(P/X), \-=(3X){A D A(P/A)) Z> ((VX)A D A(P/X)) by Lemma
7(h). Hence (a) by Lemma 6(b).
(b) Let P be an individual parameter of QC= foreign to A. H=(3X) {X = P) ^
((VX)A D A(P/X)) by (a). But, with (VF) (3X) (X = F) presumed here to be
well-formed, F is sure to be distinct from X, and hence (3X) (X = P) and
((3X)(X = Y))(P/Y) to be the same. Hence h=((3X)(X = Y))(P/Y) =>
((VX)A D A(P/X)). But, with (VY)((VX)A D A(F/X)) presumed here to be
well-formed, F is sure to be foreign to A, and hence (VX)A ^> A(P/X) and
((VX)A ^ A(Y/X))(P/Y) to be the same. Hence \-={(3X)(X = Y))(P/Y) D
((VX)A D A(Y/X))(P/Y). But, being foreign to A, P is sure to be foreign
to (VY)(3X)(X = F) and to (VF)((VX)A z> A{Y/X)). Hence (b) by Lemma
7(a).

Lemma 10 (a) \-JVY)(3X) (X = F).
(b) K ( V 7 ) ( ( V I M D A ( 7 / I ) ) .

Proof: (a) Let P be an individual parameter of QC= {3X)(X = P) counts
as an axiom of QC=. Hence h=(3X)(X = P) by Lemma l(b). But, with
(VF) (3X) (X = Y) presumed here to be well-formed, F is sure to be distinct
from X, and hence (3X)(X = P) and ((3X)(X = Y))(P/Y) to be the same.
Hence h=((3X)(X= Y)){P/Y), and hence (a) by Theorem 4(a). (b) By (a),
Lemma 9(b), and Lemma l(c).

Hence:

Theorem 6 (a) Let X be foreign to A, and P be foreign to S. If S H_ A, then
S h= (VX) [A(X/P)]. (UGT for QC=).
(b) Let P be foreign to S and to (VX)A. If S \-=A(P/X), then S ϊ-={\fX)A.
(VI/orQCj.

Proof: (a) Proof like that of Theorem 3, but using Lemma 10(b) in lieu
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of Lemma 3. (b) Proof like that of Theorem 4(b), but using (a) in lieu of
Theorem 3.

The reader will have noticed that, though the proof of Lemma 10(a) resorts
to Bl, that of Lemma 10(b) and hence that of Theorem 6 do not. They
merely presuppose that (VY)(3X)(X = Y), when well-formed, is provable
in QC=.28

Now for QC*, the presupposition-free quantificational calculus of order
one with identity, and proof there of UGT. A Strong Soundness Theorem for
QC* and (as established in [14], pp. 146-149) a Strong Completeness one
can be had if Bl (p. 844) is weakened to read

Bl*. (VY)(3X){X = Y),

and the Law of Reflexivity for '=', to wit:

£4*. P= P

is adopted as an extra axiom schema.29

Wffs of QC*; of the sort (VY)(3X)(X = Γ), once made into axioms of
QC*, are sure to be provable in QC*. So the foregoing demonstration of
Theorem 6 holds good for QC*; and, writing 'i-*' to signal that the calculus
at issue here is QC'ί, I conclude:

Theorem 7 (a) Let X be foreign to A, and P be foreign to S. If S h* A,
then S h* (VX)[A(X/P)l (UGT for QC*).
(b) Let P be foreign to S and to (VX)A. If S h* A(P/X), then S h* (VX)A.
(VI for QC*).

