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ADMISSIBLE SETS AND RECURSIVE EQUIVALENCE TYPES

CARL E. BREDLAU

Recently there has been much interest in admissible sets. Part of this
is due to the fact that the constructive notions of finiteness and recursion
can be extended to include infinite sets and operations. In such a structure,
recursive equivalence types can be defined which correspond to the
classical ones. We shall show that the Cantor-Bernstein Theorem and the
Tar ski Cancellation Law hold in a straightforward manner. However, a
satisfactory definition of an isol depends upon the admissible set. We shall
exclude projectible admissible sets which have elements that include large
Σ x definable subsets. Also, we shall need a weak uniformizing procedure to
tie together recursive enumerability and Σι definability. With these
conditions some of the equivalences that hold for isols can be extended to
admissible sets. We shall conclude with a stronger definition of an isol
which preserves a cancellation law similar to that for the ordinary isols.*

1 Definitions and propositions The following definition and Propositions
1-6 are due to Jensen [3]. The definition will give great flexibility in
defining functions. The proofs of the propositions are elementary and can
be found in [l]. Throughout we shall consider a non-empty transitive set
2ft. Our language contains the predicates = and e with their usual inter-
pretation and constant symbols for each xeWl; we shall use the same
symbol for both object and name. We allow bounded quantification Vxeyφ
and Bxeyφ. Those formulas which contain only bounded quantifiers are
called Σo predicates. They are closed under the operations Λ, V, Ί, -*, <->,
and Vxey, 3xey. We are particularly interested in the Σ^Πi) predicates
of the form 3xφ(Vxφ) where ψ is Σo. We say 9ft is admissible if 9ft satisfies
the following axioms (called PZF):

(1) Axioms of the empty set, pairing, and union.

*Most of the material in this paper appears in the author's Ph.D. thesis (Rutgers University,
1972), supervised by Professor Erik Ellentuck whose help and interest were indispensible.
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(2) Σ o separation: Vx3yVz[z e y <->£ e XA φ]9 where φ is Σ o and only z is
free in φ.
(3) Σ o replacement or collection:

Vx3yφ -* VuBυVxe u3ye vφ,

where φ is Σ o and only x, y are free in φ.

If xe 9ft, we say x is metafinite. Let 9ft̂  denote the set of ^-tuples with
elements in 9ft. A set or relation a c tylk is Σ^Πj) definable if there is a
ΣiίπJ predicate <p with & free variables such that

(x19 . . ., ^ e α ^ ^ , . . ., xk).

We call a a Σ^Πx) seί. A set α is Δ : definable if it is both Σ1 and Πj.
definable; we call α a Δx s#£. For clarity we shall use the following
conventions: An admissible set is denoted by 9)?. Lower case English
letters α, b, c, u, v, w, x, y, z will denote elements of 9ft; the remainder
will denote functions. Lower case Greek letters a, β, γ etc. will denote
subsets of 9ft; but we shall reserve the use of φ and ψ for predicates. Also
dom /, rng /, /"<z, ft* a; fog will denote the domain of /, range of/, the image
of a under /, the restriction of / to a and the composition of / and g.

Proposition 1 ( Δ X separation) The intersection of a metafinite set and a Δ x

set is a metafinite set.

Proposition 2 (Σι collection) Let φ(x,y) be a Σι predicate and suppose
Vx3yφ(x,y) holds in 3)?. Then for any aeWl there is a δe9ft such that
VΛΓe a3ye bφ(x,y).

Proposition 3 If φ{x) is Σlf then so is V#e aφ(x) and 3xe aφ(x).

We shall say a partial function / from 9ftfe into 9ft is partial recursive
(p.r.) if the relation f(xχ, . . ., Xk) = y is Σ x ; a p.r. function is recursive if
the domain of / is all of 9ft. We note that the domain and range of a p.r.
function are Σ x sets.

Proposition 4 Let f be a p.r. function and aeWl. If a^ dom / then f1 ae 9ft.

Proposition 5 The composition of (partial) recursive functions is (partial)
recursive. Also, \jx, x[j y, {xl9 . . ., xk}, (xl9 . . ., xk), dom x, rng x, x"y,
etc. are recursive functions.

