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DEFINING GENERAL STRUCTURES

JACK C. BOUDREAUX

0 Introduction Henkin demonstrated in [7] that an adequate semantic
theory for any axiomatic higher-order functional calculi could be de-
veloped, if the class of structures (viz., models, interpretations, realiza-
tions, etc.) upon which the semantic theory is based is significantly
"wider" than the class of all standard structures. Moreover, if the
calculus contains the axiom schemas of Extensionality and Comprehension,
then it is obvious that the members of the appropriate "wider" class of
structures, which may be called the class of general structures, must
exhibit a rather high degree of "internal" organization.

In [9], p. 324, Henkin observed that an important technical problem had
remained unsolved, i.e., to give a perspicuous definition of this class of
structures which is not overly dependent upon the syntactic design of the
higher-order language. Andrews proposed one solution to this problem in
[1] and [2]; he proved that every general structure must be "closed" with
respect to certain combinatory operators. In this paper I will propose an
alternative solution in which the definition of the class of general struc-
tures is given in strictly set-theoretical terms. Specifically, I will prove
that every general structure must be "closed" with respect to a family of
Projectiυe operations, cf. Kuratowski and Mostowski [10], pp. 357-358, and
a "Cut" operation, which I have adapted from Shoenfield [12], p. 230.

1 Syntactic preliminaries In the language of the simple theory of types,
henceforth, "ST", every categorematic term is assigned a type index. For
our purposes, we may assume that all of the type indices, henceforth,
simply "indices", are generated by the following recursion

(1) Indices: " i " is the primitive index (i.e., the type index assigned to
individuals); if B is a finite, but unempty, sequence of indices, then (B) is a
non-primitive index.1

The adicy function on the indices is the function which maps the index "ir"
onto 0 and which maps every non-primitive index (B) onto the length of the
sequence B, henceforth, "lh(i?)". The adicy of an index is its value under
the adicy function.
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The order function on the indices is the function OR which maps the
index " ΐ " onto 0 and which maps every non-primitive index (B) onto
mαx{θR(B(j)): 0^j< lh(B)}+ 1. The order of an index is its value under
the order function.

Let a'be an index, then

(2) Variables: ua, υa, wa

9 xa, ya, za, . . .,

with and without numeric subscripts, are the variables of type a. Since
every variable of ST is assigned an index, every variable is a categore-
matic term.

I will say that X (read: "X bar") is a ^-sequence of variables if and
only if B is a finite, but unempty, sequence of indices, a length of B is equal
to the length of X, and for all j , 0 ^j <\h(B), X(j) is a variable of type B(?).

In addition to the categorematic terms, ST recognizes five primitive
syncategorematic terms,

[sentential connectives: "~" (negation), "->" (conditional)
(3) I universal quantifier: "V"

(punctuators: " ( " (left paren), " ) " (right paren)

The syntactic use of the syncategorematic terms is clearly shown in the
following definition of well-formity in ST,

(4) Well-Formed Formula, wff: (i) if X is a -B-sequence of variables, then
x{B) (X) is an atomic wff;
(ii) if p is a wff, then ~ρ is a wff,
(iii) if p and q are wffs, then (p — q) is a wff;
(iv) if p is a wff, then Vxap is a wff;
(v) and nothing is an unabbreviated wff unless its being so follows from (i)
through (iv).

If Vxap is a wff, then p is the scope of the quantifier Vxa. An
occurrence of a variable is bound if and only if it is either an occurrence of
the variable within a quantifier or an occurrence of the variable within the
scope of a quantifier containing the same variable. An occurrence of a
variable is free if and only if it is not bound.

A wff is closed; i.e., a statement, if and only if every occurrence of a
variable in the wff is a bound occurrence. If a wff is not closed, then it is
open. The categorematic term ta is free for xa in p if and only if no free
occurrence of xa is in the scope of a quantifier containing ta.

(5) Substitution Operation: If p is a wff, xa has zero or more free occur-
rences in p, and ta is free for #*in p, then $t*P is the wff obtained from p
by replacing every free occurrence of xa with an occurrence of ta; otherwise,
S^/> is identical to p.2

Suppose that p is a wff, I is a (possibly empty) J3-sequence of
variables, and F i s an unempty C-sequence of variables. Then,
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(6) Agreement: p/(X)Y/ is a statement form if and only if the sequences of
variables X and Y are everywhere distinct and every free variable of p is a
member of either the sequence X or the sequence Γ. If X is the empty
sequence {&, then I will write "p/Y/" instead of "M0)*V". 3

In order to avoid needlessly long wffs, I will accept the following
standard abbreviations.

!

"(pvq)" for "(~/>-> q)»
«{p*q)» ior"~(p-*~q)"
"(p++q)» for «-((/> -q)-+~(q- p))»
"3xap" for "~Vxa~p"

If a wff contains one or more of these syncategorematic signs it will be
said to be an abbreviated wff.

2 Standard structures In order to develop a referential semantic theory
for ST, the first order of business is to define a class of higher-order
structures. Given the intuitive significance of the system of type indices,
i.e., "i," is the type of individuals, " ( i ) " is the type of properties of
individuals, "((i))" is the type of properties of properties of individuals,
and so on, the most "natural" class of structures to introduce is the
following one,4

(8) Definition: Let μ be either a nonzero finite ordinal or an initial ordinal
(especially in the sense of von Neumann, cf. [10], pp. 269-273). Then Sμ is
the standard structure based on μ if and only if

(i) S"[i] =μ
(ii) Sμ[(B)) = {/: dm</) = 0 <.Λ ( B )S

μ[B(j)] Λ rg(/) C {t,f}},

that is, the typed universe Sμ[(B)] is the set of all functions that map the
elements of the Cartesian product X Sμ[B(j)] into the set of truth-

0<;<lh(B)

values, especially " t " is the truth-value " t rue" and "f" is the truth-value
"false."

Notational Remark: Since I will frequently have occasion to form the
Cartesian product of typed universes, let me introduce the abbreviation
" A 5" for the more cumbersome expression used in (8.ii).

(B)

A referential, or Tarskian, semantic theory can be based on this class
of structures in the usual way. Since Tar ski's construction is very well-
known, it will be sufficient to provide only a brief sketch of it.

I will say that φ is an assignment to the standard structure Sμ if and
only if for every variable xa, φ(xa) e Sμ[a]. Every assignment is a type-
preserving into function from the variables of ST to the typed universes of
the structure. An assignment ψ is a X-variant of an assignment φ if and
only if for every variable yb, except possibly for the variables in the
sequence X, ψ(yb) = φ(yb).
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The satisfaction relation " h " is defined by induction on the length of
wffs, i.e., on the number of quantifiers and sentential connectives that the
wff contains,

(9) Let Sμ be a standard structure and φ be an assignment to Sμ, then

(i) (sμ, φ) h * V . . . *c) iff <p(**)(<p(y*) . . φ(*c)) = t
(ϋ) (S'μ, φ))r~P iff not (Sμ, φ) N p;
(iii) (S'μ, φ)\=(p-* q) iff either not (S'μ, φ) N p or (Sμ, φ) \= q\
(iv) (Sμ, ψ) N Vx*p iff (Sιμ, ψ) Np, if ψ is any Λ:"-variant of <ρ.

The extension of this definition to abbreviated wffs is completely deter-
mined by the abbreviational conventions stated in (7).

We pause for an obvious, but very useful, lemma,

(10) Lemma If φ and ψ are assignments to Sμ that agree on the free
variables of p, i.e., if xa is a free variable of p, then φ(xa) = ψ(xa), then
(Sμ, φ)^p iff (Sμ, ψ) 1= p. Consequently, if p is a statement then (Sμ, φ) N p
iff (Sμ, Ψ) ̂ P> for all assignments φ and ψ to Sμ.

