MODELS OF AN EXTENSION OF THE THEORY ORD

NICHOLAS J. de LILLO

In [1], the first-order theory ORD was introduced as a concrete example of a theory in which the proof-theoretic concepts of implicit and explicit definability can be illustrated. Here, we use the concept of implicit definability as a means of constructing a conservative extension of certain first-order theories. The construction is then applied to ORD to yield a conservative extension ORD*. It is then shown that, under certain closure conditions on the domain A of any of the underlying models of ORD*, A is (up to isomorphism) an ordinal. Thus, in this sense, ORD* is a formal characterization of ordinal numbers in first-order logic.
1 The axioms of ORD and ORD* As was described in [1], ORD is a first-order theory with equality, with the four binary relation symbols \approx, \subset, \subseteq, and ϵ representing the only extra-logical symbols in its alphabet. The axiom set Γ_{0} for ORD consists of the universal closures of the following ten wffs:
$\left(\mathrm{O}_{1}\right) \quad[(x \subset y) \wedge(y \subset z)] \rightarrow(x \subset z)$
$\left(\mathrm{O}_{2}\right) \sim(x \subset x)$
$\left(\mathrm{O}_{3}\right) \quad(x \subset y) \rightarrow \sim(y \subset x)$
$\left(\mathrm{O}_{4}\right) \quad(x \subset y) \vee(y \subset x) \vee(x \approx y)$
$\left(\mathrm{O}_{5}\right) \quad(x \subseteq y) \leftrightarrow\{[(\forall z)[(z \subset x) \rightarrow(z \subset y)] \wedge \sim(x \approx y)] \vee(x \approx y)\}$
$\left(\mathrm{O}_{6}\right) \quad[(x \approx y) \wedge(z \approx u)] \rightarrow[(x \subset z) \rightarrow(y \subset u)]$
$\left(\mathrm{O}_{7}\right) \quad[(x \approx y) \wedge(z \approx u)] \rightarrow[(x \subseteq z) \rightarrow(y \subseteq u)]$
$\left(\mathrm{O}_{8}\right) \quad[(x \approx y) \wedge(z \approx u)] \rightarrow[(x \approx z) \rightarrow(y \approx u)]$
$\left(\mathrm{O}_{9}\right) \quad(x \subseteq x)$
$\left(\mathrm{O}_{10}\right) \quad(x \approx x)$.
Let Γ_{0}^{\prime} be the set of six sentences $\left(O_{1}^{\prime}\right)-\left(O_{6}^{\prime}\right)$ obtained from Γ_{0} by systematically replacing each occurrence of the symbol \subset in $\left(\mathrm{O}_{1}\right)$ through $\left(\mathrm{O}_{6}\right)$ by an occurrence of the symbol ϵ. Thus, for instance, $\left(\mathrm{O}_{1}^{\prime}\right)$ is the universal closure of the wff $[(x \in y) \wedge(y \in z)] \rightarrow(x \in z)$. Further, let ORD* be the theory whose non-logical axioms are $\Gamma_{0} \cup \Gamma_{0}^{\prime}$. Clearly, ORD* is a first-order extension of ORD.

2 Basic assumptions and key definitions By an interpretation of the theory ORD* (resp. ORD) we mean a relational system of the form $\mathfrak{\mu}=\left\langle A ; R_{1}, R_{2}, R_{3}, R_{4}\right\rangle$ (resp. $\left.\mathfrak{A}=\left\langle A ; R_{1}, R_{2}, R_{3}\right\rangle\right)$ where A is some class, called the domain of the interpretation, and where $R_{1}, R_{2}, R_{3}, R_{4}$ are certain subclasses of ordered pairs of elements of A which give meaning in \mathfrak{A} to the respective symbols $\approx, \subset, \subseteq$, and ϵ in the usual model-theoretic sense. It will be assumed that the discussion of interpretations of ORD* or ORD is to be conducted in any of the usual formulations of the meta-theory of classes, such as those of Gödel [2] or Kelley-Morse [3], [6]. In any of these, a class is defined to be a set if it is a member of some class, while those classes which are not sets are called proper classes. It is then always the case that an element of the domain A of any such interpretation is a set, and never a proper class.