Fitch's account of a proof from hypotheses thus yields UGT (and Vt) for
QC* as well as for QC=,30 and the error detected by Cosgrove in [14] stands
corrected.31

4 The results in Section 2 hold mutatis mutandis for most logics with
quantifiers. Consider, for example, QC2, the quantificational calculus of
order two. QC2 has as its primitive signs the signs of (bl)-(b2) in Section
1.8, plus those of (c)-(d) in 1.1, plus for each d from 0 on aleph-zero
predicate variables and aleph-zero predicate parameters of degree d.
Predicate variables of degree d are referred to by means of Ψd\ individual
variables by means of (X\ variables in general (i.e., predicate variables
and individual ones) by means of ζV, and parameters in general (i.e.,
predicate parameters and individual ones) by means of *P9. [(A)(P/V)] is
to be the result of putting P everywhere for V in A, where (i) in case V is a
predicate variable, P is a predicate parameter of the same degree as V,
and (ii) in case V is an individual variable, P is an individual parameter;
and [(A)(V/J?)] is to be understood in a like manner, but with 'P' and ζV9

interchanged throughout.
The formulas of QC2 are all finite sequences of primitive signs of QC2.

Its wffs are all formulas of QC2 of the sort (i) in 1.8, plus all those of
either of the sorts (ii)-(iii) in 1.2 (with 'QC2' there for 'QC'), plus all those
of the sort (VF)A, where for some parameter P of QC2A(P/V) is a wff of
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QC2. And its axioms are all those of the sorts A1-A3 in 1.4, plus all those
of the sorts

Bl2. (VV) (A => J3) D ((V7)A D (VV)B)
B22. A D (VV)A
B32. (yV)A D A(P/F),

/>ZMS all those of the sort

B42. (3F^ (VXJ (VXa). . . (V^)(F^χ,X 2 , . . .,X£ = A),

where the predicate variable F* is foreign to A,32
 />ZMS all those of the sort

(VV)[A(V/P)], where A is an axiom of QC2.
Given Fitch's account of a proof from hypotheses, the counterparts for

QC2 of Lemmas 1-2 in 2 clearly hold true. So we may conclude as in 2:

Theorem 8 Let V be foreign to S and A, and P be foreign to S. If S > A,
thenS f- {yv)[A{V/P)].

But the counterparts for QC2 of Lemmas 3-4 also hold true, the counterpart
of Lemma 3 reading

KW)((vvμDi4(vyv)),

where V and V are either two predicate variables of the same degree or
two individual variables, and A(Vf/V) is the result of putting Vr everywhere
for V in A; and the counterpart of Lemma 4 reading

If S h {\fV)A, then S h (VF') [A(V'/V)]9 so long as V is foreign to
(Vy)i4, where 7, V, and A(V'/V) are as for Lemma 3.

So we may conclude as in 2:

Theorem 9 Let V be foreign to A, and P be foreign to S. If S \-A, then
S h(VV)[A(V/P)]. (UGT for QC2).

Since the proof of Theorem 9 merely presupposes that (W)((VF)A D
My'/V)), when well-formed, is provable in QC2, the theorem is also sure
to hold true for the presupposition-free variant QC* of QC2, a calculus
gotten from QC2 by dropping axiom schema B32 in favor of

B3t (VF')((W)A DA(V'/V)),

dropping axiom schema B42, and adopting the Commutation Law for
Universal Quantifiers

B5*. (VV)(VV')A D (W)(W)A

as an extra axiom schema. So,

Theorem 10 Let V be foreign to A, and P be foreign to S. If S ι- A, then
S h* (VV)[A(V/P)]. (UGT/or QC2*).

5 Appendix
5.1 To accommodate the many who have no access to [13], I supply proof
of (B) for QC given Leblanc's account of a proof from hypotheses. I
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understand [(A)(Jί/Ii)] as in 1.9, and—generalizing matters—understand
[(A)(Jί,/ί, . . .,/y/i,/,, . . .,/,)] as [([(Λ) W,/i, . li-i/Iuh, . Λ - i ) ] ) « /
4j)]. For the occasion 'S HA' is of course short for Ά is provable in QC
from S(in Leblanc's sense)'.

Lemma 11 Let S be finite. If S h A, then S u{β} h A.

