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Definability in Self-Referential Systems

J. ZIMBARG SOBRINHO

Introduction Self-referential systems are theories formulated in a (typed)
first-order language £, in whose intended interpretation the predicates refer to
objects which are themselves predicates of £. In order to avoid the Russell-
Zermelo paradox, Hiller and Zimbarg Sobrinho [1] introduced self-referential
systems with involution: these are theories whose intended models admit an ele-
mentary embedding into itself, denoted by ‘*’, and called involution map. As
a consequence, the universe of predicates inherits a structural hierarchy of ob-
jects, classified into countably many types.

A peculiar property of types refers to the size of the universe of their cor-
responding objects: the larger a type, the smaller its domain, and for this rea-
son, types have been suggestively taken as negative integers: 0, —1, —2, and so
on.

The main properties satisfied by self-referential systems with involution
were outlined in [2], and are the following:

(a) £ possesses unrestricted (or universal) variables

(b) all predicates are extensional

(c) the Comprehension axiom for starred formulas is true

(d) (Definability condition) every element in the universe of a realization
is definable by a one-free-variable formula of £.

The first three clauses above can be directly expressed in our (typed) first-
order language £ without any further ado. With respect to the Definability con-
dition, however, it is not altogether clear how it could be formulated in a first-
order version of self-reference, due to its obvious higher-order character. The
purpose of this article is to present first-order axioms which, added to W (see
[1]), produce the same effect as the apparently stronger ‘Definability condition’.

1 Hiller’s problem Realizations of self-reference in which the Definability
condition holds have been referred to as intended models. It is well-known that
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the upward Lowenheim-Skolem theorem precludes the characterization of
intended models solely by means of first-order sentences. Nevertheless, as we
are mainly interested in first-order statements, it is natural to ask whether there
is a (typed) first-order extension yielding to those, and only those, sentences true
in all intended models of a given theory. These considerations led Hiller to for-
mulate the following general question:

Problem 1.1 (Hiller’s problem) Let T be a consistent extension of "W formu-
lated in a given self-referential language £. Find a theory (T, formulated in
£, such that:

(i) every model of F(T) is elementarily equivalent to an intended model of T
(ii) every intended model of T is a model of F(T)
(iii) F(T) is the weakest consistent extension in which (i) and (ii) hold.

The general solution to Hiller’s problem is complex and remains open. Nev-
ertheless, it is possible to give a complete solution for it in case 7' is an exten-
sion of the theory W+ (regularity); from now on, we will denote this theory by
W,

2 Ordinal definability Denote by ‘V = OD’ the statement expressing that
every element of the universe is ordinal definable. 1t is fairly well-known that
ordinal definability is a second-order concept, which, in the presence of the
axiom of regularity, is expressible by a first-order sentence in the language of
ZF. Having that in mind, our endeavor is to prove that if T extends ‘W,, then
F(T) = T+ (V= 0D) is a solution to Hiller’s problem. Before going into the
details, let us review some of the ordinal-definability notions applied to ‘W, in
order to fix our terminology.

Definition 2.1 (Ordinal Definability for W) Let {M;,E: i € w) be a model
of W and let P € M,. We say that P is ordinal definable in M if there exists a
Sformula of £, A(vy,v;) say, and an element a € M, such that
(@) M E OR[«], where the formula OR(x) expresses in ZF that ‘x is an
ordinal’
(b)ME (A AIlvyA)[Pa].

We say that I satisfies the ordinal-definability condition if every member
P € M, is ordinal definable in .

The ordinal-definability condition is not directly expressible in £, since in
order to do it, we need the notion of satisfaction. In W,, however, this concept
possesses a first-order counterpart, analogously to what happens in ZF. To see
it, we prove the following:

Lemma 2.2 Let M be a model of "W, satisfying the ordinal-definability con-
dition. Then, for every P € M, there is an ordinal o € M, and a ZF formula
B(vg,vy) such that

M E (OR(v)) ABAIlyyB)[Pa].
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Proof: Let V™ denote the internal object of 9N satisfying the formula vx(x €
y < 3x'(x' = x)), for all i < 0, and let ©Q; be the least ordinal of 9 not belong-
ing to V. Pick any element P € M. By the ordinal-definability condition,
there exists a two-free-variable formula A (vy,v;), and an ordinal 8 in I such
that

ME (A AIlvyA)[PB].

The number of types in A4 is finite; so let us suppose that the lowest type in A
is —n, for n > 0.