We will only consider interpretations of the extra-logical members of the alphabet of ORD* in which \approx is interpreted as identity relative to the domain of the underlying relational system. Thus, if \mathfrak{A} is a relational system interpreting the theory ORD*, and if A represents the domain of \mathfrak{A}, then for any wff of ORD* of the form ($x \approx y$), we have that $\mathfrak{\mu} \vDash(x \approx y)$ if and only if x and y are interpreted in \mathfrak{X} to be the same element of A.

As a consequence of Theorems I and II of [1], and from soundness, it suffices to consider only reducts of models of ORD* which take the form $\mathfrak{A}=\langle A ; R\rangle$, where A is some class, and where R is a binary relation defined on A interpreting ϵ. The notion of the reduct of a relational system and its relation to syntactic definability is discussed in [4].

Let A be any class. Then A is well-founded if A satisfies Gödel's Axiom D [2]; thus A is well-founded if every non-empty subclass A^{\prime} of A contains an element x such that $x \cap A^{\prime}=\varnothing$. If $\mathfrak{A}=\langle A ; R\rangle$ is any model of ORD*, then define \mathfrak{A} to be well-founded if its domain A is well-founded. $\mathfrak{M}=\langle A ; R\rangle$ is R-transitive if for all $a, b, c \in A,\langle a, b\rangle \in R$ and $\langle b, c\rangle \in R$ imply $\langle a, c\rangle \in R$, and \mathfrak{M} is an ϵ-model of ORD* if R is of the form ϵ_{A}, the membership relation restricted to members of A. We will call \mathfrak{M} a standard model of ORD* if \mathfrak{A} is an ϵ_{A}-transitive ϵ-model of ORD*. The class A is extensional if for every $a, a^{\prime} \in A$, if $a \neq a^{\prime}$, then $a \cap A \neq a^{\prime} \cap A$; the system $\mathfrak{\Omega}$ is then called extensional if its domain A is extensional.

It follows immediately that any standard model of ORD* is an extensional model of ORD*, since in this case $a=a \cap A$ for every $a \in A$. If $\mathfrak{A}=\left\langle A ; \epsilon_{A}\right\rangle$ is a relational system (and not necessarily a model of ORD*) where A is some class of ordinals, then \mathfrak{A} is always extensional, but not necessarily ϵ_{A}-transitive.

Let $\mathfrak{A}=\langle A ; R\rangle$ be any relational system, with R a binary relation, and let $a \in A$. By the R-segment of a we mean the class $\operatorname{seg}_{R}(a)$ of all $x \in A$ such that $\langle x, a\rangle \in R$. For any subclass A^{\prime} of A, by an initial element of A^{\prime} we mean any $a^{\prime} \in A^{\prime}$ such that $\operatorname{seg}_{R}\left(a^{\prime}\right)$ contains no element of A^{\prime}. It is then clear that if \mathfrak{M} is well-founded, every non-empty subclass of A must contain an initial element. In the Gödel or Kelly-Morse formulations of the metatheory of classes, any of the models of ORD* are extensional and wellfounded. We will, nevertheless, maintain this terminology in the theorems to be stated and proven in the sequel.

A class A is defined to be an ordinal if A is ϵ_{A}-transitive, and if each member of A is ϵ_{A}-transitive. As usual, O_{n} will denote the class of all ordinals which are sets. A well-known result is that A is an ordinal iff $A=O_{n}$ (in case A is a proper class) or $A \in O_{n}$ (in case A is a set). For details, see [5]. Further, two systems $\mathfrak{A}=\langle A ; R\rangle$ and $\overline{\mathfrak{M}}=\langle\bar{A} ; \bar{R}\rangle$ are isomorphic if there is a $1-1$ map Φ of A onto \bar{A} such that, for all $a, a^{\prime} \in A$, $\left\langle a, a^{\prime}\right\rangle \in R$ if and only if $\left\langle\Phi(a), \Phi\left(a^{\prime}\right)\right\rangle \in \bar{R}$.

3 A proof-theoretic result involving implicit definability In this section, we introduce a construction of an extension of a theory \mathbf{T} which imitates a construction of [9], except that in [9] the formal definition of the new symbol is presented as an additional non-logical axiom. In our construction, no new axioms are introduced; rather, we demand that the new symbol be implicitly definable in terms of those present in at least one non-logical axiom of T. We intend to ultimately apply these results to the theories ORD and ORD*.

