Notre Dame Journal of Formal Logic Volume XX, Number 4, October 1979 NDJFAM

MODELS OF AN EXTENSION OF THE THEORY ORD

NICHOLAS J. de LILLO

In [1], the first-order theory **ORD** was introduced as a concrete example of a theory in which the proof-theoretic concepts of implicit and explicit definability can be illustrated. Here, we use the concept of implicit definability as a means of constructing a conservative extension of certain first-order theories. The construction is then applied to **ORD** to yield a conservative extension **ORD***. It is then shown that, under certain closure conditions on the domain A of any of the underlying models of **ORD***, A is (up to isomorphism) an ordinal. Thus, in this sense, **ORD*** is a formal characterization of ordinal numbers in first-order logic.

1 The axioms of **ORD** and **ORD**^{*} As was described in [1], **ORD** is a first-order theory with equality, with the four binary relation symbols \approx , \subseteq , and ϵ representing the only extra-logical symbols in its alphabet. The axiom set Γ_0 for **ORD** consists of the universal closures of the following ten wffs:

 $\begin{array}{ll} (O_1) & \left[(x \subseteq y) \land (y \subseteq z) \right] \rightarrow (x \subseteq z) \\ (O_2) & \sim (x \subseteq x) \\ (O_3) & (x \subseteq y) \rightarrow \sim (y \subseteq x) \\ (O_4) & (x \subseteq y) \lor (y \subseteq x) \lor (x \approx y) \\ (O_5) & (x \subseteq y) \longleftrightarrow \left\{ \left[(\forall z) \left[(z \subseteq x) \rightarrow (z \subseteq y) \right] \land \sim (x \approx y) \right] \lor (x \approx y) \right\} \\ (O_6) & \left[(x \approx y) \land (z \approx u) \right] \rightarrow \left[(x \subseteq z) \rightarrow (y \subseteq u) \right] \\ (O_7) & \left[(x \approx y) \land (z \approx u) \right] \rightarrow \left[(x \subseteq z) \rightarrow (y \subseteq u) \right] \\ (O_8) & \left[(x \approx y) \land (z \approx u) \right] \rightarrow \left[(x \approx z) \rightarrow (y \approx u) \right] \\ (O_9) & (x \subseteq x) \\ (O_{10}) & (x \approx x). \end{array}$

Let Γ'_0 be the set of six sentences $(O'_1)-(O'_6)$ obtained from Γ_0 by systematically replacing each occurrence of the symbol \subset in (O_1) through (O_6) by an occurrence of the symbol ϵ . Thus, for instance, (O'_1) is the universal closure of the wff $[(x \epsilon y) \land (y \epsilon z)] \rightarrow (x \epsilon z)$. Further, let **ORD*** be the theory whose non-logical axioms are $\Gamma_0 \cup \Gamma'_0$. Clearly, **ORD*** is a first-order extension of **ORD**.

Received February 17, 1977

2 Basic assumptions and key definitions By an interpretation of the theory ORD* (resp. ORD) we mean a relational system of the form $\mathfrak{A} = \langle A; R_1, R_2, R_3, R_4 \rangle$ (resp. $\mathfrak{A} = \langle A; R_1, R_2, R_3 \rangle$) where A is some class, called the *domain* of the interpretation, and where R_1, R_2, R_3, R_4 are certain subclasses of ordered pairs of elements of A which give meaning in \mathfrak{A} to the respective symbols $\approx, \subseteq, \subseteq$, and ϵ in the usual model-theoretic sense. It will be assumed that the discussion of interpretations of ORD* or ORD is to be conducted in any of the usual formulations of the meta-theory of classes, such as those of Gödel [2] or Kelley-Morse [3], [6]. In any of these, a class is defined to be a set if it is a member of some class, while those classes which are not sets are called *proper classes*. It is then always the case that an element of the domain A of any such interpretation is a set, and never a proper class.

We will only consider interpretations of the extra-logical members of the alphabet of **ORD*** in which \approx is interpreted as identity relative to the domain of the underlying relational system. Thus, if \mathfrak{A} is a relational system interpreting the theory **ORD***, and if A represents the domain of \mathfrak{A} , then for any wff of **ORD*** of the form $(x \approx y)$, we have that $\mathfrak{A} \models (x \approx y)$ if and only if x and y are interpreted in \mathfrak{A} to be the same element of A.

As a consequence of Theorems I and II of [1], and from soundness, it suffices to consider only reducts of models of **ORD*** which take the form $\mathfrak{A} = \langle A; R \rangle$, where A is some class, and where R is a binary relation defined on A interpreting ϵ . The notion of the reduct of a relational system and its relation to syntactic definability is discussed in [4].

