384

Notre Dame Journal of Formal Logic
Volume 23, Number 4, October 1982

Nonstandard Propositional Logics
and Their Application to
Complexity Theory

MICHAEL EVANGELIST*

1 Introduction and background Let =* be the set of all finite-length
strings over some fixed alphabet . Then a language (over X) is a set L C T*,
Define P = {L|L is accepted by a deterministic Turing machine (DTM) in a
polynomial number of steps}, where the argument to the polynomial function
is the length of the input string. NP is the analogous family for nondetermin-
istic Turing machines (NDTMs).

The family P is widely considered to represent the class of feasibly
solvable computational problems. Representative of this class, in a sense to be
defined precisely, is the set S of satisfiable propositional formulas. Cook [3]
has shown that S is a member of P if, and only if, P = NP. (The proof method
is similar to that used by Biichi [1] for establishing the unsolvability of the
decision problem for the predicate calculus.)

Cook’s result has far-reaching implications for the theory of computa-
tional complexity, because many interesting combinatorial problems are in
the family NP but are not known to be in P. (See Karp [7]) That is, each
of these problems can be solved in polynomial time if, and only if, there
is a polynomial time decision procedure for S. In addition, as Cook and
Reckhow [4] observe, P = NP would also imply an interesting philosophical

*Research was supported in part by NSF grant # MCS-79-08919 and by Colgate Faculty
Research Council. The author would like to thank both V. F. Rickey and an anonymous
referee on an earlier version of this paper for suggestions leading to improvements in the
presentation.

Received June 25, 1979; revised June 15, 1981

PROPOSITIONAL LOGICS AND COMPLEXITY THEORY 385

consequence for mathematicians. If P = NP then there exists a polynomial p
and an algorithm A with the following property: Given any proposition W of
set theory and any integer n, A determines within only p(n) steps whether W
has a proof of length », or less in, say, ZF set theory. The problem is in NP
because a NDTM can ‘“‘guess” a proof of W, if one exists, and verify it in
polynomial time. S represents the class NP in the sense that every set L in
NP is many-one reducible to S by a function f; computable in deterministic
polynomial time. Thus, a polynomial time algorithm for S would imply a
polynomial time algorithm for L via f7.

We write L; « L, if there is a polynomial time reduction from set L to
L,. The following theorem is proved in Garey and Johnson [5]:

Theorem 1 If Ly <« L,, then L, € P implies L, € P (and, equivalently,
L, ¢ Pimplies L, ¢ P).

A language L is said to be NP-complete if L is in NP and, for any language
L' in NP, L' « L. By Theorem 1 a polynomial time decision procedure for any
NP-complete language would provide a feasible algorithm for every language
in NP. Such a procedure would imply P = NP, since, clearly, P € NP. Most
complexity theorists believe that P # NP, but extensive research has failed
to settle the question. Cook [3] proved that S is NP-complete, and most other
NP-completeness results have used S either directly or indirectly. The set of
satisfiable formulas, therefore, is the basic NP-complete problem in the same
sense that the halting problem for Turing machines is a basic unsolvable
problem. S is representative of NP because, like all NP-complete languages,
it is a ““hardest” set to recognize.

This discussion of NP-complete languages can easily be recast in terms
of decision problems. Simply encode the latter as symbol strings and, thereby,
reduce them to questions of set membership. (See Garey and Johnson [5] for
details.) It is for this reason that we use the terms “language” and “problem”
interchangeably.

Cook and Reckhow [4] studied a question related to the theory of NP-
completeness. Let co-NP = {Z* — L|L is in NP}, and define co-P analogously.
Clearly, P = co-P, since a polynomial time DTM that accepts some L in P can
be altered to accept £* — L by inverting the answer it gives on each input.
Therefore to show that NP # co-NP is to show that NP # P. It is possible
that NP = co-NP but still NP.# P, although most complexity theorists believe
this to be unlikely. (See Garey and Johnson [5], for example.)

