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MODELS OF AN EXTENSION OF THE THEORY ORD

NICHOLAS J. de LILLO

In [1], the first-order theory ORD was introduced as a concrete
example of a theory in which the proof-theoretic concepts of implicit and
explicit definability can be illustrated. Here, we use the concept of implicit
definability as a means of constructing a conservative extension of certain
first-order theories. The construction is then applied to ORD to yield a
conservative extension ORD*. It is then shown that, under certain closure
conditions on the domain A of any of the underlying models of ORD*, A is
(up to isomorphism) an ordinal. Thus, in this sense, ORD* is a formal
characterization of ordinal numbers in first-order logic.

1 The axioms of ORD and ORD* As was described in [1], ORD is a
first-order theory with equality, with the four binary relation symbols «, c ?

c, and e representing the only extra-logical symbols in its alphabet. The
axiom set Γo for ORD consists of the universal closures of the following ten
wffs:

(O,) [(*CJOΛ(J;CS)]-(*CS)

(02) ~(x<zχ)
(03) (x^y)-*~(y<Zx)
(04) {χ^y)w(y C*)V(Λ; *y)

(05) (x c ^ { [ N [ ( K i ) -> (z C 3 , ) ] Λ ~ ( * *y)]v(x *y)}
(06) [(x « y) Λ (z * u)] - [(x (Zz)^(y(Z u)]
(O7)' [(x * y ) * ( z * u)] - > [(x Q z ) - > ( y Q u)]

(08) [(x*y)*(z*u)]-[(x*z)-+ (y*u)]
(09) (x c x)
(010) (*«*).

Let Tl be the set of six sentences (Oί)-(O^) obtained from Γo by
systematically replacing each occurrence of the symbol c in (Oj through
(O6) by an occurrence of the symbol e. Thus, for instance, (O/) is the
universal closure of the wff [(#e y) Λ (y e z)] -* (xe z). Further, let ORD* be
the theory whose non-logical axioms are Γo U T'o. Clearly, ORD* is a
first-order extension of ORD.
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2 Basic assumptions and key definitions By an interpretation of the
theory ORD* (resp. ORD) we mean a relational system of the form
31 = (A Ri, R2,R3,R^ (resp. 31 = (A; Rl9 R2, R3)) where A is some class,
called the domain of the interpretation, and where Rl9 R2, R3, R4 are certain
subclasses of ordered pairs of elements of A which give meaning in 31 to
the respective symbols «,<=,(!, and e in the usual model-theoretic sense.
It will be assumed that the discussion of interpretations of ORD* or ORD is
to be conducted in any of the usual formulations of the meta-theory of
classes, such as those of Gδdel [2] or Kelley-Morse [3], [6]. In any of
these, a class is defined to be a set if it is a member of some class, while
those classes which are not sets are called proper classes. It is then
always the case that an element of the domain A of any such interpretation
is a set, and never a proper class.

We will only consider interpretations of the extra-logical members of
the alphabet of ORD* in which « is interpreted as identity relative to the
domain of the underlying relational system. Thus, if 31 is a relational
system interpreting the theory ORD*, and if A represents the domain of 31,
then for any wff of ORD* of the form (x * y), we have that 31 ί= (x * y) if and
only if x and y are interpreted in 31 to be the same element of A.

As a consequence of Theorems I and II of [1], and from soundness, it
suffices to consider only reducts of models of ORD* which take the form
31 = {A R), where A is some class, and where R is a binary relation
defined on A interpreting e. The notion of the reduct of a relational system
and its relation to syntactic definability is discussed in [4].

Let A be any class. Then A is well-founded if A satisfies Gδdel's
Axiom D [2]; thus A is well-founded if every non-empty subclass A* of A
contains an element x such that x Π A' = p. If 31 = (A; R) is any model of
ORD*, then define 31 to be well-founded if its domain A is well-founded.
31 = (A; R) is R-transitiυe if for all a, b, ce A, (a, b) e R and (b, c)eR imply
(a, c)eR, and 31 is an e -model of ORD* if R is of the form eΛ, the member-
ship relation restricted to members of A. We will call 31 a standard model
of ORD* if 31 is an eA-transitive e-model of ORD*. The class A is
extensional if for every a, a1 e A, if a Φ a\ then a Π A φ a1 n A; the system 31
is then called extensional if its domain A is extensional.

It follows immediately that any standard model of ORD* is an exten-
sional model of ORD*, since in this case a = a Π A for every ae A. If
31 = (A; eA) is a relational system (and not necessarily a model of ORD*)
where A is some class of ordinals, then 31 is always extensional, but not
necessarily eA-transitive.