Let A be any class. Then A is well-founded if A satisfies Gödel's Axiom D [2]; thus A is well-founded if every non-empty subclass A' of A contains an element x such that $x \cap A' = \emptyset$. If $\mathfrak{A} = \langle A; R \rangle$ is any model of **ORD***, then define \mathfrak{A} to be well-founded if its domain A is well-founded. $\mathfrak{A} = \langle A; R \rangle$ is *R*-transitive if for all a, b, $c \in A$, $\langle a, b \rangle \in R$ and $\langle b, c \rangle \in R$ imply $\langle a, c \rangle \in R$, and \mathfrak{A} is an ϵ -model of **ORD*** if R is of the form ϵ_A , the membership relation restricted to members of A. We will call \mathfrak{A} a standard model of **ORD*** if \mathfrak{A} is an ϵ_A -transitive ϵ -model of **ORD***. The class A is extensional if for every a, $a' \in A$, if $a \neq a'$, then $a \cap A \neq a' \cap A$; the system \mathfrak{A} is then called extensional if its domain A is extensional.

It follows immediately that any standard model of **ORD*** is an extensional model of **ORD***, since in this case $a = a \cap A$ for every $a \in A$. If $\mathfrak{A} = \langle A; \epsilon_A \rangle$ is a relational system (and not necessarily a model of **ORD***) where A is some class of ordinals, then \mathfrak{A} is always extensional, but not necessarily ϵ_A -transitive.

Let $\mathfrak{A} = \langle A; R \rangle$ be any relational system, with R a binary relation, and let $a \in A$. By the *R*-segment of a we mean the class $seg_R(a)$ of all $x \in A$ such that $\langle x, a \rangle \in R$. For any subclass A' of A, by an *initial element* of A' we mean any $a' \in A'$ such that $seg_R(a')$ contains no element of A'. It is then clear that if \mathfrak{A} is well-founded, every non-empty subclass of A must contain an initial element. In the Gödel or Kelly-Morse formulations of the metatheory of classes, any of the models of **ORD*** are extensional and wellfounded. We will, nevertheless, maintain this terminology in the theorems to be stated and proven in the sequel. A class A is defined to be an *ordinal* if A is ϵ_A -transitive, and if each member of A is ϵ_A -transitive. As usual, O_n will denote the class of all ordinals which are sets. A well-known result is that A is an ordinal iff $A = O_n$ (in case A is a proper class) or $A \epsilon O_n$ (in case A is a set). For details, see [5]. Further, two systems $\mathfrak{A} = \langle A; R \rangle$ and $\overline{\mathfrak{A}} = \langle \overline{A}; \overline{R} \rangle$ are *isomorphic* if there is a 1-1 map Φ of A onto \overline{A} such that, for all $a, a' \epsilon A$, $\langle a, a' \rangle \epsilon R$ if and only if $\langle \Phi(a), \Phi(a') \rangle \epsilon \overline{R}$.

3 A proof-theoretic result involving implicit definability In this section, we introduce a construction of an extension of a theory T which imitates a construction of [9], except that in [9] the formal definition of the new symbol is presented as an additional non-logical axiom. In our construction, no new axioms are introduced; rather, we demand that the new symbol be implicitly definable in terms of those present in at least one non-logical axiom of T. We intend to ultimately apply these results to the theories ORD and ORD*.

Let **T** be a first-order theory with equality whose non-logical axioms are the set of sentences denoted by Γ_0 . Let P, P_1 , P_2 , ... be the relation symbols of the alphabet of **T** which occur in at least one member of Γ_0 . Let P' be some relation symbol having the same number of places as P, and not appearing in any member of Γ_0 . Let Γ'_0 be the result of replacing P' for each occurrence of P in each sentence of Γ_0 in which P appears, and let **T'** be the first-order extension of **T** whose non-logical axioms are given by $\Gamma_0 \cup \Gamma'_0$. Then P is *implicitly definable* in **T** if

$$|_{\overline{T'}} (\forall x_1) (\forall x_2) \dots (\forall x_n) [P(x_1, x_2, \dots, x_n) \leftrightarrow P'(x_1, x_2, \dots, x_n)], \quad (3.1)$$

and T' is called an *extension of* T *by implicit definition.* From section 1 and [1], it follows that **ORD*** is an extension of **ORD** by implicit definition.

Let U be any wff of T'. We define a wff $\pi(U)$ of T by examining the appropriate of the following cases:

1. if P does not occur in U, then $\pi(U) = U$

2. if P does occur in U, then $\pi(U)$ is the result of replacing each atomic part of U of the form $P(\mu_1, \mu_2, \ldots, \mu_n)$ by $P'(\mu_1, \mu_2, \ldots, \mu_n)$ where $\mu_1, \mu_2, \ldots, \mu_n$ are any terms of **T**.

 $\pi(U)$ is called the *projection* of U into (the formulas of) **T**. Note also that for any wff U of **T'**, we have $\pi^2(U) = \pi(U)$.