Proposition 6 (Recursion Theorem) Let h(y, xu . . ., #&) be a recursive
function such that {(z,y)\ze h(y, xl9 . . ., xk)} is a well-founded relation for
all xlf . . ., Xk iw9ft. Let g(y, xlf . . ., xk, w) be α p . r . function. Then there
exists exactly one p.r. function f{y, x1} . . ., x£ such that

f(y, Xi, . ., Xk) ** g(y> Xι, - - ., Xh, </(*, Xχ> , xύ\zth(y, xl9 . . ., xk))).

Proposition 7 Let On denote the ordinals in 9ft. Then On is a Σ o set.

We shall use the convention that if x, y are ordinals then x < y means
xe y.
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Proposition 8 (Choice function for metafinite sets of ordinals) For xe 9)2,
let inf(#) = y if x c On and y is the smallest element in x, and inf(̂ r) = 0
otherwise. Then inf(#) is a recursive function.

2 Simple arithmetic on admissible sets We say ε is an admissible
ordinal if ε is the first ordinal not in an admissible set 9)2. We shall
consider subsets of ε and assume we are in some fixed admissible set 9)2.
A p.r. function f(x) whose domain is ε will also be called recursive. (We
can make dom / equal 9)2 by letting f(x) = 0; if #/On.) The following defini-
tions are standard and can be found in Dekker and Myhill [2]. Denote by
P(ε) the set of all subsets of ε. We say a, βe P(ε) are recursively equiva-
lent (a ^ β) if there is a 1-1 p.r. function f(x) such that a c dom / and
/ "α = β. It follows that ^ is an equivalence relation; thus c* partitions P(ε)
into equivalence classes. For aeP(ε), define (a) = {β\β — a}. If A = (a), A
is called the recursive equivalence type (RET) of a. Let Ω be the class of
RETs of members of P(ε). If a e A e Ω we call a a representative of A.

We know from the ordinary theory of RETs that to define addition we
must put a separability condition on the representatives of RETs. If
a, βeP(ε), then a is separable from β(a\β) if there exist Σ : sets μ, veP(ε)
such that a c μ9 β c u, and μ Π v = φ. Given any two RETs we can always
find separable representatives in the even and odd ordinals.

P r o p o s i t i o n 9 If ax^a2 and βλ^β2 such that a1\β1 and a2\β2, then
oίi U β, <* a2 U β2.

Let A, Be Ω and ae A, βe B, where a\β. We define the sum of A and B
by A + B, where A + B = (a U β). From the above, addition can always be
performed and is well defined. If A, Be Ω we shall say A ^ B if there is a
Ce Ω such that A + C = B.

Theorem 1 (Cantor-Bernstein Theorem) Let A, B be RETs of an admis-
sible ordinal ε > ω, the first countable ordinal. Then A^B and B^A
implies A = B.

Proof: We note that a proof of the theorem for the case ε = ω uses the
facts that (1) Σx sets are recursively enumerable, (2) a computation can be
halted before it is completed, and (3) finite sets can be well ordered by a
recursive function. We do not assume these facts; however, there is enough
structure to permit an iteration a countable number of times. The proof
will follow the classical one, modifying where necessary to make it
effective. Since A^B and B < A, there exist RETs C and D such that
A + C = B and B + D = A. We can assume that there exist representatives
a, β, y, δ of A, B, C, D, respectively, such that a and β are contained in the
even ordinals and γ and δ are contained in the odd ordinals. Moreover,
there exist two p.r. functions p(x) and q(x) such that a U γ c dom p,
p"(aUγ) = β and (β U δ) c dom q, q"(β U δ) = a. Let us also assume 0,
2/dom p. Define the p.r. function r(x) as follows: Let r(0) = 0, r(2) = 2.
In the following if q~ι{x) or p~1q~1(x) is undefined, r{x) is also undefined.
For x Φ 0, 2 compute tf"1^); if q~ι(x) is odd, let r(#) = 0. If q~\x) is even,
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compute z = p~1q'ι(x). If z is odd, let r(x) = 2; if z is even, let r(x) = z.
Note that for x e a, r{x) = 0 if q~ι{x) e δ, r(#) = 2 if 2 e y, and r(#) = 2 if z ea.
Define the p.r. functiong(y,x,a) as follows:

g(y,x,a) = z <-> 'a is a function'Λ dom a = 3; Λ rng a c On
Λ[[3! = 0 Λ ^ = r(#)]v[0 < 3> < COΛ 2 = r ίαy.J] v[y = ω Λ2 = inf(rng α)]].