Proof: The first part of Lemma (10) is obtained by induction on the length
of p, cf. Mendelson [11], p. 52 for hints. The second part follows as an
immediate corollary of the first, i.e., if p is a statement, then p has no free
variables; hence, all assignments to Sμ agree on the free variables of p.

Q.E.D.

I will say that the standard structure Sμ verifies the wff p, henceforth,
"Sμ\=p", if and only if (Sμ, φ)\=p, if φ is any assignment to Sμ. On the
other hand, I will say that Sμ falsifies p, henceforth, "Sμ#p", if and only
if not (S, φ)\=p, if φ is any assignment to Sμ. Every statement is either
verified or falsified by Sμ; and if a wff p is neither verified nor falsified,
i.e., if there is an assignment φ such that (Sμ, φ) jrp and an assignment ψ
such that not (Sμ,ψ)}r:P, then p must be an open wff. Suppose that p is a
wff which contains xa, . . ., yh as free variables, then Sμ verifies p if and
only if Sμ verifies the universal closure Vxa . . . Vybp, henceforth, "Vp",
of p.

(11) Standard Validity: A wff p is standardly valid if and only if p is
verified by every standard structure. A wff p is standardly invalid if and
only if p is falsified by every standard structure. A wff p is standardly
indeterminate, or factual, if and only if it is verified by some standard
structures and falsified by others.

Let this conclude our summary review of the standard semantics of ST.

3 Higher-order theories Even though standard validity seems to be a
very "natural" interpretation for the type-theoretic language introduced in
section 1, Gδdel's Incompleteness Theorem of 1931 convincingly established
that the set of standardly valid wffs must always exceed the set of wffs
obtainable in any axiomatic higher-order theory.
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A set of wffs, either abbreviated or unabbreviated, is a higher-order
theory if and only if it contains all instances of the axiom schemas,

FI. {p-+{q-+ P))
FII. ( ( / > - ( * - r)) - ((/> - q) - (p - r)))
Fill. ((~p-+~q)->((~p-q)-+p))
FIV. (Vxap - S »
FV. (Vxa(p -* q) -* (p —> Vxaq)), provided xa has no free occurrence in p.

and it is inferentially closed under the following (primitive) rules of
inference,

MP (Modus Ponens). From p and (p —> q), infer (7
Gen (Generalization), From £, infer VΛΓ*/>.

The term "inferentially closed" can be defined with great precision.
Let T be a set of wffs, then a finite sequence of wffs p0, . . ., pn is a
derivation in T if and only if for all j , O^j^n, pj is an instance of an
axiom schema, an element of T, an immediate inference from two
preceeding components of the sequence by MP, or an immediate inference
from one preceeding component of the sequence by Gen. A set of wffs is
inferentially closed if and only if the terminal member of every derivation
in the set is an element of the set.

The inferential closure of FI through FV, henceforth, " F " , is the
exact higher-order analogue of the first-order quantificational calculus.
A higher-order theory is consistent if and only if it is a proper subset of
ST. Since F includes all of the classical, i.e., bivalued, calculus of
propositions, we can reformulate this definition as follows: a higher-order
theory is consistent if and only if there is no wff p such that both p and ~p
are elements of the theory. A higher-order theory is inconsistent if and
only if it is not consistent.

A higher-order theory is maximally consistent if and only if it is
consistent and is not a proper subset of a consistent higher-order theory.
That is, if T is maximally consistent and p is not an element of T, then the
theory obtained by adding p to T is inconsistent. I presume that the reader
is familiar with the higher-order analogue of Lindenbaum's Lemma, which
says that every consistent higher-order theory is a subset of, i.e., can be
extended to, a maximally consistent higher-order theory.

I will say that a higher-order theory is a foundational system if and
only if it contains the axiom schemas of Extensionality and Comprehension,
i.e.,

Ex VxaVya(VX(xa(X)<->ya(X)) - Vz(a) (z(a)(xa) +-> z(a) (ya)))

K VX3xaVY(xa(Y) *-> P/(X)Y/), provided xa is foreign to p.

Let FK be the inferential closure of FI through FV, Ex, and K.

Remark: Some authors, e.g., Beth [4], p. 226, express Ex as a biconditional.
But this is not necessary since every instance of the converse of Ex, i.e.,
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Vx\ya(Vzia\z{a\χa) ^>z{a\ya)) - VX(χa(X) ^ ya(X)))

is derivable in FK.5

Having thus precised the notion "higher-order theory", we can state
Godel's Theorem more accurately, viz., there is no consistentfoundational
system whose elements are identically the standardly valid wffs.

4 Henkin's proposal In his doctoral dissertation of 1947, published in
part in [7], Henkin argued that what this "negative" result really
establishes is that if one insists upon basing the semantic theory of ST on
the class of standard structures, then it is impossible to solve the
characterization problem for any foundational system, cf. Shoenfield [12],
p. 41. But this only demonstrates that the class of standard structures is
too "narrow", and, thus, in order to obtain a reasonable semantic theory
for the type-theoretic language, it would have to be significantly "widened"
by introducing non-standard structures, i.e., structures in which the
higher-order typed universes would be populated by something less than all
possible functions.

The general outline of this proposal is clear enough. E.g., suppose we
are attempting to solve the characterization problem for the weakest
foundational system, namely, FK, then we should proceed as follows:

Step I: define a "wider" class of structures, i.e., a class which compre-
hends the class of standard structures and a fair-sized supply of non-
standard structures;

Step II: base the semantic theory of ST on the "wider" class defined in
Step I; the only portion of the semantic theory which will require sub-
stantial modification is the definition of validity, and this can be rewritten
as follows: a wff is valid in the "wide" sense iff it is verified by every
structure in the "wider" class;

Step III: show that the characterization problem for FK can be solved with
respect to the "wider" class, i.e., show that the class defined in Step I has
the following properties:

the FK-soundness property: if a wff is derivable in FK, then it is valid in
the "wider" sense,

the FK-completeness property: if a wff is not derivable in FK, then there
is at least one member of the "wider" class that falsifies it.

The definition of the "wider" class in Step I is clearly the crucial stage of
Henkin's proposal, but it is at just this point that his paper is very difficult
to interpret.6

Presumably, the "wider" class to be defined in Step I will resemble
the class of standard structures in at least this respect: all of the
members of the "wider" class, and a fortiori all of their elements, i.e.,
the typed universes, will be constructive sets in the field of ZFS.7 If this
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presumption is correct, then a general strategy for defining the "wider"
class for FK comes rather quickly to mind, to wit:

Step la: define the "widest possible" class of structures, i.e., a class
which is so comprehensive that only the "first-order" fragment of FK,
namely, F itself, is verified by all of its members;

Step Ib: define ZFS- conditions Φ on the members of the "widest possible"
class such that the "wider" class for FK is identical to the class of all
members of the "widest possible" class which satisfy Φ.8

Intuitively, the ZFS-conditions Φ must be just strong enough to guarantee
that any structure in the "widest possible" class which satisfies Φ will
simultaneously verify all of the instances of the schemas Ex and K. As
obvious as the proposed strategy is, it has to my knowledge never been
worked out in detail. I will now correct this oversight.

5 The minimally restricted class of structures In [7], footnote 5,
Henkin briefly mentions a class of "altogether arbitrary" structures. What
he seems to have in mind is a class of structures whose typed universes
are built in an entirely arbitrary, or minimally restricted, manner. I will
now define a class of structures which fits this description very closely,
and then I will prove, c/. Theorem (14) below, that it is in fact the "widest
possible" class required in Step la.