Proof: Suppose S h A; let the column made up of Al9 A2, . . ., and Ap
constitute a proof in QC from S whose last entry is A; let Pl9 P 2, . . ., and
Pk{k ^ 0) be all the individual parameters of QC that are quasi-generalized
upon in the column in question and occur in B; let P[9 P2, . . ., and P'k be
k individual parameters of QC that are distinct from Pl9 P2, . . ., and Pk

and are foreign to Al9 A2, . . ., Ap, and S U {B}; and let Xl9 X2, . . ., and Xk

be k individual variables of QC foreign to Al9 A29 . . ., and Ap. Then the
column

1 AAPLPi, . . .,PL/Pi,P29 . . .,Pύ
2A2(P[9P29 . . .,Pj[/Pi,Pa, . . .,Pk)

PAP(P'19P29 . . .,Pi/PuPa, . ..,Pύ
p+1 (VXk)[Ap(P[9Pi . . .tPί-MPuP* - . ,A)] (UG, />)
/>+2 ( V ^ . ^ ί V ^ μ ^ P L P ^ , . . .,PUfXk-uXk/Pi,P* . . v ^ ) ] (UG, p+1)

p+k {VXMVXJ . . . {VXύ[Apfrl9X2, . . . ^ P Λ . , ^ ) ] (UG,, #+*-l)
£+£+1 ί + ^ D (VX2)(VX3). . . (VXk)[Ap(X2,X39 . . .,Xk/P29P39 . . . Λ ) ] (Λ )̂
P+k+2 (VX2)(VX3). . . (V^)[^(X 2 ,X 3 , . . .9Xk/P29P39 . . .,P^)]

(MP, p+k, p+k+1)

p+k+Z p+k+2 => (V^3)(VX4). . . (VXk)[Ap(X39Xt, . . .9Xk/P39P*9 . . . Λ ) ] (Aff)

/>+fe+4 (VX3)(V^4). .(VXk)[Ap(X3,X4, . . , V P 3 , ^ 4 , Λ ) 1
(MP, /)+ife+2, p+k+3)

P+Sk-2 (VX^[Ap(Xk/P0] (MP, />+3fe-4, />+3fe-3)
/>+3fe-l /)+3fe-2 D A p (A6)

p+3k Ap (MP, />+3fe-2, £+3fc-l)

is sure to constitute a proof in QC from S U {j3} with Ap (= A) as its last
entry. For suppose A'ι (1 ^i ^p) belongs to S. Since Pl9 P29 . . ., and Pk

are quasi-generalized upon in the original proof, they are sure to be
foreign to S and hence toA^. So A $(PJ, P£, . . .9Pί/Pl9P2, . . .9Pk) is sure
to be the same as A ,̂ and hence to belong to S. Or suppose Ai is an axiom
of QC. Then by the same argument as on pp. 33-35 in [14] A, (Pί,P2,. . .,P&/
Pi, P 2, . . ., Pj) is sure to be an axiom of QC. Or suppose A/ follows
from Ag and A^ by MP, and hence A ,̂ say, is of the sort Ag D Ai;. Since
AH{P[9P29 . . .9Pίι/Pί9P29 . . .9Pk) and Agj(Pl9P29 . . .9P'k/Pl9P29 . . .9Pk) D
i4XPί,Pί,. . ,Pi/Pi,P2,. . , ^ ) are the same, A^P^Pi . . .,Pi/Pi,P2,. . Λ )
is sure to follow from Ag{P[9P^9. . .9Pypl9P29. . .,P^) and Ah(Pl9P'29 . . .,P^/
Pi>P2? -9Pk) by MP. Or suppose A, follows from A/, by UG, and hence is
of the sort (VX) [AApζ/P)] for some individual parameter P of QC foreign
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to S; and suppose first that P is foreign to B. Since {(VX)[Ah(X/P)])
(PI,Pi, . . .9P{/Pl9P29 . . .,Pk) and (VX)[(Ah(P[,Pi, . . .9Pl/Pl9P29 . . .,Pk))
(X/P)] are the same and since P is sure to be foreign to 5 U {B},
Ai(P[,Pl, . . .,Pί/Pl9P2, . . .,Pk) is sure to follow from Ah(P'l9Pi, . . .,P}J
Pi,P 2 , . . ,Pk) by UG. Suppose next that P occurs in B, and hence is
one of Pl9 P2, . . ., and Ph9 say Ph Since ((^X)[Ah(X/Pj)])(P'l9Pi . . .,PA'/
P»P2, Pk) and (V-X)[(AA(Pί,Pί, . . .,P'k/Pl9P2, . . .,PA))(X/P/)] are
the same, and since—P/ being sure to be foreign to S U {B}—(VX)
[<Ah(Pl,PL, • , W Λ .,P*))(*/P/)] follows from i4A(P{,Pί, .,H/
Pi,Pz, Pk) by UG, ((VJ0UΛ(X/P/)])(Pί,Pί, .,-Pi/ΛΛ, • .,**) is
sure to follow from Ah(P[,P'2, . . .,P!k/Pl9P2, . . .9P,k) by UG. Hence S U
{B} h A.