Here we use the fact that ε is greater than ω and that the choice principle
holds for a metafinite subset of ε. We define the function f(y,x) by the
recursion theorem. Let h(y,x) = 3/, if y e On and 0 otherwise. Then for any
x the relation {(z,y) \z e h(y,x)} = {(z,y) \z < 3;} is well-founded. Hence by the
recursion theorem f(y,x) - g(y,Xy(f(z,x)\z < y)) is a p.r. function. By the
construction of g(y,x,a) we see that for y < ω,f(y,x) ^ ry+\x), an iteration
of x by r(x) for y + 1 times. If #e α, the function /(3>,x) is defined for every
y < ω and hence, by a slight modification of Proposition 4, < (̂3;,ΛΓ) 13; < ω) is
a metafinite set. Then/(ω,Λr) is always defined for any AT eα. Note that if
x e a, f(ω,x) = 0 means that the computations q~\x), p~1q~1(x), q~1p'1q~1(x),
. . . eventually terminate in δ; f{ωjc) > 0 means that either the computa-
tions are always in a and β or they eventually terminate in γ. Finally,
define the 1-1 p.r. function t(x) which will map a onto β: t(x) = q"1(x) if
f(ω,x) > 0 and t(x) = p(x) if f{ω,x) = 0, and is undefined otherwise. The
function t{x) corresponds to the classical equivalence. Q.E.D.

Theorem 2 (Tarski Cancellation Law) Let A, B, M be RETs of an admis-
sible ordinal ε > ω . If A + M = B + M, then there exist RETs A', B1', N such
that A = A' + N, B = B' + N and A' + M = M = B' + M.

Proof: Let a, β, μ be representatives of A, B, M respectively such that a
and β are contained in the even ordinals and μ is contained in the odd
ordinals. We also assume that there exists a 1-1 p.r. function p(x) such
that a U μ c dom p and p"(a U μ) = β + μ. Let po(x) = p(x) and / J ^ ) = p'\x).
Define the p.r. function^ (yfx,a) for i < 2 as follows:

gi(y,x,a) = δ <->#, 3; e OniΛ *α is a function' Λ
[[3; = OΛ.6 = ίί.<Λr)]v[0 < y < ω A dom <2 = 3;Λ
[['Oy.! is even' Λ b = αy-1] v [ Όy- x is odd' Λ

6 = Pi(ay-d]]]v[y = O ) Λ 6 = U m g a]].

By the recursion theorem define the p.r. function

My,χ) -g(y, χ,(fi(z,χ)\z< y)),

and Ti(x) = fi(ω,x), for z < 2. For ΛΓe α, ro(Λτ) is the union of an iteration of
p(x) until py(x) is in β. We shall now define the 1-1 p.r. functions S, (ΛΓ) that
will set up our correspondence: For i < 2 and # even, compute r, (#). If
r f (Λr) has an even element w, let Si(x) = ω; otherwise let S{(x) = ftW. For ΛΓ
odd, compute r^x). if r, (^) has an even element let Si(x) = x\ otherwise let
sΛx) = Pi(x) If ^ W does not exist, Si(x) is left undefined. For xea, so(x)
is a member of β if the iteration of py{x) ends up in β; otherwise so(x) is
equal to p(x), an element in μ. For xe μ, s 0 M is ΛΓ if the iteration ends up
in β; otherwise so(x) = p(x). In both cases so(x) is in μ. In view of the
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definition of the function so(x), it is an easy though tedious exercise to show
that so{x) is 1-1. By symmetry, we see that sλ(x) is 1-1. Moreover, if xe a
and so(x) = yeβ, we then have s^y) = x. Let γi0 = {x\si(x) is even},
γn = {x\si(x) is odd}, for i<2. These sets are Σ x such that y ί0, y z l are
disjoint. Let oti = a Π γoi and β, = β Π y u , for i < 2. We then have α01αx,
β o |βi; and α = a0 U αx, β = β0 u j3le If xe a0, so{x) is in βo; if y e β0 then Sι(y) =
Soλ(y) € a0. Hence aQ ̂  β0. From the definition of s, (#), aι and βι we see that
si'tei Uμ) = μ and s ' / ^ U μ) = μ. Hence α ^ μ ^ μ and βx U μ ^ μ. Letting
N= (a0) = (β0), and Ax = (a^, # i = (β), we have A = N + Al9 B = N+ Bly and
Ai + M = ̂ i + M = M. Q.E.D.