(12) Definition: Let μ be any ordinal satisfying the antecedent of (8). Then
9W is a member of the minimally restricted class of structures, henceforth,
"the MN class", if and only if for every index a, p *9W[a] cS μ [a] .

Every standard structure is a member of the MN class; in fact, the MN
class is generated by the class of standard structures.9 That is, let " ( J s μ "
abbreviate "U{S[*]: a is in index}." Then, i n d

(13) 9W is a member of the MN class if and only if there is an ordinal μ
satisfying the antecedent of (8) such that

(i) \Jmep(\Jsμ\ i.e., U 3W is an element of the power set of [)sμ;
ind \ ind / ind iπd

and

(ii) for every index a, SOT [a] Π Sμ[a] Φ ψ.

To re-express (13) in a metaphoric way, we can say that every standard
structure is the core of a well-defined set of MN structures, and that this
set is almost, i.e., very nearly, identical to ^ ( U s ) .

\ind /

Step II in Henkin's program presents no essential difficulties. Let us
agree to say that a wff p is strongly valid if and only if p is verified by
every MN structure; and that p is strongly invalid if and only if p is
falsified by every MN structure. If this notion of validity is accepted, then
we can prove the following theorem,
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(14) The characterization theorem for strong validity. A wff p is strongly
valid if and only if p is derivable from axiom schemas FI through FV alone.

Proof: From the right to the left the proof is entirely straightforward; in
fact, it differs from the Soundness Theorem for first-order only in
inessential respects, cf. Mendelson [11], pp. 52-56. In the other direction,
it will be sufficient to prove the following analogue of Henkin's Lemma,

(i) if T is a consistent extension of the higher-order calculus F, then there
is an MN structure 9W such that every element of T is verified by 9W, i.e.,
m models T.

Proof of (i): Let ST+ be the higher-order language obtained from ST by
adding a denumerably infinite run of variables c*, 0 ^ n < ω, for every
index a. If T is consistent in ST, then T is consistent in ST+. Let

(ϋ) A)/*o% . . ., Pi/x?/> . .

be an enumeration of all of the wffs of ST+ which contain precisely one free
variable. Then define the jth special constant as follows:

(iii) c*j.) is the jth special constant if and only if it is the earliest constant
of type Sj in the lexicographic order which is (1) foreign to the wffs pjx^/
in the enumeration, 0 ^ k < j , and (2) not identical to the fcth special
constant, 0 ^ k ^ j .

Clearly such a constant exists and is uniquely well-defined. Let

(iv) ( s : ^ Pf/xp/ - v*;v*;v)
be the jth special axiom, henceforth, " ;SA". Then define the following
sequence of higher-order theories by induction on j ,

(°T= T
(v) }(>+l)Γ= ''T+ (/'-l}SA

r ωτ = y ; τ
0</<,ω

Since T is consistent in ST+, then all of the proposed extensions of Γ,
including T, are consistent in ST+ (c/. Mendelson [11], p. 66, for a detailed
proof of the analogous result for first-order). Hence, by Lindenbaum's
Lemma, T has a maximally consistent extension, say (ωχ)max

9 with the
following property:

(vi) if p is any closed atomic wff of ST+, then either pe(ωT)max or
~£e( ω T) m σ x .

In order to complete the proof of (i), it is sufficient to establish the
existence of a type-preserving bijective function, say ξ, from the constants
of ST+ into the type universes of Sω such that for every closed atomic
wff c%{ch

m . . . cc

p),

(vii) c*n{cb

m . . . φ e (ωT)max iff ξ(pθ(ξ(cί) . . . {(<$)) = t.

In fact, there are very many functions which satisfy this condition. If we
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define 9Ŵ  as the image of the constants under ξ, then it is easy to prove
that 9Ŵ  is a MN structure which does indeed model T, cf. Mendelson [11],
ut supra, Q.E.D.

Finally, assume that p is strongly valid and yet not derivable in F. Then
Fϋ{~p}isa consistent extension of F, and, by (i), there is a MN structure
that models F U {~p}. Hence, by definition, ~p is verified by this struc-
ture. On the other hand, since p is strongly valid, p is also verified by the
same MN structure, which is impossible. Q.E.D.

This Theorem shows that the MN class is precisely the class of structures
called for in Step la.

6 ZFS-conditions on the MN class At this point it is self-evident that
the "wider" class for FK is at once a proper super-class of the class of
standard structures and a proper sub-class of the MN-class. Hence, the
definition of the "wider" class will be completed by the discovery of the
ZFS -conditions on the MN class called for in Step Ib.

Φ is a ZFS-condition on the MN class iff Φ is a wff in the field of ZFS
whose free variables are schematic variables of the following sorts:
(i) "9W", "91", etc., which are to be interpreted as variables ranging over
the members of the MN class; (ii) "9W[a]", "9W[b]", etc., which are to be
interpreted as variables ranging over the typed universes of MN struc-
tures; (iii) "S»[(B)]", "3W[(C)]", "»t[(BC)]", etc., which are to be inter-
preted as variables ranging over the non-primitive typed universes of MN
structures; and (iv) " Λ.9W", " X»Γ', " Xs»", etc., which are to be

(B) (C) (BC)

interpreted as variables ranging over the Cartesian products of typed
universes of MN structures.

Ψ is an index-specific instance of Φ if and only if Ψ is obtained from Φ
by uniformly replacing every occurrence of an "index" variable, e.g.,
" a " , " b " , etc., with a particular index and every occurrence of an "index
sequence" variable, e.g., " B " , " C " , etc., with a particular sequence of
indices.

(15) Satisfying a ZFS-condition Let Φ(9W) be a ZFS-condition on the MN
class. Then the MN structure 91 satisfies Φ(9W) iff every index-specific
instance of ON Φ(9W) is a true statement in the field of ZFS, i.e., if 91 has
the intrinsic set-theoretical property "expressed" by Φ(3W)

Since the ZFS-conditions for both Ex and its converse are fairly
obvious, they can be used as paradigmatic examples. Consider Ex first.10

(16) The Extensionality Condition.

V/V£ ^/, £ e3W[(B)] - (vηh e Xsfl -+/(τ?) = g(η)^j «-»/=£"))

Suppose that 91 is a MN structure, then 91 satisfies (16) if and only if every
index-specific instance of (16) is a true statement in ZFS. E.g., let us
replace " B " with the sequence " i , i", then the relevant instance of (16) is
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(16*) V/V*-.(/,*e*[(ii)]-* ( v i j ^ X ^ / W ^ f r , ) ) ^ ^ ) )

Assume that / and g are both elements of 91 [(ii)] and that for every

77 e Λ9i, f(η) - g(η)> Then according to (16*), / = £*, i.e., /and g are set-

theoretically identical. Now suppose that h is any element of 91 [((iί))], then

it must be the case that h(f) = h(g); that is,

(17) Vh(hem[((\\))]->h(f)=h(g)).

Hence, the relevant instance of Ex is verified by $1. Since the same line of
argument can be repeated for all other index-specific instances of (16), we
may now infer that if 91 satisfies (16), then 91 verifies every instance of Ex,
which was to be proven.

Next, consider the converse of Ex.11

(18) The Normality Condition

V/V (̂/, ge 9W[a] - (VΛ(Λ e»[(a)] - h(f) = h(g))«->/ = g))

Once again, it will be sufficient to prove that if a MN structure 91 satisfies
every index-specific instance of (18), then 91 verifies every instance of the
converse of Ex. Since the proof is closely analogous to the one just given, I
will omit the details.