Theorem 11 //S H i , then S' hAfor any superset S* of S.

Proof: Let S' be an arbitrary superset of S. Case 1: S' is finite, and hence
is of the sort S U {Bl9B2, . . .,£„} for some ft larger than 0. Then S is sure
to be finite as well, and hence Theorem 11 by n applications of Lemma 11.
Case 2.1: Sr is infinite, but S is finite. Then Theorem 11 by definition.
Case 2.2: Both Sr and S are infinite. Suppose S \- A. Then by definition
S" h A for some finite subset S" of S. But S" is bound to be a finite subset
of 5' as well. Hence S' h A by definition.

5.2 I next establish that wffs of QC* of the sort (VX) (VF)A D (VF) (IVJT)A
are provable in QCί (given the axiomatization of QCί in 3 and Fitch's
account of a proof from hypotheses). The result follows of course from
the Completeness Theorem in [14], but because of the difficulties attending
(VX) (VF)A D (VF) (VX)A in QC and QC*, the demonstration that follows may
be welcome. For brevity's sake I write '(A &E)' in lieu of '~(A D ~B)\

Lemma 12 (a) If hg A D (J5 D C) and h i A' >̂ (C 3 C'), ^ ^ h ί A => (Λf D

(B 3 CO).
(b) // hg A D (5 D (C D C')), ίAβw h i (B & C) D (Λ 3 C').
(c) // h | (A &£) D (C 3 C ) , ίΛβw h | C 3 (A 3 (5 3 C')).
(d) // h* A(P/X) D (B D C(P/Jf)), «ίβn h i (VX)A D (5 D (VX)C), SO tow g
as (i) P is foreign to (VX)Λ, 5 , and (VX)C, a/^ (ii) X is foreign to B.
(e) // h ί A(P/X) ^{B^{C D Cf(P/X))), ίΛew h | (VJJΓ)Λ 3 (5 3 (C 3 (VX)C')),
so /ow^ as (i) P is foreign to (VX)A, B, C, and (VX)C, and (ii) X is foreign
to B and C.
(f) h*(VF)[A(F/X)]3(VX)A
(g) // h* A D (VF)[£(F/J*O], ffcen h* A 3 (VX)JB.
(h) // h | A 3 (5 3 (VF)[C(F/X)]), then h | A 3 (B 3 (VX)C).