The problem studied by Cook and Reckhow is that of the existence of
an efficient proof system for the tautologies of propositional logic. Informally,
a proof system is efficient if it provides a polynomially long proof for every
tautology. (The length of the proof is given as a function of the length of the
formula proved.) We state the following results from Cook and Reckhow [4]:

Theorem 2 (Cook and Reckhow) NP is closed under complementation if,
and only if, the set of tautologies is in NP.

Theorem 3 (Cook and Reckhow) A nonempty set L is in NP if, and only
if, L has an efficient proof system.

386 MICHAEL EVANGELIST

Therefore, NP is closed under complementation if, and only if, there
exists an efficient proof system for the tautologies. Efficient proof systems
must exist for any L in NP, although such formal systems have not generally
been studied or even described. The usual practice is to show that L is in
NP by giving a description of a NDTM that accepts L in polynomial time. This
method is generally easier than specifying a system of axioms and inference
rules, since the problems of interest are naturally viewed as computational.
In the sequel, we examine various formal systems for deriving subsets of the
propositional formulas that represent the families NP and co-NP. It is hoped
that these systems will provide a significant alternative means to analyze the
structure of these families. The method seems especially suited to NP-complete
logic sets.

Let us first note that the classical propositional formulas may be par-
titioned under the usual interpretation into three sets: the tautologies (7T),
the contingencies (C), and the unsatisfiable formulas (US). From the point
of view of the theory of computational complexity, there are six interesting
combinations of these subsets:

nH T

2)C

3) Us

@ s (the satisfiable formulas)
(5) NT (the nontautologies)

(6) NC (the noncontingencies).

The sets (2), (4), and (5) are NP-complete. This status cannot be claimed
for (1), (3), and (6), because it is not known whether these co-NP sets are
members of NP. It is the case, however, that placing any of the latter in P
would imply P = NP. If either (1), (3), or (6) is a member of NP, then
NP = co-NP. For example, if the tautologies are in NP, then Theorems 2
and 3 assert that NP = co-NP. Analogous results can be shown for the non-
contingencies and the unsatisfiable formulas.

Caicedo [2] has provided a formal system for the set NT. (In general,
a formal system to derive exactly the strings of set X will be denoted by X.)
NT is a Hilbert system in the sense that each line in the derivation of a
nontautology is itself a nontautology.

In Section 2 we extend Caicedo’s generalization of the concept of a
propositional theorem by giving Hilbert systems for each of the other non-
standard propositional logics listed above. We also present a completeness
proof for one of these systems. The primary contribution of this paper is
Section 3, where we show that C, S, and NT are efficient proof systems.
Section 4 outlines future work in this area.

2 The formal systems The only connectives used in the following systems
are ~ and D. We denote atomic formulas by p, q, py, ps, The symbols
«, B, and vy are used to denote arbitrary formulas. Define the set o(a) =
{plp occurs in a}. We say that the condition **(o,4) holds when A = 4, or
A=(A;D(A,D...(A4p-1 D Ap) ..), with A; = p; or 4; = ~p;,p; # p; for
i#j,and o(a) C a(4).

PROPOSITIONAL LOGICS AND COMPLEXITY THEORY 387

We first give an explicit system for S and then describe the method for
obtaining the other nonstandard systems.
Axiom SA ~p (p atomic)

Rules

SR1(a) %{) (p atomic, p ¢ ()

SR1(b) :(—%9‘3—07) (p atomic, p ¢ o(c))
~(a>Dp)
SR2 SCEICED)
~(@D)
SR3 SCERED)
~(~aD)
SR4 @27 0P
SR5 —~—~(°‘a3 B)
~@Dp)
SR6 ~_———(~~a S8
~@D (2 Y)
SR7 SEICEE))
SRS ~(a D A),~(~8DA)

~(~(@>p)>4)

In SR8 the condition **(a D 8,4) must hold.