Remark: If an MN structure satisfies both (16) and (18), then I will say
that it is a normal structure. Since both Ex and its converse are theorem
schemas of FK, only the class of normal structures will be given any
amount of attention in the sequel. As will soon be evident, restricting the
MN class in this way has several important advantages, cf. footnotes 10
and 11 below.

Having thus given two illustrations of the general method, I will now
consider the more difficult problem posed by the axiom schema of
Comprehension. First, I will need to introduce some additional termi-
nology.

(19) Definition: Let 9W be a normal structure. Then:

(i) A is a homogeneous subset of 9W iff A is a subset of A9W, i.e., A is an

(V \ {s)

Λawi.
(B) /

(ii) A is a characterized subset of 9W iff 51 e /MXSW), i.e., A is a
\(B) /

homogeneous subset of 9W, and there is an &*e3W[(B)] such that for every
ηe XSW,

(B) ,

in this case, h* is the characteristic function of A in 9W, henceforth,
"h* = XjίA)".

(iii) A is a definable subset of 9W iff Ae P\ Xsw) and there is a statement
\(B) /
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form p/Y/y where Ύ is a ^-sequence of variables, such that for every
77 e A9W, η e A iff for every assignment φ to 9W, if φ Γ T = 77, then (3W, <p) |=

_JB) __
p/Y/l in this case, A is the (Wl)-graph of £ / F / .

(iv) A is a parametric ally definable subset of M iff Ae PI A9W] and there
__ \(B) / __

is a statement form q/{X)Y/', where X is a C-sequence of variables and F
is a ^-sequence of variables, and there is a ye Xs0J such that for all

V (C) - -
η e A9W, η e A iff for every assignment φ to 3W, if #> Γx = y and >̂ Γ F = 77,

(B)

then (SW, φ)μq/(X)Y/; in this case, A is the (3W, γ)-graph of q/(X)Y/.
Remark: Lemma (10) alone is sufficient to guarantee that every statement
form p/Yj has a unique (9W)-graph and that every statement form q/{X)Y/
has a unique (9W, y)-graph, for all appropriate values of y. However, the
assumption that Wl is a normal structure is required in order to insure that
if a homogeneous subset of 3W has a characteristic function in 9W—and it
may not—then it has at most one such function.12

We can now state an "extrinsic" condition which a normal structure
must satisfy if it is to verify every instance of the Comprehension schema,

(20) The Comprehension Condition, first version Let 9W be a normal
structure. Then 9W verifies every instance of K iff every parametric ally
definable subset of Wl is a characterized subset of SPI, and conversely.

Proof: If a homogeneous subset of 9W is definable, then it is parametrically
definable, as the reader can easily confirm for himself. Hence, no
separate provision must be made for the definable subsets of 9W. More-
over, if A is a characterized subset of 9W then it is automatically a
parametrically definable subset of 9W. That is, suppose that A e P (XsW)

_ \(B) /

and there is an /**e3W[(B)] such that h* = X^U). Let x(B)(Y) be an atomic
wff whose variables are everywhere distinct, then it is self-evident that A
is the (aw, /z*)-graph of the statement form x{B)(Ϋ)/(x{B))Y/, which means
that A is parametrically definable. Therefore, in order to prove the
Theorem it will be both necessary and sufficient to prove that

(i) 9W verifies every instance of K iff every parametrically definable
subset of 9W is a characterized subset of 9W.

In one direction, assume that 9W verifies every instance of K and that
Ae P JA30M is a parametrically definable subset of 9W. Then there is a

statement form p/{X)Y/, where X is a C-sequence of variables and Y is a
B-sequence of variables, such that for some ye X,9W, A is the (9W, y)-graph

(C)

of p/(X)Y/. Given our initial assumption, we know that 9W verifies

(ii) VX3x(B) VΫ(x(B)(Ϋ)*+p/(X)Ύ/)

Hence, if φ is any assignment to aW such that φ I'X = y, then there is an
X(B) - v a r i a n t of φ, say ψ, such that
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(in) (m,ψ)ϊvΎ(x{B)(Ύ)*+p/(x)Ύ/).

But if this is the case, then ψ(x^) must be the characteristic function of
the (9W, y)-graph of p/(X)Y/, which is identical to A. This completes the
proof in one direction. In the other direction, assume that every
parametrically definable subset of 9W is a characterized subset of 9W and
that

(iv) \fX3y(B) VF(;y(B)(Ύ) ^q/(X)Y/)

is an arbitrary instance of K, where X is a C-sequence of variables and Y
is a B-sequence of variables. Then for every assignment φ to 9W, there is
one and only one ye ΛSW such that φ Γx = γ. Since the (9W, y)-graph of

(c)
q/{X)Y/ is a parametrically definable subset of SW, our first assumption
entitles us to conclude that this subset of 9W has a characteristic function
ft*e$W[(B)]. If we let ψ be the y{B) -variant of φ which maps ;y(B) onto ft*,
then it is self-evident that

(v) (m, ψ) N VY(y(B) (Ϋ) ^ P/(X)Ύ/),

which is quite sufficient to guarantee that 9W verifies (iv). Since (iv) is an
arbitrary instance of K, the general result that 9W verifies every instance
of K follows immediately. Q.E.D.

This Theorem is saying, in effect, that a normal structure will verify
every instance of K iff its typed universes are "sufficiently rich" to
contain a characteristic function for every parametrically definable—and,
hence, every definable—subset of the structure. What remains to be done
is to explicate the notion "sufficiently rich" in terms of a precisely defined
list of ZFS-conditions. I intend to prove that the typed universes are
"sufficiently rich" only if (i) the "membership" relation is a charac-
terized subset of the s t r u c t u r e , and (ii) that the structure's typed
universes are closed under a family of set-theoretical operations. All of
the operations with the exception of the last, cf. point (27) below, are the
"natural" higher-order correlates of operations in the theory of projective
sets, cf. [10], p. 357 et sq.

(21) Membership Let 9W be a normal structure, then

E{{B)B) = {</, η): </, n)e U Λ l ) = t}

is a definable subset of SDl.

Proof: Let x (Y) be an atomic wff whose variables are everywhere
distinct. Then EmB) is the (SW)-graph of the statement form* ( B )(F)/# ( B )F/.
(Note: In this proof, and in all subsequent proofs in this series, I will
include only the essential information, especially the appropriate statement
form. The reader can easily supply the missing details for himself.) Q.E.D.

(22) Complement Let 9W be a normal structure and (B) be any non-
primitive index. Then for every fe 9W[(B)],
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-|/ = {η:~/(η)=t}

is a parametrically definable subset of 9W.

Proof: Let x{B) (Ϋ) be any atomic wff whose variables are everywhere
distinct. Then!/ is the (9W,/)-graph of the statement form~#(B)(F)/(Λ;{B))F/.

if is an element of W X » \ . Q.E.D.
\(B) )

(23) Free Union Let 391 be a normal structure and let (B) and (C) be any
non-primitive indices. Then for allfe 9W[(B)] and allgeWl[(C)]9

f θ g = {(η, γ): f(η) = tvg(γ) = t}

is a parametrically definable subset of 3DΪ.

Proof: Let # ( B )(Γ) and y{c]\Z) be atomic wffs whose variables are every-
where distinct. Then/ θ g is the (3W, (/, g))-graph of the statement form

(xw(Ϋ)vyι&(Z))Λxwy{c))ΫZ/.

f Φ g is an element of Z7 ( X 9W). Q.E.D.
\(BC) /

(24) Permutation Let Wl be a normal structure, let (B) be any non-
primitive index and let π be a permutation on the numbers 0, . . ., n =
lh(B) - 1. Then for every fem[(B)],

πPm(f) = {(gπ(0), . . ., gπ(n)):f(g0 gn) =t}

is a parametrically definable subset of 301.