Let \mathbf{T} be a first-order theory with equality whose non-logical axioms are the set of sentences denoted by Γ_{0}. Let P, P_{1}, P_{2}, \ldots be the relation symbols of the alphabet of T which occur in at least one member of Γ_{0}. Let P^{\prime} be some relation symbol having the same number of places as P, and not appearing in any member of Γ_{0}. Let Γ_{0}^{\prime} be the result of replacing P^{\prime} for each occurrence of P in each sentence of Γ_{0} in which P appears, and let \mathbf{T}^{\prime} be the first-order extension of \mathbf{T} whose non-logical axioms are given by $\Gamma_{0} \cup \Gamma_{0}^{\prime}$. Then P is implicitly definable in T if

$$
\begin{equation*}
\left.\right|_{T^{\prime}}\left(\forall x_{1}\right)\left(\forall x_{2}\right) \ldots\left(\forall x_{n}\right)\left[P\left(x_{1}, x_{2}, \ldots, x_{n}\right) \leftrightarrow P^{\prime}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right], \tag{3.1}
\end{equation*}
$$

and \mathbf{T}^{\prime} is called an extension of \mathbf{T} by implicit definition. From section 1 and [1], it follows that ORD* is an extension of ORD by implicit definition.

Let U be any wff of \mathbf{T}^{\prime}. We define a wff $\pi(U)$ of \mathbf{T} by examining the appropriate of the following cases:

1. if P does not occur in U, then $\pi(U)=U$
2. if P does occur in U, then $\pi(U)$ is the result of replacing each atomic part of U of the form $P\left(\mu_{1}, \mu_{2}, \ldots, \mu_{n}\right)$ by $P^{\prime}\left(\mu_{1}, \mu_{2}, \ldots, \mu_{n}\right)$ where $\mu_{1}, \mu_{2}, \ldots, \mu_{n}$ are any terms of \mathbf{T}.
$\pi(U)$ is called the projection of U into (the formulas of) \mathbf{T}. Note also that for any wff U of T^{\prime}, we have $\pi^{2}(U)=\pi(U)$.

If x is a variable symbol and μ a term, then $U\binom{x}{\mu}$ is defined as the wff of \mathbf{T}^{\prime} obtained from U by replacing each free occurrence of x in U by μ, whenever μ is free for x in U; otherwise, $U\binom{x}{\mu}$ is defined to be U.
Lemma 1 For any wffs U, V of \mathbf{T}^{\prime}, and x any variable symbol,
(a) $\pi(\sim U)=\sim \pi(U)$
(b) $\pi(U \rightarrow V)=\pi(U) \rightarrow \pi(V)$
(c) $\pi((\forall x) U)=(\forall x) \pi(U)$.

Proof: by induction on the complexity of U.
Lemma 2 Let U be any wff of \mathbf{T}^{\prime}, x any variable symbol, μ any term. Then $\left.\pi\left(\begin{array}{l}U \\ x \\ \mu\end{array}\right)\right)=(\pi(U))\binom{x}{\mu}$.
Proof: by induction on the complexity of U.
Lemma $3 \quad \dot{T}_{\boldsymbol{T}^{\prime}}(U \leftrightarrow \pi(U))$ for any wff U of \mathbf{T}^{\prime}.
Proof: by induction on the complexity of U, using (3.1) and Lemma 1.
Theorem 1 Let \mathbf{T}^{\prime} be an extension of \mathbf{T} by implicit definition. Then \mathbf{T}^{\prime} is a conservative extension of \mathbf{T}.

Proof: It suffices to show $\Gamma_{\top} \pi(U)$ for every wff U of \mathbf{T} such that $\digamma_{\boldsymbol{T}^{\prime}} U$. Since $\left.\right|_{T^{\prime}} U$, there is a finite sequence $U_{1}, U_{2}, \ldots, U_{n}$ of wffs of T^{\prime} such that $U_{n}=U$ and for each $i, 1 \leqslant i \leqslant n, U_{i}$ is either an axiom, or for some $1 \leqslant j$, $k<i$, we have $U_{k}=U_{j} \rightarrow U_{i}$, or $U_{i}=(\forall x) U_{j}$. We will prove the result by induction on i.
(i) Suppose U_{i} is an axiom. We then examine the only three possibilities:

Case 1. If U_{i} is a purely logical axiom, the result $\dagger_{\top} \pi\left(U_{i}\right)$ follows immediately from Lemmas 1-3.
Case 2. If U_{i} is any member of Γ_{0}, the result holds trivially, because in this case U_{i} is the same as $\pi\left(U_{i}\right)$.
Case 3. If U_{i} is any member of Γ_{0}^{\prime}, it follows from Lemma 3 and modus ponens that $\left.\right|_{T^{\prime}} \pi\left(U_{i}\right)$. But according to the definition of Γ_{0}^{\prime} and that of $\pi\left(U_{i}\right)$, it follows that if U_{i} is any one of the elements of Γ_{0}^{\prime}, then $\pi\left(U_{i}\right)$ is the corresponding member of Γ_{0}. It then follows that $\dagger_{\top} \pi\left(U_{i}\right)$.
(ii) Suppose $U_{k}=U_{j} \rightarrow U_{i}$, and suppose $\left.\right|_{\boldsymbol{T}^{\prime}} U_{i}$, where $1 \leqslant j, k<i$. Since $\left.\right|_{\boldsymbol{T} j^{\prime}} U_{i}$, we also get $\left.\right|_{\boldsymbol{T}^{\prime}} U_{k}$, i.e., $\boldsymbol{T}_{\boldsymbol{T}^{\prime}}\left(U_{j} \rightarrow U_{i}\right)$, and $\boldsymbol{T}_{\boldsymbol{T}^{\prime}} U_{j}$. By inductive hypothesis, it follows that $\dagger_{\mathrm{T}} \pi\left(U_{j} \rightarrow U_{i}\right)$ and $\dagger_{\top} \pi\left(U_{i}\right)$ by modus ponens.
(iii) Suppose $\left.\right|_{T^{\prime}} U_{i}$, where $U_{i}=(\forall x) U_{i}$ for $j<i$. By inductive hypothesis, $\left.\right|_{\top} \pi\left(U_{j}\right)$ since $\left.\right|_{\boldsymbol{T}^{\prime}} U_{j}$. It then follows, by use of generalization in \mathbf{T}, that if x is any variable symbol, then $\mathrm{F}_{\mathbf{T}}(\forall x) \pi\left(U_{j}\right)$. By Lemma 1c, we also get $\vdash_{\top} \pi\left((\forall x) U_{j}\right)$, i.e., we get $\vdash_{\top} \pi\left(U_{i}\right)$. This completes the induction, and hence completes the proof of Theorem 1.

Corollary ORD* is a conservative extension of ORD.
Proof: By Theorem II of [1], ORD* is an extension of ORD by implicit definition.

In the case of extending ORD to ORD* by implicit definition, the projection $\pi(U)$ of any wff U of ORD* is defined relatively simply, due to the simplicity of the underlying alphabet. Since there are no constant or function symbols present in the alphabets of ORD and ORD*, the only terms available are variable symbols. In particular, Lemmas 2 and 3 are much
more easily stated in the case of ORD and ORD* than in the general case. Further, in the general case, it should be noted that in extending \mathbf{T} to \mathbf{T}^{\prime} by implicit definition, no new constant or function symbols emerge. Thus the terms available from the alphabet of \mathbf{T}^{\prime} is the same as that of \mathbf{T}.

4 Model-theoretic results The theorems in this section yield the result that, up to isomorphism, all extensional well-founded models of ORD* such that every element whose R-segment is a set, are ordinals with the membership relation. Thus, given the extensionality, well-foundedness, and the set-closure property on the R-segments on the domains of any of its models, ORD* produces a formal characterization of ordinal numbers.

Theorem 2 If $\mathfrak{A}=\left\langle A ; \epsilon_{A}\right\rangle$ is any standard model of $\mathbf{O R D *}$, then $A \in O_{n}$ or $A=O_{n}$.

Proof: Let $\mathfrak{M}=\left\langle A ; \epsilon_{A}\right\rangle$ be a standard model of ORD*. Then A is ϵ_{A} transitive; further $\mathfrak{A} \vDash\left(O_{1}^{\prime}\right)$. It then follows that every element of A is ϵ_{A}-transitive. Hence, A is an ordinal; thus $A \in O_{n}$ or $A=O_{n}$.