Let 31 = (A; R) be any relational system, with R a binary relation, and
let aeA. By the R-segment of a we mean the class segR(a) of all x e A such
that (x, ά)eR. For any subclass Af of A, by an initial element of A' we
mean any ateAt such that segκ(α') contains no element of A'. It is then
clear that if 31 is well-founded, every non-empty subclass of A must contain
an initial element. In the Gδdel or Kelly-Morse formulations of the meta-
theory of classes, any of the models of ORD* are extensional and well-
founded. We will, nevertheless, maintain this terminology in the theorems
to be stated and proven in the sequel.
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A class A is defined to be an ordinal if A is eA-transitive, and if each

member of A is €Λ-transitive. As usual, 0n will denote the class of all

ordinals which are sets. A well-known result is that A is an ordinal iff

A = 0n (in case A is a proper class) or Ae 0n (in case A is a set). For

details, see [5]. Further, two systems $f = (A; R) and *ΰ = (A Έ) are

isomorphic if there is a 1-1 map Φ of A onto A such that, for all a, a* eA,

(a, af) e R if and only if <Φ {a), Φ(a')) e R.

3 A proof-theoretic result involving implicit definability In this section,

we introduce a construction of an extension of a theory T which imitates a

construction of [9], except that in [9] the formal definition of the new

symbol is presented as an additional non-logical axiom. In our construc-

tion, no new axioms are introduced; rather, we demand that the new symbol

be implicitly definable in terms of those present in at least one non-logical

axiom of T. We intend to ultimately apply these results to the theories ORD

and ORD*.

Let T be a first-order theory with equality whose non-logical axioms

are the set of sentences denoted by Γo. Let P, PL, P2, . . . be the relation

symbols of the alphabet of T which occur in at least one member of Γo.

Let P f be some relation symbol having the same number of places as P,

and not appearing in any member of Γo. Let Γό be the result of replacing

P' for each occurrence of P in each sentence of Γo in which P appears, and

let T' be the first-order extension of T whose non-logical axioms are given

by Γo U Γo

f. Then P is implicitly definable in T if

IpίVAΓjCVΛΓa) . . . (VxJ[P(xl9 X2, . . ., *«)«-»P'(#i, #2, . ., Xn)], (3.1)

and T' is called an extension of T by implicit definition. From section 1

and [1], it follows that ORD* is an extension of ORD by implicit definition.

Let U be any wff of T f. We define a wff Ή(U) of T by examining the

appropriate of the following cases:

1. if P does not occur in U, then Ή(U) = U

2. if P does occur in £7, then Ή(U) is the result of replacing each

atomic part of U of the form P(μ1 ? μ2, . . ., μw) by P'(μi, μ2, •> μ«) where

Mi> M2> •> M» a r e anY terms of T.

π(£7) is called the projection of U into (the formulas of) T. Note also that

for any wff U of V, we have Ή2(U) = π(U).

If x is a variable symbol and μ a term, then u( J is defined as the

wff of Tf obtained from U by replacing each free occurrence of x in U by μ,

whenever μ is free for x in ϋ; otherwise, u(Xj is defined to be 17.

Lemma 1 For any wffs U, V of T', and x any variable symbol,

(a) Ή(~U) = ~π(£7)

(b) Ή(U — V) = TΪ(U) — Ή{V)

(c) π((Vx)U) = (VX)Ή(U).
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Proof: by induction on the complexity of U.

Lemma 2 Let U be any wff of T f , x any variable symbol, μ any term.

Then*(uQ) = MU))Q.

Proof: by induction on the complexity of U.

Lemma 3 (?f7(ί/<->7r(C/)) for any wff Uofl'.

Proof: by induction on the complexity of U, using (3.1) and Lemma 1.

Theorem 1 Let T' be an extension of T by implicit definition. Then T' is
a conservative extension of T.

Proof: It suffices to show hf π(J7) for every wff U of T such that hfj U.
Since \^U, there is a finite sequence Ul9 U2f . . ., Unoί wffs of T r such that
Un = U and for each i, 1 ^ i ^ n, U{ is either an axiom, or for some 1 ^j9

k < i, we have Uk - Uj —> Uiy or U{ = (Vx)Uj. We will prove the result by
induction on i.

(i) Suppose U{ is an axiom. We then examine the only three possi-
bilities:

Case 1. If C/,- is a purely logical axiom, the result hf-πίzy,) follows immedi-
ately from Lemmas 1-3.
Case 2. If £/,- is any member of Γo, the result holds trivially, because in
this case 17,- is the same as π(Ui).
Case 3. If Z7, . is any member of Γ<5, it follows from Lemma 3 and modus
ponens that tyrπ(ί/, ). But according to the definition of Γ<5 and that of π(C/t ),
it follows that if ί/t is any one of the elements of Γ<5, then πίC/̂  ) is the
corresponding member of Γo. It then follows that hf π(ί/f ).