Proof: Let Λ;*B)(Γ) be an atomic wff whose variables are everywhere
distinct; moreover, let "πB" abbreviate "J5(π(0)), . . . B(Ή(n))" and "πY"
abbreviate "F(π(0)), . . ., Ύ(π(n))." Then P̂m (/) is the (9W,/)-graph of the
statement form* ( B ) (Ϋ)/(x{B))nY/. π?m (/) is an element of /^/XawV Q.E.D.

V^B) /
(25) Projection Let 9W be a normal structure and let (BC) be any non-
primitive index such that n = lh(B) - 1. Then for every /eSW[(BC)],

nP\(f)=L.3γ(γe XgWA/(rr]) = t U

is a parametrically definable subset of 3W.

Proof: Let # ( B C )(ZΓ) be an atomic wff whose variables jire everywhere
distinct and let Z be a £?-sequence of variables and Y a, C-sequence
of variables. Then nP\(f) is the (9W, /)-graph of the statement form
3Z(x{BC)(ZY))/(x{BC))Y/'. Hence, wPi(/) is an element of p(Xm\. Q.E.D.

(26) Identification Let Wl be α normal structure, let (B) be any non-
primitive index such that for some j and k,0*ίj<k^n= lh(B) - 1. Then
for every /e9W[(B)],

;'f*ld(/) = {(go, - ,gk-l>gk+l9 - ,gn):Agθ -gk-igjgk+i - - gn) = t}

is a parametrically definable subset of 9W.

Proof: Let x (Y) be an atomic wff whose variables are everywhere
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distinct; moreover, let "-kγ» abbreviate "7(0), . . . Ύ(k - 1), Y(k + 1), . . .
Yin)9' and "~*B" abbreviate "B(0), . . . , B(k - 1), B(k + 1), . . ^B{n)y\ Then
*'*ld(/) is the (SW, /)-graph of the statement form $^( j f I B I (y))/(ί f I B I Γ*y/.
Hence, ;' *ld(/) is an element of W X SwV ' Q.E.D.

\ H B ) /
Finally, I need another set-theoretical operation, which, so far as I know,
was first introduced by Shoenfield in the context of second-order arith-
metic, cf. [12], p. 230,

(27) Cut Let 9W be a normal structure and let (CB) be any non-primitive
index. Then for every η e Λ9W and every /ε9R[(C|B)],

(c)

Cutfo/) ={y: γe X\WlΛf(ηγ) = t}
^ (B) '

is a parametric ally definable subset of Wl.

Proof: Let x{CB) (XY) be an atomic wff whose variables are everywhere
distinct; moreover, let X be a C-sequence of variables and Y be a
^-sequence of variables. Then Cvϊ(ηf) is the (9W, (r?/))-graph of the
statement form # ( C B } (XT)/(X# ( C B ))F/. Hence, Cv\(ηf) is an element of

WXawY Q.E.D.
MB) /

Having introduced all of the operations that will be needed, I can now
present the long awaited definition of Henkin's "wider" class for FK,

(28) Definition: Let 9W be a normal structure. Then 501 is a general
structure iff 9W satisfies the following ZFS-conditions on the MlN class:

CI Xm(E{{BW) em[(B)]
CII V / ( / e » [ ( B ) ] - X*«(l/)e9W[(B)]
CIII VfVg((fe<m[(B)Vgem[(C)]) - Xm(f ®g)em[(BC)])
CIV V/(/ean[(B)]-Xw( 7 rPm(/))ean[( 7 rB)])
CV V / ( / e » [ ( B C ) ] - X»(-Pi ( / ) ) c » [(C)ΰ
CVI V/(/c»[(B)] - X*ί'"'*ld(/)) c»[(-*B)]) χ

CVII V η V / ^ e X«A/cW[(BC)]j-»Xm(Cut(?y/))€»l[(C)]J

provided that the superscripts on <(7T?m ", "nP\", and " / *|d" satisfy all of
the conditions in the antecedent of (24), (25), and (26), respectively.

Remark: Since 9W is a normal structure, the characteristic functions listed
above are unique elements of the indicated typed universes of 9W. Hence,
if 9W is a general structure, and only in this case, we may construe the
operations as functions from the typed universes of 9W into the typed
universes of 301. This allows us to avoid what is in effect the unnecessary
repetition of uX»j(. . . ) " . Thus, e.g., if Wl is a general structure and
/e3W[(B)], then I will write " i /eaw[(B)]" instead of "X«( i / )€»i [ (B)]" .

Having proposed a definition of the "wider" class for FK, I must now
show that it is in fact the class of structures that we have been looking for.
Specifically, I must prove that if a normal structure satisfies ZFS-
conditions CI through CVII, then it does in fact verify every instance of K.
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The proof of this result is not especially difficult, but it is rather long.
Therefore, it seems to me that the most reasonable line of attack is to
shorten the proof of the main result as much as possible by distributing
some of the work to a series of preliminary lemmas. The first part of the
series will increase the number of set-theoretical operations under which
the typed universes of general structures must be closed.

(28) Free Intersection Let Wl be a general structure, let (B) and (C) be any
non-primitive indices, and for every /e9W[(B)] and every g*e3W[(C)], let

/ Θ ^ = {(r?r):/(r?)=tA^(r)=t}

then 9W satisfies the ZFS-condition:

CVIΠ V/V^((/eXW[(B)]A^€9W[(C)]) - XΛ(/ Θ g) e 9W[(BC)]).

Proof: Since 9W is a general structure, ~l(~l/ e Ig) e9W[(BC)]. All that
needs to be proven is that Ί ( Ί / Φ l ^ ) is the characteristic function of
/ Θ ge P ( X$Jη; that is, for all η e Xι9W and for all ye XsW,

\(BC) / (B) (C)

(i) 1(1/ ®Ίg){ηγ) = t iff (ηγ) e f G) g.

Since the proof of this point is an elementary exercise in the field of ZFS, I
will omit the details (Note: Since 9W is a general structure and since fΘg
has a characteristic function in 3W, I will write "/© geWl[(BC)]" instead of
"X*w(/ ®g) e9W[(BC)]". Henceforth, a notational agreement of this kind will
be tacitly assumed.) Q.E.D.

(29) Boolean Operators Let 9W be a general structure, let (B) be any
non-primitive index, and for every f, geWl[(B)], let

fVg = {η:Ari) =twg(η) = t}
fng = {η:f(η)=tΛg(η)=t}.

Then 9W satisfies the ZFS-conditions

CIX V/yg</,^€»l[(B)]-X»(/U5 )eW[(B)])
CX V/V^(/,^€9W[(B)]-Xw(/Π^)eaw[(B)])

Proof: If /, geWl[(B)), then / θ ̂ e9W[(BB)]. Hence, the characteristic
function for / U g e P I X'SW] may be obtained by repeatedly applying the

\(B) /
Identification operation to/ eg9 as in [10], p. 358; i.e., if n = lh(B),

(i) X«(/U*) = °'wld(. . . Γ1 '2 1 1-1!^/ ®g)) . . .).

In an analogous way, the characteristic function for fΠg may be obtained
by repeatedly applying the Identification operation to / © g*e9W[(BB)]. Q.E.D.

(30) Boolean One and Zero Let 9W be a general structure, let (B) be any
non-primitive index, and let

0 ( B ) =\η:ηe X a W Λ - r j e X s f l k
I (B) (B) )
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Then 9W satisfies the ZFS-conditions:

CXI X«(1(B))€»I[(B)]
CXII XW0(B))€9W[(B)]

Proof: By CI, EmB) c»[((B)B)]; thus, by CV, °Pj (£ ί ί B ) B )) e SW[(B)]. Hence,
given CΠ and CIX,

(i) X«,(0(B)) = °?\(Ems)) U l°Pj(£«B>B>)
(ii) X w (0 ( B ) ) = °Pj(£«B)B)) π Ί°Pj(£((B)B))?

which was to be proven. Q.E.D.