From the constructions in the proof, we see that a cardinal theorem
whose proof uses a definable countable iteration will generalize to RETs of
an admissible set. For example, in [1], it is proved that if n A =
A + . . . + A n times, then n-A^n B implies A < B.

3 Recursively enumerable sets We would like to generalize the concept
of "having no infinite recursively enumerable subset" which plays such a
vital role in the theory of isols. It should be clear that "infinite" now
means "not metafinite." We have two problems: (1) In projectible
admissible sets, there are elements which contain a large (Σx but not
metafinite) subset. Almost any standard theorem about recursively enu-
merable or immune sets will fail. (2) A priori, there may not be enough
structure to perform a systematic search. For example, since the finite
sets can be effectively enumerated, if a Σx predicate 3yφ(x,y) holds we can
effectively find a z such that φ(x,y) holds for y = z but not for y < z. This
searching enables us to enumerate a Σλ set by a recursive function. In an
admissible set, there may be no definable well-ordering of its members;
hence any analogue of recursive enumerability will fail. For our purposes
we shall consider those admissible sets whose ΣL predicates 3yφ{x,y) can
be uniformized by a Σλ function f(x) such that if 3yφ(x,y) holds, so does
ψ(x,f(χ)) Although weaker than well-ordering, we shall be able to
generalize some basic propositions about recursive enumerability to
admissible sets.

The following two definitions and Proposition 10 are due to Jensen [3].
An admissible set 9Dί is non-projectible if it satisfies the stronger replace-
ment axiom:

(A) VuBυVxe u[3yφ<-^>3y e υφ],

where φ is Σo and only x and y are free in φ. Otherwise Wl is projectible.
We say the function f(x) uniformizes the predicate φ(x,y) if dom / =
{xI 3yφ(x,y)} and Vx[3yφ(x,y) <^>φ(x,f(x))]. We say an admissible set is
Σj. uniformizable if each ΣL predicate is uniformizable by a partial
recursive function.

Proposition 10 Let 3DΪ be a Σx uniformizable admissible set. Then the
following are equivalent to (A):
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(B) If ueW and a is any Σx set, then uΓ\ aeW.
(C) IfueWl andf(x) is a p.r. function, thenf'uetyl.

We note that (A) -* (B) -» (C) follows directly from the definition of (A);
we need Σj. uniformizability to prove (C) —* (A).

A non-empty set a contained in ε is recursively enumerable (r.e.) if
there is a recursive function/(#) with domain ε and range a, i.e., /"ε = a.
Let us say that the empty set is r.e. A set a contained in ε is recursive if
a is a ΔL set.

Proposition 11 Any metafinite set is recursive. Any r.e. set is Σx.

Theorem 3 Any recursive set is recursively enumerable.

Proof: Let a c ε be a recursive set; then there exist Σo predicates φ(x,u)
and ψ(x,v) such that xe a<->3uφ(x,u) and xiα<->3vψ(x,v). We define the
p.r. function g(x,d) as follows, where #eθn and deΈl is a 1-1 strictly
increasing function with domain x and range contained in ε:

g(x,d) = 2<->'VW€ rng d[z > W]Λ3W^,M)Λ

V*' < z[3y < x[z'< dy]v 3vψ(z',v)].

