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Correcting the Tableau Procedure for SA

BANGS L. TAPSCOTT

The tableau procedure for normal modal logics, as given in Kripke [3], may
be summarized as follows.1 For simplicity, we assume (when appropriate) that
the tableaux in question have vacant righthand (False) columns, and that the
beginning formulae are jointly satisfiable. From an initial set of wffs, a tableau
is generated by standard truth-functional procedures. Then, whenever it would
not be superfluous to do so, the following two rules are applied: Each possibility
wff, of the form Mp, is Advanced to begin a new tableau stipulated to be
accessible from the old one, with the operand p as its initial formula. Neces-
sity wffs of the form Lq are Executed by placing the operand q in each accessible
tableau, and the process is continued.

The result is an array or tree of tableaux. When the procedure runs out of
things to do, the tree terminates and a Kripke model for the original formulae
may be read off, taking the set of tableaux in the array as the set of "possible
worlds" and the access relation R between tableaux as the access relation
between worlds.

54, which defines R as reflexive and transitive, raises a special problem.
There are 54-satisfiable formulae which do not lead to termination but rather
yield an infinite tree. To manage these, Kripke provides the following expedient.
If a tableau is a duplicate of one earlier in the construction, it is not subjected
to the Advancement procedure. It thereby blocks that particular path through
the tree. When all paths are blocked, the tree terminates.

Such a ' "blocked" tree will not yield a model by the same recipe used for
other modal systems. Instead, Kripke gives us the following modification. First,
assemble all duplicate tableaux into equivalence classes H, and let the set of H's
represent the '"possible worlds". Second, generate a derivative relation (R
among the / / ' s , using the relation R among the tableaux, by the recipe:

Hn (R Hm iff there are tableaux tn and tm in Hn and Hm, respectively,
such that tnRtm.
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The purpose of this paper is to correct shortcomings in the procedure just
described.

When the procedure is applied to the four-part conjunction

A = (LM(Mp & Mq) & LM(r & M(Mp & Mq))
& LM(s & M(Mp & Mq)) & Mq)

it yields the following array of nine tableaux, six of which are distinct. (Where
an Advancement would be superfluous, it is so indicated.)

h U

A (Mp & Mq)
LM(Mp &Mq) Mp to t5

LM(r & M(Mp & Mq)) Mq to tΊ

LM(s & M(Mp & Mq)) M(Mp & Mq) (spfl~/4)
Mq to t2 M(r & M(Mp & Mq)) (spfl--ί8)
M{Mp8ιMq) (spfl—14) M(s & M(Mp & Mq)) (spfl—16)
M(r & M(Mp & Mq)) (spfl—13)
M(s & M(Mp & Mq)) (spfl--16) ^

, P
% M(Mp & Mq) (spfl~/9)
q M{r & M(Mp & Mq)) (spfl--18)
M(Mp & Mq) (spfl--/4) M(s & M(Mp & Mq)) to t6

M(r & M(Mp & Mq)) to t3

M(s & M(Mp & Mq)) (spfl—16) ^
(s&M(Mp&Mq))

*-* s
(r & M(Mp & Mq)) M(Mp & Mq) to t9

r M(r & M(Mp & Mq)) to t8

M(Mp & Mq) to tA M(s & M(Mp & Mq)) (spfl—16)
M(r & M(Mp & Mq)) (spfl—13)
M(s & M(Mp & Mq)) (spfl—16) [7 "~ h

h = h
t9 = t4

Representing each tableau in the array by its subscript numeral, a complete
enumeration of the relation R in the array will be the following:

(l l), (1;2), (1;3), (1;4), (1;5), (1;6), (1;7), (1;8), (1;9)
(2;2), (2;3), (2;4), (2;5), (2;6), (2;7), (2;8), (2;9)

(3;3), (3;4), (3;5), (3;6), (3;7), (3;8), (3;9)
(4;4), (4;5), (4;6), (4;7), (4;8), (4;9)

(5;5), (5;6), (5;8), (5;9)
(6;6), (6;8), (6;9)

(7;7), (8;8), (9;9)

And the equivalence classes of tableaux generated by the array are:

Hl= 1*2**7)
H3=it3,t8]
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H4={t4,t9}
H5=[t5}
H6=[t6).

From these, by Kripke's recipe, we obtain the following derivative relation (R
over the set of equivalence classes:

(Hi-Mi), (Hi;H2), (HΰHi), (HΰHΛ), (HύH5), (Hχ\H6)
(H2;H2), (H2;H3), (H2;H4), (H2;H5), (H2\H§)
(H3;H3), (H3;H4)9 (H3;H5), (H3;H6), and (H3;H2) since t3 R tΊ

(//4;//4), (H4;H5), (H4;H6), and (H4;H2) since t4 R tl9 (H4\H3) since
t4Rh

(H5;H5), (H5,H6), and (H5;H4) since ts R t9, (H5;H3) since ts R f8
(H6;H6), and (H6;H3) since t6 R /8, (//6;//4) since t6 R t9.