These additional operations are only a small sample of the set-
theoretical operations under which the typed universes of general struc-
tures are closed, see section 7 below for some others. The principal
reason for introducing them at this point is to facilitate the proofs of the
final part of the series of preliminary lemmas.

(31) Superfluous Variables Let Wl be a general structure and let p be any
wff whose free variables are identical to the variables in the B-sequence X
of everywhere distinct variables. Then if the (Wt)-graph of the statement
form p/X/ is a characterized subset of 9W, so is the (3W)-graph of the
statement form p/XY/, where Y is any finite sequence of everywhere
distinct variables, all of which are foreign to p.

Proof: Assume that the (9W)-graph of p/X/ is a characterized subset of 9W.
Then we can prove the desired result by induction on the length of the
sequence Y.

Case 0: If the length of Ύ is 0, then p/XΫ/ is identical to p/X/ and there is
nothing to prove.

Inductive Hypothesis: Assume that the Lemma has been confirmed for all
sequences of variables whose length is less than or equal to n.

Case n + 1: Let Y = ~Zya be a sequence of length n + 1; moreover, let Z be a
C-sequence of variables. Then, by the Inductive Hypothesis, the (9W)-graph
of p/~XZ/> say A, has a characteristic function h* e M[(BC)]. Now assume
that Be P ( X m\ is the (9W)-graph of p/XZya/ = p/XY/. Then since ya is

\(BCa) /

foreign to p, it must be the case that

(i) for all (ηf) e X 9W, (ηf) e B iff <τj> € A, that is, h*(η) = t;
(BCa)

and thus,

(ii) for all (ηf) e X 9H, (ηf) e B iff h*(η) = t and lίa) (/) = t.
(BCa)

Hence, X<m(B) = h* Θ l ίa), which completes the inductive argument. Q.E.D.

(32) Permuting Variables Let 9W be a general structure and let p/X/ be
any statement form. Then if the {Wl)-graph of p/x/ is a characterized
subset of 9W, so is the (9W)-graph of p/77^/, where π is a permutation on the
numbers 0, . . ., n = lh(X) - 1 and ""X" is defined as in (24).
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Proof: Assume that X is a B-sequence of everywhere distinct variables
and that the (9W)-graph of p/X/ does have a characteristic function
/**eSW[(B)]. Then the characteristic function of the (9W)-graph of p/πX/ is
πPm(h*)em[(πB)]. Q.E.D.

(33) Identifying Variables Let 9W be a general structure and let p be a wff
whose free variables are identical to the variables in the B-sequence X of
everywhere distinct variables; moreover, assume that every variable which
has at least one free occurrence in p has at most one free occurrence in p.
Then if the (Wl)-graph of the statement form p/X/ is a characterized subset
of m, then so is the (m)-graph of SγφP/'kΫ/, ^here 0 ^ j< k< lh(F),

Ψ(j) and Y(k) are variables of the same type, and "~kγ» is defined as

M 2 6 ) .

Proof: Assume that the (9W)-graph of p/X/ has a characteristic function
/z*_e9W[(B)]. Then the characteristic f u n c t i o n of the (9W)-graph of
Sτ( ) P/'kV is '"'*ld(Λ*) e SK[C*B)]. Q.E.D.

(34) Parametrizing Variables Let Wibe a general structure and let p/XY/
be a statement form such that X is a B-sequence of variables and Y is a
C-sequence of variables. Then if the (Wl)-graph of p/XY/ is a charac-
terized subset of 9W, then for all η e Λ9W, the (9W, η)-graph of p/(X) Y/ is a
characterized subset of 9W. ( B )

Proof: Assume that the (SW)-graph of p/XY/ has a characteristic function
h*em[(BC)] and that ηe XsW. Then the characteristic function of the

(B)

(aw, 77)-graph of p/(X)Y/ is Cu\(ηh*) €SW[(C)]. Q.E.D.

This concludes the series of preliminary lemmas. I will now state and
prove the main theorem.

(35) The Comprehension Condition, final version Let Wl be a normal
structure. Then 9W verifies every instance of K iff 9W is a general
structure.

Proof: In one direction, assume that 9W verifies every instance of K. Then
by the first version of the Comprehension Condition Theorem, every
parametrically definable, and, hence, every definable, subset of 9W has a
characteristic function in 9W. Hence, 3PΪ will obviously satisfy ZFS-
conditions CI through CVIII which means that 9W is a general structure. In
the other direction, assume that 9W is a general structure. According to
the first version of the Comprehension Condition Theorem, 9W will verify
every instance of K iff

(i) every parametrically definable subset of SW is a characterized subset
of m,

or, equivalently,

(ii) for every statement form p/(X)Y/9 where X is a ^-sequence of



482 JACK C. BOUDREAUX

variables and Y is a Osequence of variables, and for every η e Λ9W, the
(9W, 77)-graph of p/(X) Y/ is a characterized subset of 9W. ί B )

Given preliminary Lemmas (31), (32), (33), and (34), it is possible to
greatly reduce the number of cases to be considered; that is, point (ii) can
be shown to be equivalent to

(iii) for every statement form p/X/ such that:

(1) the free variables of p are identical to the variables in the B- sequence

x;
(2) every variable having at least one free occurrence in p has at most one
free occurrence in p;

and

(3) the order of the variables in the sequence X is identical to the order of
their first occurrence in p, the (SW)-graph of p/X/ is a characterized
subset of 9W.

To demonstrate the equivalence of (ii) and (iii), let p/(X)γ/ be any
statement form. Then, by Lemma 34, if the (9W)-graph of p/XY/ is a
characterized subset of 9W, then so is the (9W, τ;)-graph of p/(X)Y/, for all
ηe ASH.

(B)

Suppose that p contains more than one occurrence of the same free
variable. Then there is a wff p* such that p* satisfies condition (iii.2) and
p is a substitution instance of p*. Let Z be the set of all of the free
variables of p* which are not free variables of p. Then, by Lemma (33), if
the (3W)-graph of p*/XYZ/ is a characterized subset of 9W, then so is the
(SW)-graph of p/XY/. Let π be a permutation on the sequence of variables
XYZ such that every variable which has a free occurrence in p* preceeds
every variable which does not have a free occurrence in />*; moreover, let
π order the variables of the first kind, say, the variables in the sequence Ίϊ,
in the order of their first occurrence in p*9 and let π order the variables of
the second kind, say, the variables in the sequence F, in the order of their
occurrence in the sequence XYZ. Then, by Lemma (32), if the (SW)-graph
of p*/UV/ is a characterized subset of 9W, then so is the (SW)-graph of
p*/XYZ/. Finally, since no free variables of p* are in the sequence V, then
by Lemma (31), if the (9W)-graph_of p*/U/ is a characterized subset of 9W,
then so is the (SW)-graph of p*/ΊJv/. Hence, p*/ΊJ/ is a statement form
which satisfies all of the conditions of (iii) and which has the following
property: if the (SW)-graph of P*/U/ is a characterized subset of 9W, then
for every ηe j\M, the (3W, rjj-graph of p/(X)Y/ is a characterized subset

(B)

of SW. Since the proof that (ii) implies (iii) is trivial, this concludes the
demonstration that (ii) is equivalent to (iii). This in turn implies that 3W
will verify every instance of K iff

(iv) if p/X/ is a statement form satisfying all of the conditions of (iii), then
the (aw)-graph of p/X/ is a characterized subset of 9W.
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It remains to be proven that 9W does satisfy (iv), and this can now be done
by induction on the length of the wff p.