The element g{x,d) is the first element of a not in the range of d. By the
recursion theorem we can define a function f(x) such that

f(χ)~g(χ,(f(y)\y<χ)).

We note that if f(x) is defined, then f(x) is an element of α, and that for any
y< x, ye a iff there is an #' < x such that /(#') =3;. Also, f(x) is a 1-1
strictly increasing function whose domain is an ordinal w < ε. If w < ε,
then it follows that α is metafinite. If we let f(x) = /(0) for # ̂  w, then /(ΛΓ)
enumerates α. If w = ε, then α cannot be metafinite. Moreover, if yecu,
3> < /(^) and, from the above there is some x ^ y such that f(x) = y. Thus α
is the range of a strictly increasing recursive function. Q.E.D.

We would like to enumerate a Σ x set but, as mentioned earlier, we may
not be able to do so. However, the following will be sufficient for our
purposes.

Theorem 4 Let Wl be an admissible set which is non-projectible and Σλ

uniformizable. Let a c ε be an infinite (i.e., not metafinite) Σx set. Then a
contains an infinite r.e. subset.

Proof: Let xe a <^>3yφ(x,y) where φ is Σo. Consider the Σo formula φ'(x,z)
where φr(x,z)<->z = (V,W)Λ V ̂ x Λφ(v,w). Given any xe On there must be a
v ^ x which is in a; otherwise x Ω α = a would be in 9fl. Since 9)2 is non-
projectible, this contradicts our hypothesis. Thus there is a weWl such that
φ(v,w) and hence a z eWl such that φ'(x,z). We have shown that 3zφ'(x,z)
holds for xe On. Since 9)? is ΣL uniformizable there is a recursive function
/(#) such that Vxφ'(x,f(x)). Define the familiar recursion functions k(z),
l(z) by z = (k(z),l(z)) and 0 if z is not an ordered pair. Let h(x) = k(f(x)).
Then for any x we have h(x) ^x and φ{h(x), l(f{x))); therefore rng h is an
unbounded subset of a. Q.E.D.
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Corollary Assuming the hypotheses of Theorem 4, a contains an infinite

recursive set.

Proof: We claim β = rng h is a recursive set. For ye β<^>3x[h{x) = 3;] and

y{β <->VΛ; ^ y 3w[h(x) = w *w Φ y]. Q.E.D.

We conclude this section with a well-known theorem which also merges

the ideas of non-projectibility and Σ x uniformizability. The proof uses a

weaving technique and is a variation of that found in [2].

Theorem 5 Let Wl be an admissible set which is non-projectible and Σ x

uniformizable. Let a and β be infinite Σ x subsets {not necessarily r.e.) of ε

such that their complements α f, βr are recursively equivalent. Then there

exists a 1-1 recursive function h(x) such that h"a = β and hnά' = βr.

Proof: Assume a' ^ β* by a 1-1 p.r. function p(x). We first note that

ε = dom p U a = rng p u β and that the relations xe dom p, xe α, xe rng p, xe β

are Σx. Let

#e dom p <-^3zφι(x,z), xe a <r^>3zφ2(x,z)

where φι and φ2 are Σo. Similarly, let ψl9 ψ2 be defined for xe rng p and

#e/3. From the above ,we have, for #eθn, 3z[φ1(x,z) v φ2(x,z)] and

ΞU[ΨI(ΛΓ,2) v\l/2(x,z)]. Since 3D? is Σx uniformizable, there exist recursive

functions ΛM, f2(x) such that for xeOn, ψi{x, fM) v φ2{x, fM) and

Ψiί^jΛW)v^2(^>/2(^)) Thus, given x we can decide whether xea or

#edom/> (or sometimes both). The same applies for xeβ and xe rng p.