Caicedo’s [2] system for NT can be shortened by using the single axiom p,
rather than his two axioms. The system C is similar to N7, but care must be
taken with several rules. For example, one rule of NT is

aDf
(y2a)Dp

This rule is invalid in C, because v = « and f € US is possible. Thus, § must be
added to the list of hypotheses for the rule.

The axioms for the system US are easily derived from any complete set
of axioms for the tautologies by negating each of the latter. The inference rules
would then be:

~(aDp),~x ~~o
<5 and ——.

Similarly, each axiom of NC has the form p O o, where « is an axiom
of T, and p is an atomic propositional symbol not occurring in a. A modified
form of modus ponens is obtained analogously by adding the antecedent p to
both hypotheses and conclusion. In addition, the rules

388 MICHAEL EVANGELIST

P28 and =B

B B

are required.

Examples: We use the symbol I—la to assert that « is derivable within the
system X. When X is clear from the context, we abbreviate Fy to .

S1 Fs~(p O ~p)

1. ~q SA
2. ~p D~q) SR1(a)
3. ~p 2O (p>~q) SR2
4. ~(~~p D (p D ~q)) SR6
S.~~(p2>~p)D(p > ~q)) 3,4 SR8
6. ~(p O ~p) SR5
S2 Fs~(~p D p)
1. ~q SA
2. ~(~p D ~q) SR1(b)
3. ~(~p D (~p>~q)) SR2
4. ~(~(~p D p) > (~p D ~q)) 3,3 SR8
5. ~(~p2p) SRS
S3 F‘§~~p
1. ~q SA
2. ~(pDgq) SR1(a)
3. ~(~~pDq) SR6
4. ~~p SR5

Remark: The axioms for T, US, and NC are actually axiom schemata. Those
for C, S, and NT are concrete axioms. In the latter case, schemata cannot be
used exclusively, nor can a substitution rule be allowed. The properties charac-
terizing the latter sets are not hereditary with respect to substitution.

We present a completeness theorem for the system S to facilitate the
analysis of proof lengths in the next section. Completeness theorems for the
other formal systems discussed in this paper are similarly obtained.

Theorem 4

A. If bsathenae S.
B. Ifae Sthen Fsa.

Proof: Since o € S implies ~a € NT, S is essentially NT with the appropriate
negation signs. The following proof resembles Caicedo’s [2] proof for NT,
again with the appropriate negation signs.

oy,0
A. Each rule of NT takes either the form S or —2—2

B B

~ ~0y, .
have ~a € S, and § € NT implies ~8 € S. Thus % and —2-—2 are valid for S,

1~ 4 T

. Since o € NT, we

PROPOSITIONAL LOGICS AND COMPLEXITY THEORY 389

if % and 0‘12;012 are valid for NT. These observations establish part A for SA and

each rule except SRS. In the latter case, note that ~(o D §) € S implies € S.
B. We use induction on the complexity of « to prove
(*) If **(c, A) holds, then ~(a D A) € S implies I—§~(oz D A).

Case I. a = p;. Since there exists a v such that v(~(p; O 4)) = T, we have
v(p;) =T and v(4) = F. Thus, v(4;) =T, 1 <i<mn,and v(4,) = F.

Subcase la. j < n. Since v(4;) = v(p;) = T, we have 4; = p;, and 4 = 4; D
A,2...(p;D....0A4,)...). Toderive ~(p; D A):

~A, (either SA or example S3)
SR1 ~(Ap-1 2 A4pn)
SRI ~(Ap- 2 (An-1 2 4y))

(SR1)
~(p] D (Aj+l O... DAn) . .)
SR2 "’(ij(pjD(Aj.HD...DAn)...)
(SR1 & SR7)

~piD2A,D...04,)...)
F§~(ijA)

Subcase Ib. j = n. Since v(py) = v(p;) = T and v(4,) = F, we must have
Ay = ~pyp. Thus,

S1 ~(Dn 2 ~Dn)
SR1 ~(An-1 D (pn D ~py))
SR7 ~(py 2 (An-1 2 ~pn)

(SR1 & SR7)
~MPn 2 A2 D))
F'§ ~(pn D A)
Case II. (inductive step) o = ~(.
Subcase Ila. (= p;. Similar to Case 1.