Proof: (a)-(c) Proofs left to the reader.
(d) Suppose h±A(P/X) 3 (5 D C(P/Y)), suppose P is as in (i), and suppose
X is as in (ii). Then h i B 3 (A(P/X) 3 C{P/X)) by Lemma 6(c), hence
h ί B 3 ((VX)A 3 (VX)C) by Lemma 7(c), and hence h i (VX)A 3 (B 3 (VX)C)
by Lemma 6(c).
(e) Suppose h i A(P/J0 3 (B 3 (C 3 C'(P/X))), suppose P is as in (i), and
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suppose X is as in (ii). Then h i (B & C) D (A(P/X) => C'(P/X)) by (b), hence
h* (5 & C) 3 ((VX)A D (VX)C') by Lemma 7(c), and hence hi (VX)A D (£ D
(C D(VX)C'))by(c).
(f) In Case X and F are the same, proof of (f) is routine. So suppose X and
F are distinct from each other. Then (VX)((VF)[A(F/X)] => (A(F/X))(X/F))
is sure to be well-formed. Hence hi (VX)((VF)[>1(F/X)] D (A(Y/X))(X/Y))
by Lemma 10(b), hence hi (VX) ((VY)[A(Y/X)] ΏA), and hence h i (VT)
[A(F/X)] D (VX)A by Lemma l(f).
(g) Proof by Lemma 12(g) and Lemma 6(b).
(h) Proof by Lemma 12(g) and Lemma 6(d).

Theorem 12 h* (VX) (VY)A D (VF) (VX)A.

Proof: Let P and P f be individual parameters of QCl* distinct from each
other and foreign to (VX) {VY)A, and let Z be an individual variable of QCi
foreign to (VX) (VF)A hi (3X) (X = P) 3 ((VX) (VY)A D ((VF)A) (P/X)) by
Lemma 9(a), and hence h i (3X)(X = P) D ((VX)(VF>1 Z> (VF)[A(P/X)]).
Similarly, h i ( 3 F ) ( F = P') D ((VF)[A(P/X)] => (A(P/X)) (P'/F)) by Lemma
9(a), and hence h*(3F)(F = P') D ((VY)[A(P/X)] D (A(P'/F))(P/X)). SO,
hί (3X) (* = P) D ((3F) (F = P') D ((VX) (VF)Λ D (A(P'/F)) (P/X))) by Lemma
12(a), hence h i ((BX)(X = Z))(P/Z) D ((3F)(F = P') D ((VX)(VF)Λ D
(μ(P'/F))(Z/X))(P/Z))), and hence h* (VZ)(3X)(X = Z) D ((3F)(F = P') D
((VfX)(VF)A ^ (V Z) [(A(P'/F)) (Z/X)])) by Lemma 12(e). But, since (V\Z)
(3X) (X = Z) counts as an axiom of QC'*, hi (V\Z) (3X) (X = Z) by Lemma l(b).
Hence hi (3F)(F = Pr) Ώ((VX)(VY)A D (VZ)[(A(Pf/Y))(Z/X)]) by Lemma
l(c), hence hi (3F) (F = P') D ((VX) (VF)Λ D (VX) [A(P;/F)]) by Lemma 12(h),
hence h* ((3Y)(Y = Z))(P'/Z) => ((VX)(VF)A D ((VX)[A(Z/F)]) (P'/Z)), and
hence h* (VZ) (3Y) (Y = Z) D ((VX)(VFM D (VZ)(VY)[A(Z/F)]) by Lemma
12(d). But, since (VZ)(3Y)(Y = Z) counts as an axiom of QC£, hi (VZ)
(3Y)(Y = Z) by Lemma l(b). Hence hi (VX)(VY)A D (VZ)(VX)[A(Z/F)]

by Lemma l(c), hence h i (VX)(VY)A D (VZ) [((VX)A) (Z/F)], and hence
h i (VX)(VF)A D (VF)(VX)A by Lemma 12(g).

NOTES

1. Predicate variables of degree 0 are of course statement variables.

2. When no ambiguity threatens, I shall write VI D B* in lieu of '04 3 B)\

3. Generally, but not without fail: the Kleene account [10] appeared in 1952.

4. See p. 45 of [2]. Church limits himself there to the case where S is finite. However, in [3],
p. 310, he takes a wff A of QC2 (the quantificational calculus of order two) to be provable
in QC2 from an infinite set S of wffs of QC2 if A is provable in QC2 from a finite subset of S.
So the account in the text is close enough to Church's intentions to be attributed to Church.