If x is a variable symbol and μ a term, then $U\begin{pmatrix}x\\\mu\end{pmatrix}$ is defined as the wff of **T'** obtained from U by replacing each free occurrence of x in U by μ , whenever μ is free for x in U; otherwise, $U\begin{pmatrix}x\\\mu\end{pmatrix}$ is defined to be U.

Lemma 1 For any wffs U, V of T', and x any variable symbol,

- (a) $\pi(\sim U) = \sim \pi(U)$
- (b) $\pi(U \rightarrow V) = \pi(U) \rightarrow \pi(V)$
- (c) $\pi((\forall x) U) = (\forall x)\pi(U)$.

Proof: by induction on the complexity of U.

Lemma 2 Let U be any wff of **T'**, x any variable symbol, μ any term. Then $\pi\left(U\begin{pmatrix}x\\\mu\end{pmatrix}\right) = (\pi(U))\begin{pmatrix}x\\\mu\end{pmatrix}$.

Proof: by induction on the complexity of U.

Lemma 3 $\downarrow_{\overline{\mathbf{T}'}}(U \leftrightarrow \pi(U))$ for any wff U of $\mathbf{T'}$.

Proof: by induction on the complexity of U, using (3.1) and Lemma 1.

Theorem 1 Let T' be an extension of T by implicit definition. Then T' is a conservative extension of T.

Proof: It suffices to show $\mid_{\overline{\mathbf{T}}} \pi(U)$ for every wff U of \mathbf{T} such that $\mid_{\overline{\mathbf{T}'}} U$. Since $\mid_{\overline{\mathbf{T}'}} U$, there is a finite sequence U_1, U_2, \ldots, U_n of wffs of $\mathbf{T'}$ such that $U_n = U$ and for each $i, 1 \le i \le n, U_i$ is either an axiom, or for some $1 \le j$, k < i, we have $U_k = U_j \rightarrow U_i$, or $U_i = (\forall x)U_j$. We will prove the result by induction on i.

(i) Suppose U_i is an axiom. We then examine the only three possibilities:

Case 1. If U_i is a purely logical axiom, the result $\models_{\overline{T}} \pi(U_i)$ follows immediately from Lemmas 1-3.

Case 2. If U_i is any member of Γ_0 , the result holds trivially, because in this case U_i is the same as $\pi(U_i)$.

Case 3. If U_i is any member of Γ'_0 , it follows from Lemma 3 and *modus* ponens that $|_{\overline{T'}} \pi(U_i)$. But according to the definition of Γ'_0 and that of $\pi(U_i)$, it follows that if U_i is any one of the elements of Γ'_0 , then $\pi(U_i)$ is the corresponding member of Γ_0 . It then follows that $|_{\overline{T}} \pi(U_i)$.

(ii) Suppose $U_k = U_j \to U_i$, and suppose $|_{\overline{T'}} U_i$, where $1 \le j, k \le i$. Since $|_{\overline{T'}} U_i$, we also get $|_{\overline{T'}} U_k$, *i.e.*, $|_{\overline{T'}} (U_j \to U_i)$, and $|_{\overline{T'}} U_j$. By inductive hypothesis, it follows that $|_{\overline{T}} \pi(U_i \to U_i)$ and $|_{\overline{T}} \pi(U_i)$ by modus ponens.

(iii) Suppose $|_{\overline{T'}}U_i$, where $U_i = (\forall x)U_j$ for j < i. By inductive hypothesis, $|_{\overline{T}}\pi(U_j)$ since $|_{\overline{T'}}U_j$. It then follows, by use of generalization in **T**, that if x is any variable symbol, then $|_{\overline{T}}(\forall x)\pi(U_j)$. By Lemma 1c, we also get $|_{\overline{T}}\pi((\forall x)U_j)$, i.e., we get $|_{\overline{T}}\pi(U_i)$. This completes the induction, and hence completes the proof of Theorem 1.

Corollary **ORD*** is a conservative extension of **ORD**.

Proof: By Theorem II of [1], **ORD*** is an extension of **ORD** by implicit definition.

In the case of extending ORD to ORD* by implicit definition, the projection $\pi(U)$ of any wff U of ORD* is defined relatively simply, due to the simplicity of the underlying alphabet. Since there are no constant or function symbols present in the alphabets of ORD and ORD*, the only terms available are variable symbols. In particular, Lemmas 2 and 3 are much

more easily stated in the case of **ORD** and **ORD*** than in the general case. Further, in the general case, it should be noted that in extending T to T' by implicit definition, no new constant or function symbols emerge. Thus the terms available from the alphabet of T' is the same as that of T.