Subcase IIb. § = ~y. Since v(~(~~y D A)) = T, we have v(~(y D A))=T. By
the induction hypothesis —~(y D 4). By SR6: }—§~(~~7 D A).

Subcase IIc. B = (y D v"). Thus, v(4) = F, v(y) = T, and v(y') = F. By the in-
duction hypothesis, F~(y D 4) and F~(~y' D 4). By SR8: F¢~(~(y D> v") D
A). B

390 MICHAEL EVANGELIST

Case III. (inductive step) a=(y D ¥"). If v(~((y D¥) D A))=T, thenv(4)=F
and either v(y) = F or v(y') = T. In the first case, v(~(~y D 4)) = T. By the
induction hypothesis: F~(~y D A), and by SR4: F¢~((y D v') D A). In the
latter case, v(~(y' D A)) = T. By the induction hypothesis: F~(y' D A4), and
by SR3: F¢~((y D7) D A4).

We have therefore established (*). Now let v(a) = T, o(a) = ipy, ps, . . .,
pn}, and define pj = p; if v(p;) = T and p{ = ~p;, otherwise. Construct
A=pID(P;D...(Py-12~py)...). Then,v(4) =F,and v(~(a D A)) =T, and
by (*) we havé F~(a D A4). By SRS: Fsa.

3 Proof lengths By Theorem 3, each of C, NT, and S has an efficient proof
system. The next theorem states that the formal systems given in Section 2
provide polynomially long proofs for members of the respective sets. We take
the following definitions from Cook and Reckhow [4]:

Definitions We denote by £ the set of functions /:Z§F - Z¥, where =, and
2, are any finite alphabets, such that f can be computed by a DTM in time
bounded by a polynomial in the length of the input. If L € =*, a proof system
for L is a function f:Z¥ - L for some alphabet X, and f in Z such that f is
onto. A proof system is polynomially bounded if, and only if, there is a
polynomial p(n) such that for all y in L there exists x in ¥ such that y = f(x)
and |x| < p(ly]), where |z| denotes the length of z. If y = f(x), we say that
x is a proof of y.

It should be clear that each of the formal systems discussed in Section 2
denotes a proof system in the sense defined. A crucial open question is whether
T, US, and NC provide polynomially bounded proof systems. Although this
problem is not addressed here, we point out that standard completeness
theorems construct exponentially long proofs. For example, Kalmdr’s [6]
completeness theorem for 7' exploits the semantics of tautologies. There is a
line in every proof constructed for each of the 2” truth-table rows that satisfy
the tautology. Our completeness proof for S proceeded similarly, but at most
two rows of the truth-table were reflected in the formal proof constructed.

Theorem 5 The proof systems C, NT, and S are polynomially bounded.

Proof: We will examine only the system S. The proofs constructed by C and
NT are analogously investigated.

Let « be a satisfiable formula, where o(«) € {p;,02,0n}. We use
induction on the complexity of « to show that « has a proof I1 =B, B,, . . ., By
in § such that k& < r|al, where » > 0 is some integer constant. Since each B;,
1 < i < k, will be no longer than sla|, s > 0, we will conclude that |IT| < f]al?,
t>0.

Let v be a valuation such that v(o) = T. Construct the formula
A=piD((p;D...(0on-1 D ~py)...) specified at the end of the proof for
Theorem 4. Clearly, there exists a constant s > 0 such that 4| < s|a|. Since
the initial portion of the proof of « is a proof of ~(a O A), we first use
induction on the complexity of o to show that ~(a D A) has a proof of length
no more than #'|a|?, for some ' > 0. To do so we break the analysis into the
same cases as the completeness proof, to which the reader should refer.

PROPOSITIONAL LOGICS AND COMPLEXITY THEORY 391

Case I. a = p;. In Subcase Ia we obtain Fs~(ax D A) in at most 4 + (n —j) +
1+2(G - 1)=n+j+ 3 lines. Sincej is bounded by n — 1, we conclude that no
more than 3# lines are needed.