Secondly, since a and β are infinite Σ : sets and W is non-projectible, a and

β contain infinite recursive subsets γ and δ which can be enumerated by

strictly increasing recursive functions cz and dz. Let the p.r. function

gi(x,aί9a2) = y, where l e O n and aλ{x) and a2(x) are 1-1 functions with

domains and ranges contained in the ordinals, be defined as follows: If

xe rng β2, let y = a2

1(x). If not, but xe dom al9 we let y = aγ(x). If x is in

neither, we compute fγ{x) and check the validity of ψi(x,fι(x)). If it is true,

then we know #edom p; we compute p(x) and see it is in rng a1 U dom a2. If

p(x) is not a member, let y = p(x); if it is we let y be equal to the first

element in δ not in rng aλ U dom a2. If ~\φi(x,fi(x)), let y be the first element

in δ not in rng aγ U dom a2. Similarly we can define g2(xtb^b^)^ substituting

bi, b2, ψ(x,f2(x)), p~ι(x), cz for au a2, φ^xJM), p(x), dz, respectively.

We now weave the two functions together by defining the p.r. function

g3(x,a) = (3;i,y2), where a(x) maps ordinals into ordered pairs of ordinals

and k(a(x)) and l(a(x)) are 1-1, as follows: y1 = gY{xfko afloa) and

3>2

 = g2(x,loa,koa u {(x,yι)}). Apply the recursion theorem to obtain the p.r.

function

£•(*) ~ g3i
χ> (g(y) \y<χ))= g*(χ,g ^ ^ ) ;

by transfinite induction we can conclude that g(x) is in fact a recursive

function. Finally, let h(x) = k{g(x)) and h'(x) = l(g(x)). We claim that h(x)

has all the desired properties and that h~\x) = h'(x). Let us assume that

h^x and hf ^ x are functions such that the following hold:
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(1) hΐx andh'ϊx are 1-1;
(2) for y<x, ye a<r+h(y)eβ;
(3) for y <x, ye β<r+h'(y)ea;
(4) for y} z < x then h(y) = z<r^h\z) = y.

We shall show that (l)-(4) hold with x replaced by x + 1. From the
definitions, we can see that h(x) = gι(x, h tx, h*ϊ x)\ we shall examine the
definition of gλ. Suppose x is h'(y) for y < x; then h(x) = y. If h(x*) = y for
#* < #, then by (4) h'(y) = x*, a contradiction. By (3) ye β*->h'{y) = xe a;
hence #e a<r+h(x) = ye β. Hence (1), (2), (4) hold for x + 1 in this case.

Suppose x is not in the range of h' ί" x and (pι(x,f(x)) holds. We compute
p(x); if p(x) is not in the rng h ϊ x U dom h' lx, then h(x) = p(x). Hence
^ hΛΓ + 1 is 1-1 and xe a<r^h(x) = p{x) e β. If p(x) = y is in the rng hϊxl)
dom h* ϊx, then we let h(x) be the first element of δ c β which is in neither.
Thus & ϊx + 1 is 1-1. If 3; = h(x*) for #* < Λ:, then /Ϊ(Λ:*) cannot equal p(x)
since />(ΛΓ) is 1-1. Either x* is SL czea or 3; is a dze β. In either case we
can conclude p(x) = y e β and hence xea. It ye dom ft' l"# = x, then ft'( y) #
p'\y) = x because x is not in the range of h' f#. Hence, as in the previous
case p(x) e β and therefore xe a. Finally, if "M#»/i(#)), then φ2(x,fι(x)) and
so xe a and h(x) is an element of β not in rng h ϊx. In a similar manner we
can show that h'ϊx + 1 satisfies (1), (3), and (4).

By induction we can conclude that h(x) is a 1-1 function which maps a
into β' and a1 into β*. Moreover, given x either h ί^x + 1 maps an element
into x or h'(x) > ΛΓ. But then h(h'(x)) = ΛΓ. Therefore /*(#) maps a onto β and
a' onto β'. Q.E.D.

4 Immune sets and isols We say a c ε is immune if α contains no infinite
r.e. subset.

Proposition 12 Lei 2fl £# non-projectible. If a is metafinite, then a is
immune.

Proof: The same argument is used as in the proof of Theorem 4. Q.E.D.

Theorem 6 Let 50̂  be non-pro jectible and Σ x uniformizable. Then the
following are equivalent:

(1) a is immune;
(2) a contains no infinite Σ x set;
(3) a contains no infinite recursive set.