Our next claim is that there exists a formula B (vg, vy, u,. . .,u4,), having
only variables of type 0, whose quantifiers are bounded, and such that

M Evoevo (A « B)[VE, ..., V],

To construct By, it suffices to replace each variable v/, in 4 by a new variable
x, and the quantifications 3v;, and Vv}, by the bounded quantifiers (Ix € u_;)
and (Vx € u_;) respectively. It is being supposed that eventual collisions of
variables have been carefully avoided, of course.

Next, since the axiom of regularity holds in 91, each one of the V™ coin-
cides with Vg, (recall that V, is recursively defined by the following clauses:
Vo=, and V, = ® U {V;: £ €5}, where ®x is the power set of x). Denote by
R(u,v) the set-theoretical formula defining the V,. Then, for 0 < —i < n, the
following holds:

M E (R AIuR)[V,Q].
Now, consider the formula B, (vg, vy, Wy, ..., w,) given by
B, =vu;...Vu,(R[uy,wi] n...R[u,,w,] = By).
Then it is standard to prove that B, has only variables of type 0 and that
M EVugvu, (A <« By) [Q-y,...,0_,].

Finally, it is possible to collapse the n-tuple (3,Q2_;,...,Q_,) into a sin-
gle ordinal o by means of ZF-definable pairing functions: so, let J,(v;,wy,...,
w,, ;) be a formula resulting from the combination of those pairing functions
encoding the n-tuple of ordinals {v;, w;,...,Ww,_;) into a single ordinal v,. Let
B(vg,v,) be the formula 303w, ...3w,(J, A B,). Then, if o encodes ((3,Q_;,
... Q_,), it follows that the ZF-formula B satisfies

M E(BAIvyB)[Pal.

In what follows, we present a few classical well-known results on ordinal
definability for ZF Set Theory; they can be found, for instance, in Myhill and
Scott [3].

Theorem 2.3 Let M = (M, E) be a model of ZF. The following conditions

are equivalent:

(a) every element of M is definable in N by a one-free-variable formula of ZF
having an ordinal as parameter

(b) for every x € M, there exists an ordinal « € M and a (internal) formula
TA(vy) " of the language " ZF", defining x in (VI ,E|V %Y.
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The sentence
Vx3ad [A(vg)] KV, € F [(A A 3lvgA)] [x])

will be abbreviated by the expression ‘V = OD’.
As a consequence, we obtain

Theorem 2.4 Let M = (M;,E) be an intended model of “W,. Then M E
(V =0D).

This theorem is a direct consequence of Lemma 2.2, Theorem 2.3 and the
fact that O is a model of ZF.

As a direct consequence of theory ZF + (V = OD), the universe possesses
a canonical well-ordering definable in the language of ZF. It is denoted by <.
To define it, given x, let {«,,n,) be the pair associated to x according to the
following clauses:

(i) oy is the least ordinal for which x is definable in <V, ,€|V, ).
(ii) n, is the smallest Godel number of a formula which defines it in
Vo €1V
Then, the well-ordering <, can be expressed in ZF by the following
formula:

x=py iff ay=a,Vv(ay=a,An<ny).

Definition 2.5 (Definable substructure of a model for W,) Let M =
(M;,E: | € w) be a model of “W,. We denote by Def (M,) the set of elements
of My for which there exists a one-free-variable formula of £, without param-
eters, which defines it in Y. In symbols,

o € Def (My) iff « € My & M E (A A31xA) [«]

for some formula A(x) of £.
The definable substructure of M is the substructure whose universe is
Def (M,). We denote it by ‘Def (M)’

Def (M) = {Def (My) N M;,E|Def (My): i € w).
Lemma 2.6 Let O be a model of W, + (V = OD). Then the definable sub-

structure Def () is an elementary substructure of M, and, moreover, it is an
intended model of “W,. In symbols,

Def (M) < M.

This result is an immediate consequence of Tarski’s criterion for elemen-
tary substructures, and an analogous proof of a similar result can be found in
Zimbarg Sobrinho [4]. We omit details.

Now, our main result:

Theorem 2.7 Let T be a consistent extension of “W,. Then, the theory
F(T)=T+ (V=0D)

is a solution for Hiller’s problem.
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This result can be derived from Theorem 2.4 and Lemma 2.6. As a bypro-
duct of the results presented above we simply mention that the axiom schema
A stated in [1] is derivable in the theory W, + (V = OD).
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