In Subcase Ib only 1 + 2(n — 1) = 2n — 1 lines are generated. The number
of lines is bounded, therefore, by 2n.

Case II. a = ~B. In Subcase Ila the analysis is similar to the atomic case. In
Subcase IIb the induction hypothesis states that ~(e¢ D A) has a proof in
S of length less than or equal to r'|y|? for some constant ' > 0. Since
~(~~y D A) is then deduced in one step, we see that this formula has a proof
no longer than r"|~~|? = r"|a|?, for some " > 0. The induction hypothesis
tells us, in Subcase Ilc, that ~(y D A) and ~(~y' D A) have proofs no longer
than r'|y|? and r"|~y'|?, respectively, for ', r" > 0. We conclude that there
is a proof of ~(a D A) of length less than or equal to r"”|a|?, where r" >r' +
r'+1.

Case IIl. o= (y D v"). The analysis is similar to Case II.

In Case I no more than 3n lines of proof are needed, each of which is
no longer than r'|al, for some ' > 0. Since we may assume n < |a], it is clear
that the proof is no longer than rlal?, for some » > 0. The same holds for
Cases II and III. To derive o from ~(a D A) requires only one more step.
We conclude that there is a proof in S of o of length less than or equal to
t|a|?, for some ¢ > 0.

Therefore by Theorem 5 each formal system for the NP sets is as efficient
as needed for studying the complexity of these sets.

4 Observations and future research As noted in Section 1, T is in NP if
and only if 7 has an efficient proof system. Although the NDTMs given for NP
sets do constitute such proof systems, they provide little insight into the
syntactic structure of these sets. The Hilbert systems discussed in Section 2
surmount this difficulty to the extent that they proceed syntactically and are
more ‘“‘natural’ as proof systems than Turing machine computations.

Numerous questions are suggested by the research described in this paper.
The distinction between NP and co-NP, if NP # co-NP, seems to be captured
in the difference between the efficiencies of proof systems for the NP subsets
of the propositional formulas and the co-NP subsets. The more natural formal
systems for these sets may lead to a better understanding of these differences.
For example, the fact that substitution into axioms is allowable for the co-NP
systems but not for the NP systems argues for a careful study of the proof
complexity introduced by a substitution rule. A similar phenomenon warrant-
ing investigation is the fact that schematic inference rules in the NP systems
must have hypotheses, whereas such rules in the co-NP systems need not.

REFERENCES

[1] Biichi, J. R., “Turing machines and the FEntscheidungsproblem,” Mathematische
Annalen, vol. 148 (1962), pp. 201-213.

392 MICHAEL EVANGELIST

[2] Caicedo, X., “A formal system for the non-theorems of the propositional calculus,”
Notre Dame Journal of Formal Logic,vol. 19 (1978), pp. 147-151.

[3] Cook, S. A., “The complexity of theorem proving procedures,” pp. 151-158 in
Proceedings of the Third Annual ACM Symposium on the Theory of Computing, May
1971.

[4] Cook, S. A. and R. A. Reckhow, “The relative efficiency of propositional proof
systems,” The Journal of Symbolic Logic, vol. 44 (1979), pp. 36-50.

[5] Garey, M. R. and D. S. Johnson, Computers and Intractibility: A Guide to the Theory
of NP-Completeness, W. H. Freeman, San Francisco, 1979.

[6] Kalmar, L., “Zuruckfiihrung des Entscheidungsproblems auf den Fall von Formeln
mit einer einzigen bindren Funktionsvariablen,” Compositio Mathematica, vol. 4 (1936),
pp. 137-144.

[7] Karp, R. M., “Reducibility among combinatorial problems,” pp. 85-103 in Complexity
of Computer Computations, eds., R, E. Miller and J. W, Thatcher, Plenum Press, New
York, 1972.

Computer and Information Studies
Colgate University
Hamilton, New York 13346