Case 0: Let p be the atomic wff x(B)(Y) and let # ( B ) (7)/#< B )7/ satisfy the
antecedent of (iv), then the (SW)-graph of x(B)(Y)/x{B) Y/is Eί(B)B), which,
by CI, is a characterized subset of 9W.

Inductive Hypothesis Assume that (iv) is satisfied by all statement forms
p/X/ such that p/X/ satisfies the antecedent of (iv) and the length of p is
less than or equal to n.

Case n + 1: Let p/X/ be a statement form which satisfies the antecedent of
(iv) and let p be a wff of length n + 1. Moreover, let X be a B-sequence of
variables. Then there are precisely three subcases to be considered,
namely: (i) p/X/ is ~q/~X/, (ii) p/X/ is (q—r)/X/, and (iii) p/X/ is

Subcase (i): If />/X/ is ~ q/X/9 then the length of q is less than n + 1. Since
tf/X/ satisfies the antecedent of (iv), the Inductive Hypothesis implies that
the (SW)-graph of q/X/ has a characteristic function Λ*eSW[(B)]: Hence,
Ίh* e 3W[(B)] is the characteristic function of the (9W)-graph of p/X/.

Subcase (ii): If pfxj is (q —> r)/X/y then the length of both q and r is less
than n + 1. Thus, the Inductive Hypothesis, and, if necessary, Lemmas (31)
and (32), enable us to infer that the (9W)-graph of q/X/ has a characteristic
function /* eSW[(B)] and that the (SW)-graph of r/X/ has a characteristic
function g* e SW[(B)]. Hence, Ί / * U g* e 9W[(B)] is the characteristic function
of the (9W)-graph of p/X/.

Subcase (iii): If P/X/ is Vybq/X/, then the length of q is less than n + 1.
Thus, the Inductive Hypothesis, and, if necessary, Lemmas (31) and (32),
enable us to infer that the (9W)-graph of q/ybX/ has a Characteristic
function Λ*eSW[(bB)]. Hence, Ί°Pj(Ί/**) e3W[(B)] is the characteristic
function of />/X/. Since the desired conclusion has been obtained in each
subcase, Case n+ 1—and with it the inductive proof of (iv)—is now complete.

Therefore, if 9W is a general structure, then SW verifies every instance of
K, which was proven. Q.E.D.

Having completed the proof of the main theorem, I have now satisfied
in every respect the specifications set forth in Step Ib, cf. section 4 above.
In order to prove that the class of general structures as defined in (28) is
in fact Henkin's "wider" class for FK, i.e., in order to complete Step II
and Step III of Henkin's proposal, it will be both necessary and sufficient to
solve the Characterization Problem for FK with respect to the following
notion of validity: a wff p is generally valid iff p is verified by every
general structure; a wff p is generally invalid iff p is falsified by every
general structure.

If this modified notion of validity is accepted, then we can prove
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(36) The Characterization Theorem for General Validity A wff pis gen-
erally valid iffp is derivable in FK.

Proof: The proof of (36) is very nearly an exact replica of the proof of
Theorem (14). I will omit the details. (Note: The analogue of Henkin's
Lemma, cf. (14.i), used in the proof of this Theorem reads as follows

(i) if T is a consistent extension of the higher-order calculus FK, then
there is a general structure 3W such that 3W models T.

As before, the general structure 3W constructed in the course of the proof
is obtained from the standard structure Sω and all of its typed universes
are either uniformly finite or uniformly denumerable.) Q.E.D.

7 Some concluding observations Suppose that aw is a general structure
and that a is a non-primitive index, then it is an immediate consequence of
CII and CDC through CXΠ that SI (3W, a) = <aw[a], U, Π, Ί, Γ, 0a> is a Boolean
Algebra, henceforth, "BA".

(37) Observation If W is a general structure and a is a non-primitive
index, and z/51(9W, a) is an atomic BA, i.e., for every η e X$W, let

Ίη = |y: yeXwΛiy = yj,

then 3Wsatisfies the ZFS-condition:

CXIII Vη (η e X»W - X»(1τ]) e 3W[a])

Proof: Assume that a = (b0 . . . b«). Then for every by, 0 ^ ^ n, let gybe
the wff

(i) V*(M (z{bi] (xbή ^ z{bϊ] (/0)

Since 3R satisfies the Normality Condition, if is any assignment to 9W such
that (aw, φ) = qjy then, necessarily, φ(xbi) = φ(ybi). Hence, if q is the
conjunction qQ Λ . . . *qn, then Λη is the (3W, 77)-graph of the statement form

(ii) <?/(>, . . .9x^)y\ . . . , / * /

that is, if φ |V°, . . ., Λ:^ = r], then (9W, φ) t=^ iff </? Γ/°, . . ., ybn = γ and
77 = y. Therefore, 17/ is a parametrically definable subset of 9W, and, by
Theorem (35), X»(i7j) e9W[a], as required by CXIII. Q.E.D.

The fact that 31 (9R, a) is an atomic BA for every non-primitive index a
has a very interesting consequence, namely:

(38) Corollary Every finitary general structure is identical to a finitary
standard structure up to isomorphism.

Proof: If aw is a finitary general structure, i.e., if all of 3W's typed
universes are finite sets, then every element of /*(A9Wj is a finite set.

Since 3W is closed under the formation of "unit sets" and under all
applications of the union operation, then every element of /*|XflWj has a
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characteristic function in 9W[a]. Therefore, it is an easy exercise to

confirm that 9W is a "standard" structure in the sense of footnote 10. Q.E.D.

(39) Observation If Wl is a general structure and a is a non-primitive

index, thenM(Wl, a) is a pseudo-complete BA, i.e., for every /ze9W[(a)], let

\ήh = {η: η e Xsw A 3/(A(/) = tΛ/fo) = t)}

then Wl satisfies the ZFS-Condition

CXIV Vh(h e 3W[(a)] -> Xm(uh) e aw[a])

Proof: The set w/ze W XaWl is the (3W, &)-graph of the statement form

(i) 3 * ^ 3 V ) A **(?))/(* ( a ) )F/,

which means that bj/z is parametrically definable. Therefore, by Theorem

(35), Xsn(LJft) e 3W[a], as required by CXIV. Q.E.D.

Let Ae />(a«[a]) and let

(40) UA = {?]:r]€X9WΛ3/(/eAΛ/(?7) =t)}

then XJ[\JA), if it exists, is the least upper bound, henceforth, "l.u.b.", of

A. Observation (39) can now be reformulated as follows,

(41) Let Ae /*(9W[a]), then the l.u.b. of A exists only if there is an heWl[(a)]
such that h = XW(A), in which case \ήh = Xsn(Ll4)> that is, every character-
ized subset of 9W has a l.u.b.

The stronger claim, namely, that every homogeneous subset of $H has
a l.u.b. is equivalent to the claim that 21 (3W, a) is a complete BA for every
non-primitive index a, cf. Sikorski [13], p. 65. The stronger claim is true
iff 9W is identical to a standard structure up to isomorphism.

NOTES

1. This system of type indices is based on a single primitive index. Church's system, described
in [5], which was used both by Henkin in [7] and Andrews in [1] and [2], is based on two
primitive indices, namely: " i" the type of individuals and "o" the type of sentences, and it
makes use of the "monadic predicate only" device invented by Shoenfinkel. Despite the ele-
gance of Church's system, I have decided to use the slightly more popular one-based system
with indices for «-adic predicates because, for my purposes, this system has a more "natural"
set-theoretical interpretation.