(ii) Suppose Uk = Uj —» Ui9 and suppose hγj ί/, , where 1 ^ j , k < i. Since
lljjΓ Uiy we also get \^jUk, i.e., \^r(Uj -+ C/,), and hpr c/;. By inductive
hypothesis, it follows that \γτi{Uj —* Ui) and \γτι{Ui) by modus ponens.

(iii) Suppose hpri/,-, where C/t = (Vx)Uj for j < z. By inductive hy-
pothesis, \j"π{Uj) since hpί/y. It then follows, by use of generalization in
T, that if x is any variable symbol, then hf (VX)Ή(UJ). By Lemma lc, we
also get hf π((VΛr)ί/; ), i.e., we get hf 7r(l/, ). This completes the induction,
and hence completes the proof of Theorem 1.

Corollary ORD* is a conservative extension o/ORD.

Proof: By Theorem II of [1], ORD* is an extension of ORD by implicit
definition.

In the case of extending ORD to ORD* by implicit definition, the
projection π(U) of any wff U of ORD* is defined relatively simply, due to the
simplicity of the underlying alphabet. Since there are no constant or
function symbols present in the alphabets of ORD and ORD*, the only terms
available are variable symbols. In particular, Lemmas 2 and 3 are much
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more easily stated in the case of ORD and ORD* than in the general case.
Further, in the general case, it should be noted that in extending T to ΊΓ by
implicit definition, no new constant or function symbols emerge. Thus the
terms available from the- alphabet of T' is the same as that of T.

4 Model-theoretic results The theorems in this section yield the result
that, up to isomorphism, all extensional well-founded models of ORD* such
that every element whose R-segment is a set, are ordinals with the
membership relation. Thus, given the extensionality, well-foundedness, and
the set-closure property on the ^-segments on the domains of any of its
models, ORD* produces a formal characterization of ordinal numbers.

Theorem 2 If 51 = (A; eA) is any standard model of ORD*, then Ae 0n or
A= 0n.

Proof: Let 51 = (A; eA) be a standard model of ORD*. Then A is eA-
transitive; further 5lh(#ί) ^ ^ n e n follows that every element of A is
eA-transitive. Hence, A is an ordinal; thus Ae 0n or A = 0n.

Theorem 3 Let 51 = (A; R) be an extensional well-founded model o/ORD*,
and suppose that for every aeA, segtR(a) is a set. Then there exists a
standard model 5Ϊ = (A; tA) of ORD* such that 51 and 5ί are isomorphic.

Proof: Define A as the range of the Mostowski-Shepherdson map Φ applied
to A (see [7], [8] for details). Indeed, for every at A, Φ(ά) = Φ"(segR(a)).

Corollary Let 51 = (A; R), 51' = (Ar; Rr) be extensional well-founded models
o/ORD* such that for each ae A and ar e A1', segiRj/(α

f) are sets. If A, Ar have
the same cardinality, then% and^K1 are isomorphic.

The proof of Theorem 3 requires the construction of the Mostowski-
Shepherdson map Φ. This is done by defining Φ by means of transfinite
recursion, which cannot be applied unless segR(#) is known to be a set for
each ae A. When this is so, it is then possible to give each ae Adi uniquely
determined ordinal rank, and the recursive definition of Φ proceeds with
this notion of rank. If A is a set, then the additional hypothesis that $egR(a)
is a set is redundant, since in this case seg/R(α) would then be a subclass of
the set A, which by Aussonderungs would make segR(α) a set. Further, if 51
is an e-model of ORD*, then segR(α) is a set even if A is a proper class, for
in this case segR(<z) = a Π A, from which segR(β) c α, again making segR(α)
a set.

5 Concluding remarks It seems plausible to expect that the construction
of T' from T could be conducted in systems of logic other than that of the
classical first-order predicate calculus. As a matter of fact, the construc-
tion seems likely to take place, with appropriate adjustments, in first-
order intuitionistic logic, and in the infinitary logic ljωι,ιω. Formal
characterizations of ordinals in such logics might be pursued with some
assurance of success.
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The main thrust of having ORD* as a conservative extension of ORD is

that the move upward from ORD to ORD* was not too drastic in any purely

proof-theoretic sense; indeed, any formula using the alphabet of ORD which

is a theorem of ORD|* is already a theorem of ORD1.
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