Theorem $3 \quad$ Let $\mathfrak{A}=\langle A ; R\rangle$ be an extensional well-founded model of ORD*, and suppose that for every $a \in A, \operatorname{seg}_{\mathbb{R}}(a)$ is a set. Then there exists a standard model $\overline{\mathfrak{A}}=\left\langle\bar{A} ; \epsilon_{A}\right\rangle$ of $\mathbf{O R D} *$ such that \mathfrak{A} and $\overline{\mathfrak{A}}$ are isomorphic.

Proof: Define \bar{A} as the range of the Mostowski-Shepherdson map Φ applied to A (see [7], [8] for details). Indeed, for every $a \in A, \Phi(a)=\Phi^{\prime \prime}\left(\operatorname{seg}_{R}(a)\right.$).

Corollary Let $\mathfrak{A}=\langle A ; R\rangle, \mathfrak{A}^{\prime}=\left\langle A^{\prime} ; R^{\prime}\right\rangle$ be extensional well-founded models of ORD* such that for each $a \in A$ and $a^{\prime} \in A^{\prime}$, $\operatorname{seg}_{R^{\prime}}\left(a^{\prime}\right)$ are sets. If A, A^{\prime} have the same cardinality, then \mathfrak{A} and \mathfrak{A}^{\prime} are isomorphic.

The proof of Theorem 3 requires the construction of the MostowskiShepherdson map Φ. This is done by defining Φ by means of transfinite recursion, which cannot be applied unless $\operatorname{seg}_{\mathrm{R}}(a)$ is known to be a set for each $a \in A$. When this is so, it is then possible to give each $a \in A$ a uniquely determined ordinal rank, and the recursive definition of Φ proceeds with this notion of rank. If A is a set, then the additional hypothesis that $\operatorname{seg}_{\mathrm{R}}(a)$ is a set is redundant, since in this case $\operatorname{seg}_{\mathrm{R}}(a)$ would then be a subclass of the set A, which by Aussonderungs would make $\operatorname{seg}_{\mathrm{R}}(a)$ a set. Further, if \mathfrak{A} is an ϵ-model of ORD*, then $\operatorname{seg}_{\mathrm{R}}(a)$ is a set even if A is a proper class, for in this case $\operatorname{seg}_{\mathrm{R}}(a)=a \cap A$, from which $\operatorname{seg}_{\mathrm{R}}(a) \subseteq a$, again making $\operatorname{seg}_{\mathrm{R}}(a)$ a set.

5 Concluding remarks It seems plausible to expect that the construction of \mathbf{T}^{\prime} from \mathbf{T} could be conducted in systems of logic other than that of the classical first-order predicate calculus. As a matter of fact, the construction seems likely to take place, with appropriate adjustments, in firstorder intuitionistic logic, and in the infinitary logic $\mathrm{L}_{\omega_{1}, \omega}$. Formal characterizations of ordinals in such logics might be pursued with some assurance of success.

The main thrust of having ORD* as a conservative extension of ORD is that the move upward from ORD to ORD* was not too drastic in any purely proof-theoretic sense; indeed, any formula using the alphabet of ORD which is a theorem of ORD* is already a theorem of ORD.

REFERENCES

[1] DeLillo, N. J., "A formal characterization of ordinal numbers," Notre Dame Journal of Formal Logic, vol. XIV (1973), pp. 397-400.
[2] Gödel, K., The Consistency of the Axiom of Choice and of the Generalized ContinuumHypothesis with the Axioms of Set Theory, Annals of Mathematics Studies No. 3, Princeton University Press, Princeton, New Jersey, 1940.
[3] Kelley, J. L., General Topology, D. Van Nostrand Co., Princeton, New Jersey, 1955.
[4] Kochen, S. B., "Topics in the theory of definition," in The Theory of Models, eds., J. W. Addison, L. Henkin, and A. Tarski, North-Holland, Amsterdam, 1965, pp. 170-176.
[5] Monk, J. D., Introduction to Set Theory, McGraw-Hill, New York, 1969.
[6] Mostowski, A., Constructible Sets with Applications, North-Holland, Amsterdam, 1969.
[7] Mostowski, A., "An undecidable arithmetical statement," Fundamenta Mathematicae, vol. XXXXI (1949), pp. 143-164.
[8] Shepherdson, J. C., "Inner models for set theory-part I," The Journal of Symbolic Logic, vol. 16 (1951), pp. 161-190.
[9] Shoenfield, J. R., Mathematical Logic, Addison-Wesley, Reading, Massachusetts, 1967.

Manhattan College

Riverdale, New York