The relations R and (R, given above by enumeration, may be observed more
clearly in the following diagrams. The first is a mapping of R, with the arrows
understood as reflexive and transitive.

The second is a mapping of (R, with the double-stemmed arrows understood as
transitive and with reflexivity understood.

/ / \/_ X
Hx **H2= +~H3

 =*~H4 +*H5 ==+~H()

Observe that the derivative relation (R is not transitive. It contains (H6;H3)
and (H3;H2), but not (Hβ',H2); it contains (H6\H4) and (//4;//5), but not
(H6;H5); and it contains (//5;#3) and (H3;H2), but not (H5;H2).

Since an S4 model requires transitivity of access between possible worlds,
the procedure as presently formulated does not always yield S4 models for S4
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satisfiable formulas. Thus it is not the counterproof procedure for 54 that it is
advertised to be.

The trouble with the recipe for generating (R is that it carries over to (R only
the transitivities already present in R. This may be seen by reformulating the
recipe as follows:

Hn (R Hm iff for some tj in some Hj (perhaps identical with Hn or / / m ) ,
and some tn and tm in Hn and Hm, respectively, tn R tj and tj R tm.

The equivalence of this to the original recipe is easily shown. Suppose Hn (R Hm

by the old recipe. Then since R is reflexive, let Hj~Hn and tj-tn. Then
Hn (R Hm by the new recipe. Suppose Hn (R Hm by the new recipe. Since R is
transitive, tn R tj and tj R tm entail that tn R tm\ hence Hn (R Hm by the old
recipe.

The new recipe says, informally, that one equivalence class has access to
another just in case a member of the one has access to a member of the other,
either directly or via an intervening tableau tj. However, as Kripke points out,
the intuitive effect of forming the equivalence classes is to identify all equivalent
tableaux with each other. With this ''identification'' in place, there appears to
be no good reason for requiring a single member tj of Hj to carry tn to tm. It
will be equally appropriate to allow that Hn (R Hm provided that tn is R to some
tj and that some equivalent tj is R to tm. That is, the original recipe may be
replaced by

Cl Hn (R Hm iff for some tj and tj (perhaps identical with each other) in some
Hj (perhaps identical with Hn or Hm), and some tn and tm in Hn and Hm,
respectively, tn R tj and tj R tm.

This gives Hn transitive access through Hj to Hm9 though not always via a single
member of Hj.

Cl resolves the transitivity problem for the specimen formula. For ex-
ample the gap between H6 and H2 is filled by letting Hj- H3, tj — ts, and
tj= t3. The other gaps are filled similarly.

Nevertheless, Cl has no guarantee of being fully adequate to cover all
cases. It is capable of filling any single gap in the transitivity chain; but there
may be S4 satisfiable formulae leading to multiple sequential gaps under the
original recipe, which cannot be filled by a single intermediary Hj but require
several linked intermediary //'s.2 To accommodate this possibility, we may use
the form of Cl to define a subordinate relation Z:

Dl Hn Z Hm iff for some tj and tj (perhaps identical with each other) in some
Hj (perhaps identical with Hn or Hm), and some tn and tm in Hn and Hmi

respectively, tn R tj and tj R tm.

The relation (R may then be defined as the ancestral of Z:

C2 Hn(RHmiϊfHnZ*Hm.

Since every ancestral relation is transitive, C2 assures that (R will contain no
transitivity gaps.
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However, closure of the transitivity gaps raises problems in another
dimension of the tableau procedure. The method for reading off a model from
a terminated array assigns truth-values as follows. A nonmodal formula is
assigned T or F for a given H accordingly as it falls in the leftcolumn or the
rightcolumn of the members of H. A possibility wff Mp is assigned T for Hj iff
there is an Hk such that Hj (R Hk and V(p\Hk) = T. And a necessity wff Lq is
assigned T for Hj iff for every Hk such that Hj (R Hki V(g;Hk) = T.

Under the original recipe for constructing (R, whenever V(Lq tj) = Γthen
V(Lq Hj) = T. That is, if q is in the leftcolumn of every tableau to which tj has
the relation R, then it belongs to the leftcolumn of every equivalence class to
which Hj has the relation (R.

With transitivity gaps closed, this is no longer true. Closing the gaps has
the effect of extending the access-path, thereby bringing new //'s into the pur-
view of the L-wff. It can then happen that an L-wff which ought to receive the
value T will instead receive the value F since, though Executed into every
accessible T, it will not have been Executed into every accessible H.