5. Their proof, retouched to suit our axiomatization of QC, is of utmost simplicity. Tq, each
wff A of QC assign a value v(A) as follows: (a) in case A is of the sort (i) in 1.2, υ(A) = 1;
(b) in case A is of the sort ~B, υ(A) = 1 - υ(B); (c) in case A is of the sort B D C, υ(A) = 1 if
v(B) = 0 or v(Q = 1, otherwise υ{A) = 0; (d) in case A is of the sort (\/X)B and X is distinct
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from V or foreign to B, v(A) = v(B), otherwise υ{A) = 0. A routine induction shows that if
the column

A,
A2

Ap

constitutes a proof in QC from a finite set S of wffs of the sort (i) in 1.2 and *y' occurs free in
at least one member of S, then υ{A{) = 1 for each i from 1 through p. (Note in particular that,
with V occurring free in at least one member of S, no entry in the column that follows from
an earlier entry by UG can be of the sort (Vy)B.) But υ(XVy)(g(y) D g(y)Y) = 0. So there
can be no proof in QC from {g(y)} with '(Vy)(g<» D g(y)Y as its last entry.)

6. For a recent version of Henkin's proof, see [17], pp. 285-293. The original version is of
course in [7].

7. Church's account in [3] of a proof in QC from a finite set of wffs of QC differs from that in
[2]. Using three extra rules of inference (Alphabetic Change of Bound Variables, Substitution
for Individual Variables, and Substitution for Predicate Variables), it yields (B) for finite S
and S' (= *362 on pp. 199-200). It is, however, too intricate for review here.

In some presentations of QC only closed wffs (i.e., only wffs in which there occur no
free individual variables) can count as axioms, only proofs from sets of closed wffs can count
as proofs, and hence only closed wffs are provable (be it from φ or from a non-empty set of
wffs). In such presentations the Montague-Henkin difficulty does not arise, and an account
of a proof from hypotheses for which (B) (and, as a corollary of Henkin's proof, (A)) holds
true is easily had: adopt the axioms in either edition of [19] as your axioms and drop (iv)
of 1.5. However, open wffs matter as much—I believe—as closed ones, and the presentations
of QC considered here strike me as unduly restricted.

8. Meyer and I used this terminology in [16] in connection with individual variables, and I have
since used it regularly in connection with all types of variables.

9. Under the present wording of clause (iv), identical quantifiers can no longer overlap in a
wff of QC. So, for example, when a conditional of the sort A 3 (\/X)A is well-formed, the
individual variable X is sure to be foreign to the antecedent A, a point to bear in mind when
coming to change number six.

10. Henceforth I shall abridge 'foreign to each member of 5' as 'foreign to S\

11. The proof, tailored to suit the present context, is reproduced in the Appendix (5).

12. Let v(A) be defined as in Note 5 (but with clause (i) understood as in 1.8 rather than 1.2).
A routine induction will show that if the column

Λx

A2

Ap

constitutes a proof in QC from {g(a), g(b), g(c), g(a'), g(b'), g(c'),. . .}, then υ(Aj) = 1 for
each i from 1 through p. (Note in particular that, with each individual parameter of QC
occurring in {g(a), g(b), g(c), g(a), g(b'), g(c'),. . .}, no entry in the column can follow from
an earlier entry by UG.) But vC(Vy)(g(y) ^ g(y)Y) = 0, as before. Hence the conclusion in
the text.
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13. In [11], a 1967 publication of Kleene's, simplifications are brought to the account in [10],
but the Montague-Henkin account still remains the easier one.

