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A Model Theoretic Proof of Feferman'’s

Preservation Theorem

DAVID MARKER

Let L be a countable first-order language containing a binary relation
symbol <. If ¥ and B are L-structures and Y = B, then we say B is a faithful
extension of 9 if and only if foranya € Y and b€ B if B=b < a, then be .
Thus if < is a linear order on ¥, B is a faithful extension if and only if it is an
end extension.

In [2] Feferman gives a very natural classification of the formulas which
are preserved under faithful extensions. His proof uses a many-sorted interpola-
tion theorem proved by a cut elimination argument. With the introduction of
recursively saturated models Barwise and Schlipf [1], and Schlipf [5] attempted
to give a unified framework for many preservation and definability theorems.
In this note I will give an instructive model theoretic proof of Feferman’s
theorem. (I should note that Stern [8] and Guichard [4] have given model
theoretic proofs of Feferman’s theorem using model-theoretic forcing and con-
sistency properties, respectively, but neither of these approaches matches the
elegance of [5].)

The proof given here is directly inspired by Friedman’s theorem [3] that
every countable model of Peano Arithmetic is isomorphic to a proper initial seg-
ment of itself and the related embedding results presented in Smorynski [6]. In
fact, independently of the author, Smorynski [7] uses Friedman’s theorem to
prove Feferman’s result in the special case that ¥ and B are models of Peano
Arithmetic.

1 Embedding recursively saturated models

Definition 1.1 Let L be as above. We inductively define £ a class of L-
formulas as follows:

(1) If o(9) is quantifier free, then ¢(?) is in L.
(i) If ¢(?) and ¥(D) are in L, then ¢(7) A (D) and ¢(7) V ¢(?) are in L.

Received August 8, 1983, revised December 2, 1983



214 DAVID MARKER

(i) If o(u,v,w) is in L, then v (v, W) is in L.
@iv) If ¢(u,v,w) is in L, then Yo(v < u — o(u,v,w)) is in L.

We abbreviate Vuo(v < u— o(u,v,w)) as Vo duo(u,v,w).

Definition 1.2 If A and B are L-structures, an embedding f: A — B is faithful
iff f is one to one and B is a faithful extension of the image of .

Lemma 1.3 Suppose ¢(0) is a L-formula and f:N— B is a faithful em-
bedding. If a € A and N = ¢(a), then B= o(f(a)).

Proof: By a simple induction on the complexity of E-formulas.

Our goal is to provide a partial converse to Lemma 1.3. We might first
introduce a bit of notation.

Definition 1.4 We define IT a class of L-formulas containing the duals
of X-formulas. That is, II is the smallest class of L-formulas containing the
quantifier-free formulas and closed under conjunction, disjunction, universal
quantification, and, if ¢(u,v, w) €11, then 3v(v < u A o(u,v,w)) €I1. (Again
w(v<au N e(u,v,w)) will be denoted 3v Q up(u,v,w).)

If A =T and @ € Y, the E-type of @ in ¥ is the collection of all X-formulas
¢(7) such that A = ¢(&@). We define II-types similarly.
We can now prove the main result.

Theorem 1.5 Suppose N and B are countable L-structures and the pair
(A, B) is recursively saturated. Assume further that if ¢ €L is a sentence
and U = ¢, then B= ¢. We may conclude that there is a faithful embedding
f:UA->B.

Proof: Let ay, a,, a,,. .. list A and let by, by, ... list B. We build f by finite
stages. Our inductive assumption is that if f has been defined on domain &, the
L-type of @ in ¥ is contained in the E-type of f(@) in B (or equivalently, the II-
type of f(a) in B is contained in the II-type of @ in A). Note our assumptions
on YA and B give the induction hypothesis for the initial case @ = ¢.

Step n. (1) Let f be defined on a@. (We allow the possibility that » =0 and
@ =¢.) Let i be minimal so that a;¢& a. Let I'(v) = {0(v,f(@)):0 EXL an L-
formula and A &= 0(aq;,a) }.

Claim 1 It is consistent that B realizes I'(v).
Let 6y,..., 0, €. Then A = v /X\ 0;(v, a) As the Z-type of @ in U is

contained in the EI-type of f(a) in SB %t: v /X\ 0;(v,f(@)). Thus realizing
I'(v) in B is consistent. i=1

Claim 2 I'(v) is realized in B.

Realizing I'(v) in ¥ is equivalent to realizing I'*(v) in (%, B) where
I'*(v) = {vE B U (0%(q;,a) » 0%(v,f(@)):0 €T an L-formula} and 6%, 6%
denote the formulas obtained by replacing all quantifiers 3v and Vv by 3Jv € ¥,
vvE N and 3v € B, Yv € B, respectively. But then I'*(v) is a consistent recur-
sive type and thus must be realized. Let b realize I'* (v). Clearly b realizes I'(v).
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Let f(@;) = b. By choice of I' our induction hypothesis is preserved.

(2) Suppose b; is least so that b; & f(a@) and for some b € f(a@) BE= b; < b.
We must ensure b; is in the range of f to make f faithful. Let I'(v) = {0(v,a):
fell an L-formula and B=6(b;, f(@))}. Let 6y,..., 0,T(V). Then BE=

Ww<h /)(\ 0(v,f(a)). Since the II-type of f(a) in B is contained in the II-type
of @ in 2[ A=v<f1(b) /X\ f(v,a). Thus it is consistent to realize I" in Y.

As in Claim 2 above, T’ must be realized by some g € U. Let f(a) = b;. Again
it is clear that the induction hypothesis is maintained.
This concludes step n.

It is easy to see that Part (1) of the construction ensures fis a total func-
tion embedding U to B. Part (2) of the construction guarantees that if b &
range(f) and ¢ < b, then ¢ € range(f). Hence f is faithful.

2 Feferman’s theorem Feferman’s theorem follows from Theorem 1.5 and
the following lemma. Fix T an L-theory.

Lemma 2.1 Let ¢ be a consistent L-sentence which is not provably
equivalent to a L-sentence in T; then there are A, B= T such that Y = ¢ and
B —¢ U The(A) (where The () denotes the L-sentences true in ¥).

Proof: Suppose not. If A=, let Ty = (Y EL: A=y ). If B=Ty then BE= ¢ as
otherwise we would be done. T hus there is ny and ¥i,..., Y}, €Ty so

that T+ /)(\ Y¥ 0. Let 0¥ denote /X\ v,
Let A-— (=0%:A=p}. AU {¢} is inconsistent since if QII:AU (e},

A=0¥ and —0¥%. Thus there are U,...%, such that T+ ga—*\X/ 0%, Since
ny; i=1

T0%—o, T+ go«»\)(/ 6%, But \X/ 6% = \X/ /X\ !, a I-formula. Hence ¢
i=1 j=
is provably equlvalent to al- formula

Corollary 2.2 (Feferman’s theorem) An L-formula ¢(¥) is preserved under
faithful extensions of models of T iff ¢(U) is provably equivalent to a Z-
formula.

Proof: (<) This is Lemma 1.3.

(=) Without loss of generality assume ¢ is a sentence. If ¢ is not provably
equivalent to a L-sentence we can use Lemma 2.1 to find countable o= U T
and By = TU ¢ U The(%y). Form the pair (Y, Bo) and let (A, B) > (Yo, Bo)
be a countable recursively saturated extension. By Theorem 1.5 there is a faithful
embedding of % into B. Thus ¢ is not preserved under faithful extensions.
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