Proof: (1) —* (2) If a contained an infinite Σj_ set, then by Theorem 4, a
would contain an infinite r.e. subset.
(2) —• (3) If a contained an infinite recursive set β, then by Theorem 3 and
Proposition 11, β would be r.e. and hence Σ x.
(3) —* (1) If a were not immune, a would contain an infinite r.e. subset. By
Proposition 11 and the Corollary to Theorem 4, a then contains an infinite
recursive set. Q.E.D.

Proposition 13 Let a, β be subsets of ε such that a ^ β. Then a immune iff
β immune.



ADMISSIBLE SETS 363

For the remainder of this paper, let us assume that we are in a
non-projectible, Σ1 uniformizable set W. An isol will be a RET of an
immune set. Let Λ denote the collection of all isols. By Proposition 13,
every element of an isol is an immune set. Note that by Proposition 12 any
RET of a metafinite set is an isol.

Theorem 7 The following are equivalent for α RET A:

(1) Aik;
(2) ε ̂  A;
(3) A + ε = A.

Proof: (1) —> (2) If Aj(A, then by Theorem 6, A has a representative a
which contains an infinite recursive set β. By Theorem 3, β ̂  ε. More-
over, β\a - β and a = (a - β) u β; hence, A = {a - β) + ε; i.e., ε ̂  α.
(2) -> (3) We know ε + ε = ε. I f ε ^ Λ , there is a RET B such that ε + B = A.
Thus ε+A=ε+ε+B=ε+B=A.
(3) —* (1) If A + ε = A, there exist disjoint, separable representatives α, ε'
of A and ε and a p.r. function p{x) such that p"{a U εf) D α. Since ε' is an
infinite r.e. set p"ε c α is also an infinite r.e. set. Q.E.D.

The following two propositions can be proved in a standard manner.

Proposition 13 If B e A and A ^ B, then A e A.

Proposition 14 If A, B e Λ, then A +BeA.

We shall try to establish a cancellation law for the isols.

Proposition 15 If A, B e A and A + ε = B + ε, then there exists a Z < ε such
that A + Z = BorB + Z = A.

Proof: By Theorem 2, there exist RETs U, V, and AT such that A = U + N,
B = V + N, and U+ε=ε=V + ε. Since C/ ^ A and F < 5, ϋ and F must be
isols. Hence U< ε and V< ε, and thus £/ and F are RETs of metafinite
sets. Following the proof of Theorem 3, we can map any metafinite set of
ordinals into an initial segment of ε. Therefore, U and F are comparable;
if U^ F, there is a RET Z < ε such that U + Z = F. Then A + Z = U+ N +
Z = U + Z + N= V + N= B. The other case is similar. Q.E.D.

For co < ε, we have ω + 1 = ω, but 1^0; we cannot expect to have any
absolute cancellation law for the isols. The most we can expect would
result from an application of Theorem 3. We shall now strengthen our
definition: We observe that if a metafinite set is mapped properly into
itself, the remainder is metafinite and separable from the range; this
property fails for ε. Let a c ε be isolated if whenever h(x) is a 1-1 function
such that a c dom h9 h"a c a and h"a\a - h"a, then a - h"a is metafinite.
Thus htra almost fills a.

Proposition 16 If a ^ β and a is isolated, then β is isolated.

Proof: Let a ^ β by a 1-1 partial recursive function p(x). Suppose a 1-1
partial recursive function h(x) mapped β into itself and β - h"β\h"β. Then
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g(x) = p~\h(p{x))) maps a 1-1 into itself and a - g"a\g"a. Hence the
remainder γ is metafinite and a = g"a U y. Applying p(x) to both sides of the
equation and noting the definition of g{x), we have β = p"a = h"β Ό p"γ. But
£"y is metafinite, hence β is isolated. Q.E.D.

If a is isolated, then A = (a) will be called a Cancellation type (C-type).
By the previous proposition, every member of a C-type is an isolated set.
Also, every metafinite set is a C-type.

Theorem 8 The following are equivalent for a RET A:

(1) If at A, then a is isolated;
(2) If A = A+B, thenB < ε.