14. And remained unaware of it until the writer brought it to his attention in the early sixties.

15. Or, as [ 17] has it on p. 328, declaring any wff of QC of the sort (yX)A an axiom of QC if,
for some individual parameter P of QC foreign to <yX)A, A(P/X) is an axiom of QC. The
two characterizations amount to the same. For suppose, on one hand, that A(P/X) is an
axiom of QC, and hence by the characterization in the text that so is (\/X)[(A(P/X))(X/P)].
If P is foreign to (VX)A and hence to A, then (A(PIX))(X/P) and A are sure to be the same,
and hence (ytX)A is sure to be an axiom of QC (as the characterization in [17] would have
it). Suppose, on the other hand, that A is an axiom of QC. With A and (\/X)[A(X/P)]
both presumed here to be well-formed, X is sure to be foreign to A, and hence A and
(A(X/P))(P/X) have to be the same. So (A(X/P))(P/X) is sure to be an axiom of QC, and
hence by the characterization in [17] (\/X)[A(X/P)] is sure to be one as well (as the charac-
terization in the text would have it).

16. In Montague and Henkin's account and in Fitch's I implicitly take a wff A of QC to be
provable in QC if A is provable in QC from φ. Fitch in [5] merely deals with provability and
the calculus he is concerned with is a modal extension of QC. But the account owes enough
to Fitch to be credited to him.

17. The reader will also have noticed that the above proof of UGT makes no use of axiom
schemata A1-A3, and hence holds no matter one's axiom schemata for '~' and 'D\ It thus
holds for a variety of first-order quantificational calculi.

18. A semantics for QC* of the truth-value sort will be found in [14], pp. 135-136, and one of
the model-theoretic sort can be gotten from [24]. The model-theoretic semantics in [16] is
slightly defective, as Shipley established in [20], and the correction offered in [14], p. 161,
footnote 62, will not do the trick.

19. So far as I know, A6* made its first appearance in [12]. Though axiomatizations of QC*
(see the end of 3) go back to 1959, the first axiomatization of QC* is probably to be found
in [12].

20. In [16] Meyer and 1 assumed without further ado that (VX)(VY)A D (VY)(VX)A was
provable in QC*. However, Trew questioned this in [23], and as all attempts to prove the
Commutation Law in question have so far failed, we now incline to think with Trew that
A7* is independent. The reader will recall the difficulties that Quine experienced with
(VX)(VY)A D (VY)(VX)A in [ 19]. With the closure ( ) [A] of a wff A defined as in the 1940
edition of [19], he could not prove ( )[(VX)(VY)A D (VY)(\fX)A} and hence adopted it as
an extra axiom schema. Fitch showed in 1941 that proof of ( ) [(\/X)(VY)A D (\/Y)(VX)A)
can be had if the definition of ( ) [̂ 4] is amended; and, using yet another definition of ( ) [A ],
so did Berry the very same year (see [4] and [1]). However, whether given Quine's original
notion of a closure ( ) [(\/X)(VY)A D (VY)(\/X)A] is independent in [19] and, in particular,
whether (VX)(\/Y)A D (VY)(\/X)A itself is remain open questions.

21. The point made in Note 17 regarding Al-A3 holds here as in QC.

22. When no ambiguity threatens, I shall write Ψ = P'* in lieu of \P - P')\

23. Tarski had an additional axiom schema: (VX)A D A, but Kalish and Montague showed it
redundant in [9]. Note that, as Tarski uses but one run of individual variables, X may occur
free in the consequent of his axiom schema.

24. The suggestion was in a letter than van Fraassen wrote to the author in early 1966.

25. That P = P is provable in QC_ given the last two axiomatizations will be shown in Note 28.
The proof there is essentially Tarski's in [22].
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26. As would much of the post-1956 literature: surprisingly enough, the Montague-Henkin paper
received little notice. There are exceptions, of course: [10] among pre-1956 publications and
[13] among post-1956 ones.

27. That (3Z)(AΓ = Y) D ((VX)A D Λ(Y/X)) follows from X = Y D (A D A(JIXX)) (and
(\/X)A D A) was announced in [21 ], a 1951 abstract, but proof of the fact was supplied only
in [22], a 1965 paper. I was unaware of [21] when I offered proof of (3X)(X = P) D
((VX)A D A(P/X)) from P = P' D (A D A(P'/P)) in [15], a 1959 paper, and Tarski was of
course unaware of [ 15] when he elaborated [21 ] into [22].