4 Model-theoretic results The theorems in this section yield the result that, up to isomorphism, all extensional well-founded models of **ORD*** such that every element whose R-segment is a set, are ordinals with the membership relation. Thus, given the extensionality, well-foundedness, and the set-closure property on the R-segments on the domains of any of its models, **ORD*** produces a formal characterization of ordinal numbers.

Theorem 2 If $\mathfrak{A} = \langle A; \epsilon_A \rangle$ is any standard model of **ORD***, then $A \epsilon O_n$ or $A = O_n$.

Proof: Let $\mathfrak{A} = \langle A; \epsilon_A \rangle$ be a standard model of **ORD***. Then A is ϵ_A -transitive; further $\mathfrak{A} \models (O'_1)$. It then follows that every element of A is ϵ_A -transitive. Hence, A is an ordinal; thus $A \in O_n$ or $A = O_n$.

Theorem 3 Let $\mathfrak{A} = \langle A; R \rangle$ be an extensional well-founded model of ORD^* , and suppose that for every $a \in A$, $\mathsf{seg}_R(a)$ is a set. Then there exists a standard model $\overline{\mathfrak{A}} = \langle \overline{A}; \epsilon_A \rangle$ of ORD^* such that \mathfrak{A} and $\overline{\mathfrak{A}}$ are isomorphic.

Proof: Define \overline{A} as the range of the Mostowski-Shepherdson map Φ applied to A (see [7], [8] for details). Indeed, for every $a \in A$, $\Phi(a) = \Phi''(seg_R(a))$.

Corollary Let $\mathfrak{A} = \langle A; R \rangle$, $\mathfrak{A}' = \langle A'; R' \rangle$ be extensional well-founded models of **ORD*** such that for each $a \in A$ and $a' \in A'$, $seg_{R'}(a')$ are sets. If A, A' have the same cardinality, then \mathfrak{A} and \mathfrak{A}' are isomorphic.

The proof of Theorem 3 requires the construction of the Mostowski-Shepherdson map Φ . This is done by defining Φ by means of transfinite recursion, which cannot be applied unless $\operatorname{seg}_R(a)$ is known to be a set for each $a \in A$. When this is so, it is then possible to give each $a \in A$ a uniquely determined ordinal rank, and the recursive definition of Φ proceeds with this notion of rank. If A is a set, then the additional hypothesis that $\operatorname{seg}_R(a)$ is a set is redundant, since in this case $\operatorname{seg}_R(a)$ would then be a subclass of the set A, which by Aussonderungs would make $\operatorname{seg}_R(a)$ a set. Further, if \mathfrak{A} is an ϵ -model of **ORD***, then $\operatorname{seg}_R(a)$ is a set even if A is a proper class, for in this case $\operatorname{seg}_R(a) = a \cap A$, from which $\operatorname{seg}_R(a) \subseteq a$, again making $\operatorname{seg}_R(a)$ a set.

5 Concluding remarks It seems plausible to expect that the construction of **T'** from **T** could be conducted in systems of logic other than that of the classical first-order predicate calculus. As a matter of fact, the construction seems likely to take place, with appropriate adjustments, in first-order intuitionistic logic, and in the infinitary logic $L_{\omega_{1},\omega}$. Formal characterizations of ordinals in such logics might be pursued with some assurance of success.

The main thrust of having ORD* as a conservative extension of ORD is that the move upward from ORD to ORD* was not too drastic in any purely proof-theoretic sense; indeed, any formula using the alphabet of ORD which is a theorem of ORD* is already a theorem of ORD.

REFERENCES

- DeLillo, N. J., "A formal characterization of ordinal numbers," Notre Dame Journal of Formal Logic, vol. XIV (1973), pp. 397-400.
- [2] Gödel, K., The Consistency of the Axiom of Choice and of the Generalized Continuum-Hypothesis with the Axioms of Set Theory, Annals of Mathematics Studies No. 3, Princeton University Press, Princeton, New Jersey, 1940.
- [3] Kelley, J. L., General Topology, D. Van Nostrand Co., Princeton, New Jersey, 1955.
- [4] Kochen, S. B., "Topics in the theory of definition," in *The Theory of Models*, eds., J. W. Addison, L. Henkin, and A. Tarski, North-Holland, Amsterdam, 1965, pp. 170-176.
- [5] Monk, J. D., Introduction to Set Theory, McGraw-Hill, New York, 1969.
- [6] Mostowski, A., Constructible Sets with Applications, North-Holland, Amsterdam, 1969.
- [7] Mostowski, A., "An undecidable arithmetical statement," Fundamenta Mathematicae, vol. XXXXI (1949), pp. 143-164.
- [8] Shepherdson, J. C., "Inner models for set theory-part I," The Journal of Symbolic Logic, vol. 16 (1951), pp. 161-190.
- [9] Shoenfield, J. R., Mathematical Logic, Addison-Wesley, Reading, Massachusetts, 1967.

Manhattan College Riverdale, New York