Proof: (1) -^ (2) Suppose there are representatives a, β of A, B such that
a\β and a 1-1 p.r. function h(x) such that a U β c dom ft and /z"(α u β) = α.
Then ft"α c α and h"a\a - ft"α because a - fe"α = ft"β. Since a is isolated,
the remainder h"β is metafinite, and hence also β = h~ι(h"β); thus B < ε.
(2) —» (1) Suppose a 1-1 p.r. function &(#) maps α into itself such that
h"a\ot - /z"α. Then a ^ ft"α and α = h"a Ό (a - h"a). Taking types, A = A +
(a - h"a) = A + B. Because B < ε, the remainder is metafinite. Q.E.D.

Proposition 17 If A is a C-type, then A is an isol.

Proof: If A is not an isol, then A = A + ε. Q.E.D.

The converse does not hold, as shown by the following example. Let a
be an immune but not metafinite set of limit ordinals. Let β = {x + n\xeaΛ
n < ω}. If β contained an infinite r .e. subset γ, then γ would be unbounded,
since our admissible set is non-projectible. The projection of γ into a by
the recursive function/(Λ; + n) = x, where x is a limit ordinal, would also be
an unbounded r .e. subset. If we let^(Λr) = x + 1, then^(Λr) maps β into itself
with separable remainder α. Hence β <=* g"βl) a; taking types, B = B + A,
but A is not metafinite.

Theorem 9 (Cancellation Law for C-types) If A is a C-type and X, Y are
RET's and X + A = Y + A, then there is a RET Z < ε such that either
X+Z=YorY+Z = X.

Proof: By Theorem 2, there exist RETs U, V, and N such that X = U + N,
Y = V + N, and U + A = A = V + A. Since A is a C-type, £/ and V must
be metafinite RETs and hence comparable. If U ̂  V, then there is a RET
Z< ε such that £/ + Z = V. Then X + Z = ί / + iV + Z = £7 + Z + J V = F + iV= F.
The other case is similar. Q.E.D.

Theorem 10 If A and B are C-types, then A + B is a C-type.

Proof: Suppose A+B+X = A+B. then (B + X) + A = B + A, and by the
previous theorem there is a Y< ε such that B + X + Γ = J 3 o r J 3 + X = . B + F.
In the first case, X^X + Y< ε since 5 is a C-type. In the second case,
apply the theorem again so that for some Z < ε either X + Z = F < ε or
X= Y + Z < ε. In either case X< ε. Q.E.D.
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Theorem 11 If A ^ B and B is a C-type, then A is a C-type.

Proof: Let A + C = B and suppose A + X = A. Then A+C+X = A+X, i .e . ,
B +X = B. Q.E.D.

Theorem 12 Let A be a C-type and X, Y be RETs. If A +X^A + Y then
X ^ Y + Z where Z < ε.

Proof: Let A+X + V = A + Y. By Theorem 9, there is a U < ε such that
I + 7 + f / = 7 o r I + 7 = 7 + C / . In the first case let Z = 0; in the second
let Z = £/. Q.E.D.

A RET A is an ordinary isol if A Φ A + 1. Then an ordinary isol is a
C-type since, if A = A + X and X Φ 0, then A ^ A + 1 ^ A + X = A and hence
A = A + 1. An isol A is indecomposable if A = .B + C implies JE? < ε or
C < ε. An indecomposable isol A is also a C-type. We therefore have
finite sums of metafinite RETs, ordinary isols, and indecomposable isols
which are C-types. It is not known if there are others.

A final comment should be made about the importance of non-
pro jectibility. Suppose an element of 9ft contained an infinite r.e. subset π
of ordinals. Let us denote by ε* the smallest ordinal such that π c ε*.
Then ε* or any ordinal greater than it cannot be immune. Also π cannot
have an infinite recursive subset β; for if it did, β = ε* Π β would be in 9fl by
Proposition 1. This fact causes (3) -» (1) of Theorem 6 and (1) -» (2) of
Theorem 7 to fail when we let a and A equal ε* and (ε*), respectively.
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