2. The last clause of this definition is intended to insure that the substitution operation is de-
fined for all wffs and for all choices of ta, even if there is no free occurrence of xa in the wff
or ta is not free for xa.

3. It should be emphasized that statement forms are not simply open wffs. Specifically, in-
finitely many different statement forms can be generated from one and the same open wff.
The criteria for identity of statement forms is as follows: pl(X)Y/ is identical to ql(U)V/ iff
p_is identical to q, X is identical to U, i.e., lh(Jθ = lh(F) and for all /, 0 </ < lh(JP), X(j) =
U(j), and Y is identical to V. Thus, the notion "statement form" as used in this paper is not
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equivalent to the notion "propositional form" as used by Church in [6]; in his sense, any
open wff is a propositional form. Finally, if p/(X)Y/ is a statement form, then the parenthe-
sized variables will be said to be parameters, for reasons which will be obvious if the reader
consults the axiom schema of Comprehension in section 3.

4. The structures defined in (8) are given many different descriptive titles in the literature, viz.
"intended (primary) interpretations," "full models," "principle realizations," etc. It is often
said, cf. Church [6], p. 315, that these studies are the proper interpretations of the type
theoretic language. However, it seems to me that the "propriety" of standard structures has
been greatly exaggerated. In fact, I believe that it would be very difficult to establish that,
e.g., the universe of "properties" of individuals, in a strict sense, forms complete atomic
Boolean Algebra! But whether this claim is true or not, it is certainly not self-evident.

5. In the field of FK, Ex is strong enough to guarantee the truth of Leibniz's Principles. That is,
suppose that p is any wff, ua is a free variable of p, xa and ya are foreign to p , and V* is a
block of universal quantifiers that bind all of the free variables of p other than ua, then the
schemas

L I. Vx*Vya(vX(xa(X) *->ya(X)) «-* V*($""P ^S^pj)

L II. VxaVya (^z^(z^(xa) +-> z^(ya)) <-• V* (S^P ~ S " « P ) )

are both theorem schemas of FK.

6. Henkin's instructions are given in [7], footnote 5. He says, in effect, that each method of
compounding a wff, e.g., adding a negation sign, applying an existential quantifier, etc., has
an operation associated with it on the typed universes of the structure, e.g., complement,
projection, etc., and that the typed universes must be closed under all of these operations. In
a strict sense, this observation is at best only partially correct. What we have to guarantee is
that the typed universes are closed under the operations associated with all ways of con-
structing statement forms, cf. footnote 3 above are definition (28).

7. The universe of individuals of every standard structure is an ordinal in the sense of von Neu-
mann, and, hence, a constructible ZFS-set. Let us agree that the truth value "f" designates
the von Neumann ordinal 0, i.e., the null set, and that " t " designates the von Neumann
ordinal 1, i.e., the set {φ}. Then since the universe of constructible ZFS-sets is closed under
the formation of finite Cartesian products and under set-exponentiation, every typed universe
of every standard structure is a constructible ZFS-set. Moreover, since the finite ordinals can
be effectively mapped onto the type indices, the Axiom (Schema) of Replacement in ZFS,
cf [10], p. 54, guarantees that every standard structure is a constructible ZFS-set. It might be
objected at this point that this way of defining standard structures omits an immense variety
of constructions which are fully entitled to this honor, viz., let M2[ι] = {2n:0 < n < ω}, let

M2[(B)] be the set of all functions from XM2 into {t,f}, i.e., 1{0},0}, etc. I am certainly
( B ) y ι " > >

willing to conceed this point, but it should be noted that every structure which is entitled to
be called a standard structure, like M2, is essentially identical to a standard structure, that is,
is identical to a standard structure up to isomorphism. Specifically, there is a type-preserving
bijection θ from U (Λ/2[a]: a is an index} onto U {sω[a]: a is an index} such that for all
fe M2[(B)] and all <g0,. . , S«> e X M2, f(g0 . . . * „ ) = 0(/)(0(go) . . 0(gn)). Any function θ

(B)

which satisfies these conditions is an isomorphism fromSW2 to Sω. I leave it to the reader to
establish that such a function exists. This result can obviously be generalized. Let x be any
unempty set, then define the "standard" structures Sx as follows:
(i) S?U)-x , ,
(ii) Sx [(B)] = \f: dm(/) = 'λSxΛ rg(/) C {t,f}j>
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then for any sets y and z, if y is equinumerous with z, i.e., if there is a bijection θ from y
onto z, then θ can be "extended" to an isomorphism θ* from Sy toSz. Since isomorphic
structures are identical to each other in all semantically important respects and since, given
the Axiom of Choice, every set is equinumerous to a finite or initial ordinal, it seems to me
that the omission of these "standard" structures is an altogether reasonable move.

8. The notion "ZFS-condition," which I am here using in an intuitive way, will be accurately
explained at the beginning of section 6.

9. MN structures do have rather "odd" properties, e.g., if $Ji is a non-standard MN then there
must be at least one index (B) such that

(i) V/(/eW[(B)]^Xwcdm(/))
(B)

The reader should be able to convince himself that (i) will not give rise to any special diffi-
culties, i.e., since every element of9W[(B)] maps every element of XSJW onto either t or f,

( B )

the fact that Λ3W is a proper subset of the domain of the elements 3W[(B)] is really of no
(B)

essential importance. Even so, the reader might think that a more "reasonable" definition
of the non-standard structures would look like this, (ii) Frames Let μ be an ordinal satisfying
the antecedent of (8). Then

ίl.3W[i] = μ

J 2. φ *=W[(B)] C j / : dm(/) = XSΠΛ rg(/) C {t,f }|

However, it is rather easy to show that the class of all frames is not the "widest possible"
class of structures. Specifically, the reader should be able to confirm that every frame verifies
every instance of Ex, whereas it is very easy to construct MN structures which falsify every
instance of Ex. In any case, since Ex is obviously not a theorem schema of F, the "frame"
construal of the "widest possible" class simply won't do.

10. This ZFS-condition is a little stronger than it has to be to get the job done. I could have
introduced a much weaker condition, i.e.,

(0 V/V*(/,* e9M[(B)] -> Vτ?(τ? e Xm^f(η) = g(η)) -> VΛ(Λ e*W[((B))] -*h(J) = h(g)))
(B)

If an MN structure satisfies (i), then it will verify every instance of Ex. However, it seems to
me that in this case the comparative weakness of (i) is not especially advantageous. First, it
can be proven that if 9JJ is any MN structure satisfying (i), then there is an MN structure 91
satisfying (16) such that sΛ>Jis elementarily equivalent to 9ί, i.e., for every wff/?,9W verifies/?
iff 91 verifies p. Secondly, it can be proven that the class of MN structures satisfying (16) is
identical to the class of MN structures that are isomorphic to frames, cf. footnote 9 above.
Both of these facts very clearly show the advantages to be gained by accepting the stronger
ZFS-condition.

11. This condition can also be weakened, i.e.,

(i) V/Vg(/,£ e*W[a] -> (VΛ(Λ eSW[(a)] -+ h{j) = h(g)) -+ Vτ?(τ? e X m-+ftη)=g(η))))
(B)

However, the superiority of (18) to (i), can be established by much the same line of argument
that was used in footnote 10 above. It should be noted that ZFS-conditions (16) and (18)
are independent of one another, i.e., there are MN structures which satisfy (16) but not (18),
and conversely. Since these constructions are not especially difficult, I omit the details.

12. If either of the "weakened" conditions, cf. footnote 10, point (i); footnote 11, point (i), had
been accepted, then it would not have been possible to guarantee the uniqueness of the
characteristic functions. This is yet another argument in favor of (16) and (18).
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