28. Unlike the proof of Theorem 3, that of Theorem 6 makes recourse to A1-A3. This could of
course be avoided by drafting, say, (VY)((yX)A D A(Y/X)) as an extra axiom schema, but
the resulting axiomatization of QC would be of little interest.

That P = P is provable in QC_ (given our axiomatization of QC_ earlier in 3 or its Tarski
forebear) can be shown as follows. Let P' be an individual parameter of QC_ distinct from P.
h=P' = P 3 (P' = P 3 P = P) by Lemma l(b); hence hj*' =PDP = Pby routine steps; hence
h = (X = P)(Pf/X) 3(P = P)(P'/X); hence h = (3Z)(Z = P) D (3X)(P = P) by Lemma 7(f); and
hence h = (3X)(X = P) DP = P by Lemma 7(g) and Lemma 6(b). (That (3X)(X = P)DP = P
is provable in QC_, and provable in QC_ without recourse to Bl, will be recalled in Note 30.)
But H= (3X)(X = P) by Lemma l(b). Hence H=P = P by Lemma l(c).

29. It is easily seen that B4*, shown in Note 28 to be provable in QC_, is independent of
A1Ά5, Bl*, and B2-B3. Let v(P = P) = 0 for any individual parameter P of QC*; let v(A) = 1
for any other atomic wff A of QCf; let υ(~A) = 1 - υ(A); let ι/G4 D 5 ) = l unless υ(A) = 1 and
y(2?) = 0, in which case υ(A D B) = 0; and let ι>((VX)̂ 4) = 1. As the reader may wish to verify,
wffs of QC* of any of the sorts A1-A5, Bl*, and B2-B3 all evaluate to 1; wffs of the sort
B4*, on the other hand, evaluate to 0. (For further comments on B4*, see Note 30). And,
adapting an argument of Ermanno A. Bencivenga, it is easily seen that Bl* is independent of
A1-A5, B2-B3, and B4*. First, by a Bencivenga sequence for QC* understand any (infinite)
sequence of the sort <ΣX, Σ 2, Σ 3 , . . .>, where Σu Σ2, Σ3, etc., are (possibly empty) sets of
individual parameters of QC*. Then, Seq being a Bencivenga sequence for QC*, take P = P to
be true on Seq for any individual parameter P of QC±; take any other atomic wff of QC*. to be
false on Seq; take ~A to be true on Seq if and only if A is false on Seq; take A 3 B to be true
on Seq if and only if A is false on Seq or B is true on Seq; and take (\/X)A to be true on Seq
if and only if (i) A(P/X) is true on Seq for every memberP of Σί in case X is V, (ii) A(P/X)
is true on 5eί? for every member P of Σ 2 in case X is '>>', (iii) A(P/X) is true on 5*ê  for every
member P of Σ 3 in case X is V, etc. As the reader may wish to verify, wffs of QC* of any of
the sorts A1-A5, B2-B3, and B4* are all true on any Bencivenga sequence in which Σt is
non-empty but Σ 2 is; wffs of the sort Bl*, on the other hand, are false on any such sequence.

30. The reader will notice that the proof of Theorem 7 makes no use of B4*, which was drafted
as an axiom schema of QC*. only for completeness' sake. Under an alternative treatment of
identity P = P could be weakened to read P = P D (3X)(X = P). Since (3XXX = P)DP = P
is already provable in QC* (see Note 28), one would obtain (3X)(X = P)=P = P, the counter-
part in QC* of a familiar theorem of Principia Mathematica.

31. The error occurs in the proof of ΓJ.J.iJ, which presupposes (VY)((VX)A D A(Y/X)) and yet
is used to prove (V7)((\/X)A D A(Y/X)) in T5.3.16.

32. B42 is of course the Axiom of Comprehension. The axiomatization of QC2 used here stems
from [7].
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