An illustration, consider the three-part conjunction

B = (M(Lp & Mq) & M(Mp & Lq) & LMr) .

When subjected to the tableau procedure, this formula yields the following array
of tableaux:

h h h

B (Lp & Mq) (Mp & Lq)
M(Lp & Mq) to t2 Lp Mp to t5

M(Mp & Lq) to t3 Mq to t4 Lq
LMr Mr (spfl—16) Mr (spfl~/7)
Mr (spfl—^6) p q

U 5̂

Q P
P Q
Mr to t 6 Mr to t7

k h

r r

P Q

Mr (spfl—/6) Mr (spfl—^7)

The relation R over this array is

(l l), (1;2), (1;3), (1;4), (1;5), (1;6), (1;7)
(2;2), (2;4), (2;6)

(3;3), (3;5), (3;6)
(4;4), (4;6)

(5;5), (5;7)
(6;6), (7;7)

or, diagrammatically:
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J@—^Θ—Ki)

The set of equivalence classes is

//3=U3)
#4=U4,ί5}

//7=U7},

and the derivative relation (R (using C2) over this set is

(//j;//,), (//i;//2), (//i;//3), (#i;#4), (#i;#6), (#i;#7)

(//2;//2), (//2;//4), (H2;H6), and (//2;//7) since /2 R t4 and f5 Λ tΊ

(H3;H3), (H3;H5)9 (H3;H7), and (H3;H6) since ί3 # f5 and t4 R t6

(H4,H4)> (H4;H6), (H4;HJ)

(H6;H6)9 (HΊ\HΊ)

or, diagrammatically:

f τ_τ \ frj \

( /7 2 1 ί Γ/5 J

V W A 4 ϊ

I -*̂ *3 J I " 7 )

The procedure thus applied is supposed to produce a model for B. But it
does not. V(Lp;H2) — F> since H2 (R //7 and p does not have the value T at //7;
likewise V(Lq;H3) = F, since //3 (R //6 and ^ does not have the value Γat H6.
Thus V(B;Hι) = /% rather than Γ. This happens in the present case because at
HΊ no value at all is assigned to p, and at H6 none is assigned to q. But I am
confident that with ingenuity one could construct an example where they actually
receive the value F.

The reason for this failure of the procedure is that membership in the
equivalence classes is drawn from too broad a field. As it stands, the procedure
identifies all equivalent tableaux with each other, no matter where they may fall
within the web of i?-access. Thus it identifies t4, to which t2 has access, with t5

to which it does not have access, merely because they allocate the same truth-
values to the same wffs. And that is not a good enough reason, since the two
tableaux arise under consideration of different possibilities: the one leading to
the even-numbered arm of the array, and the other leading to the odd-numbered
arm.
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An array of tableaux is a structure of access paths generated via the rela-
tion R. Its nodes are the tableaux containing leftcolumn M-wffs, which are Ad-
vanced to extend the path on which they occur. Its followers are the tableaux
containing leftcolumn L-wff s, which are Executed (in 54) to each tableau far-
ther down the path. The reason for the "blockage" mechanism is to terminate
the otherwise endless paths that can crop up in 54 when followers generate new
nodes. But this can be accomplished just as well by waiting to invoke
"blockage" until a tableau is a duplicate of one earlier on its own access path.
(Such dulications are inevitable on an endless 54 path, since tableaux are of finite
length and formulas are only finitely complex.) Equivalence classes may then
be restricted to duplicate tableaux lying on a common path.

This will resolve the current difficulty, since it can be shown that if a
follower containing Lp has access to a tableau tm9 then/? will appear in every
tableau to which every equivalent of tm has access, whether earlier or later on
the path containing the follower. More formally, if Lp is in tn and tn R tm, then
for any tj equivalent to tm, if tj R tn or tn R tj then for every tk such that
tj R tk, p belongs to tk.

There are only four ways for a formula to enter a tableau: as a "given"
in the initial tableau (PREM); by Advancement from an JR-earlier tableau in the
array (ADV); by Execution from an L-wff in that tableau or an /^-earlier one
(EX); and by truth-functional reduction from local formulae (TF). If a wff w
enters a tableau by TF, it will have an ultimate truth-functional source which
entered the tableau not by TF but in one of the other ways. Call this source
5(w). Only the initial tableau in an array has formulae by PREM. A tableau
receives at most one formula by ADV. The initial tableau in an array receives
no formulae by ADV.

1. Let tn be an arbitrary tableau containing an L-wff Lp.
2. Let tm be such that tnRtm.
3. Let tj be equivalent to tmi and such that either tn R tj or tj R tn.
4. Let tk be such that tj R tk.

TO SHOW: tk contains p.

If tn R tj, then by the transitivity of R, tn R tk, hence by the Execution
rule p is a member of tk.

Proof for the other case is more elaborate. Suppose tj R tn. Then,

5 . Let Mq be the formula Advanced (from tt identical with or /?-after tn)
to begin the tableau tm.

Then tm contains p (by EX), and q (by ADV). Since t} is equivalent to tm, it
also contains both p and q. And tj cannot be the initial tableau in the array,
since tm is equivalent to it and no subordinate tableau can be equivalent to the
initial one. The initial tableau projects only the operanda of its members up the
various paths; and since its membership is finite its operanda cannot be equal
to its members. Therefore no formula entered t} by PREM, and exactly one for-
mula entered it by ADV.

Suppose p entered tj by ADV. Then q entered it by EX or by TF. Suppose
q entered tj by EX. Then by transitivity of R and the Execute rule, q is also a
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member of tt; hence Mq is not Advanced from tt (it would be superfluous),
which contradicts (5). Therefore q did not enter tj by EX, but by TF.

Since q entered tj by TF, S(q) entered by ADV or by EX. It cannot have
entered by ADV if/? did, therefore it entered by EX. But then by transitivity
of R, the Execute rule, and the truth-functional reduction rules, both S(q) and
q are members of tt and, as above, Mq is not Advanced, which contradicts (5).
Therefore, q did not enter tj by TF either, and so did not enter tj, which con-
tradicts (3,5).

Therefore, p did not enter tj by ADV, but by EX or TF. Suppose p
entered tj by TF. Then S(p) entered by EX or by ADV. Suppose S(p) entered
by ADV. Then q entered by EX or TF. But in either of these cases, Mq is not
advanced, which contradicts (5). Therefore S(p) entered by EX. In that case,
by transitivity of R and the Execute rule both S(p) and p are members of tk.

Finally, suppose p entered tj by EX. Then by transitivity of R and the
Execute rule, p is a member of tk.

The modified restriction on blockage and equivalence-class membership
may now be stated as:

Ml If tn and t'n are duplicate tableaux such that tnRtf
n, then and only then

(i) t'n is not to be subjected to the Advancement rule; and
(ii) tn and t'n belong to a common equivalence class Hn.

The proof just given shows that if Hn and Hm are formed via Ml, then if
Lp is in tn in Hn and Hn (R Hm via C2, then p is in every tm in Hm. The prob-
lem of accessible H's devoid of p cannot arise. In any equivalence class
formed under Ml, the /^-earliest member will have been Advanced, thus assuring
that whenever Mp is in leftcolumn Hj9 there is an (R-accessible Hk with p in its
leftcolumns. Since C2 defines (R as an ancestral, it will invariably be transitive,
and will be reflexive because R is. With these important details in place, we
may advert to Kripke for the remainder of the proof of the effectiveness of the
S4 tableau procedure.

The discussion so far has been concerned solely with the Kripke tableau
procedure. But it is important to recognize that the "nontransitivity" problem
is not unique to that procedure. It can also show up in other S4 decision
methods based upon, or having the same ''logical geography" as, the tableau
procedure. Specifically, any method which develops its model incrementally, one
"world" at a time, with a mechanism for shutting off an infinitely repetitive S4
construction, and which generates the relation (R in the model from the relation
R in the construction, is susceptible to the problem. The formula A, which was
deliberately developed to make the additions to R fall ''between each other" in
such a way as to interrupt transitivity, provides a convenient test. For example,
when the diagram method of [2] is applied to the formula A, the resulting model
fails of transitivity. I shall not discuss the modifications needed to correct that
procedure.

The Lemmon-Scott ''decision procedure", based upon filtrations, is not
susceptible to the same problem since it does not base (R upon R, but generates
it de novo on the basis of what is and is not true at each world.3
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NOTES

1. For the sake of simplicity, this summary differs from Kripke's exposition in one
respect: Kripke's rules do not directly consider M-wffs. Instead of ''Advancing a left-
column M-wff", the procedure is: if NLNp is in leftcolumn tm put LNp in
rightcolumn tm. Advance to a new tableau tm with TV/? in its rightcolumn; then put/7
in leftcolumn tm. The outcome is the same.

2. My attempts to discover an example of such a formula, or to prove that there are
none, have been unsuccessful.

3. However, that ''procedure" does not provide a humanly useful method for deciding
particular cases. It is based on the theorem that every 54-satisfiable formula is finitely
satisfiable, and says, in effect: Start generating the finite 54 models. Since there are
only denumerably many of them, if your particular formula is satisfiable a model for
it will show up in a finite time. See [1] for details.
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