Definability in Self-Referential Systems

J. ZIMBARG SOBRINHO

Introduction Self-referential systems are theories formulated in a (typed) first-order language \mathcal{L} , in whose intended interpretation the predicates refer to objects which are themselves predicates of \mathcal{L} . In order to avoid the Russell–Zermelo paradox, Hiller and Zimbarg Sobrinho [1] introduced *self-referential systems with involution*: these are theories whose intended models admit an elementary embedding into itself, denoted by '*', and called *involution map*. As a consequence, the universe of predicates inherits a structural hierarchy of objects, classified into countably many *types*.

A peculiar property of types refers to the size of the universe of their corresponding objects: the larger a type, the smaller its domain, and for this reason, types have been suggestively taken as negative integers: 0, -1, -2, and so on.

The main properties satisfied by self-referential systems with involution were outlined in [2], and are the following:

- (a) L possesses unrestricted (or universal) variables
- (b) all predicates are extensional
- (c) the Comprehension axiom for starred formulas is true
- (d) (Definability condition) every element in the universe of a realization is definable by a one-free-variable formula of \mathfrak{L} .

The first three clauses above can be directly expressed in our (typed) first-order language \mathcal{L} without any further ado. With respect to the Definability condition, however, it is not altogether clear how it could be formulated in a first-order version of self-reference, due to its obvious higher-order character. The purpose of this article is to present first-order axioms which, added to \mathcal{W} (see [1]), produce the same effect as the apparently stronger 'Definability condition'.

1 Hiller's problem Realizations of self-reference in which the Definability condition holds have been referred to as intended models. It is well-known that

the upward Löwenheim-Skolem theorem precludes the characterization of intended models solely by means of first-order sentences. Nevertheless, as we are mainly interested in first-order statements, it is natural to ask whether there is a (typed) first-order extension yielding to those, and only those, sentences true in all intended models of a given theory. These considerations led Hiller to formulate the following general question:

Problem 1.1 (Hiller's problem) Let T be a consistent extension of \mathbb{W} formulated in a given self-referential language \mathcal{L} . Find a theory $\mathfrak{F}(T)$, formulated in \mathcal{L} , such that:

- (i) every model of $\mathfrak{F}(T)$ is elementarily equivalent to an intended model of T
- (ii) every intended model of T is a model of $\mathfrak{F}(T)$
- (iii) $\mathfrak{F}(T)$ is the weakest consistent extension in which (i) and (ii) hold.

The general solution to Hiller's problem is complex and remains open. Nevertheless, it is possible to give a complete solution for it in case T is an extension of the theory W+ (regularity); from now on, we will denote this theory by " W_r ".

2 Ordinal definability Denote by 'V = OD' the statement expressing that every element of the universe is ordinal definable. It is fairly well-known that ordinal definability is a second-order concept, which, in the presence of the axiom of regularity, is expressible by a first-order sentence in the language of ZF. Having that in mind, our endeavor is to prove that if T extends \mathfrak{W}_r , then $\mathfrak{F}(T) = T + (V = OD)$ is a solution to Hiller's problem. Before going into the details, let us review some of the ordinal-definability notions applied to ' \mathfrak{W} , in order to fix our terminology.

Definition 2.1 (Ordinal Definability for W) Let $\langle M_i, E : i \in \omega \rangle$ be a model of W and let $P \in M_0$. We say that P is ordinal definable in M if there exists a formula of \mathcal{L} , $A(v_0, v_1)$ say, and an element $\alpha \in M_0$ such that

- (a) $\mathfrak{M} \models OR[\alpha]$, where the formula OR(x) expresses in ZF that 'x is an ordinal'
- (b) $\mathfrak{M} \models (A \land \exists! v_0 A) [P, \alpha].$

We say that \mathfrak{M} satisfies the ordinal-definability condition if every member $P \in M_0$ is ordinal definable in \mathfrak{M} .

The ordinal-definability condition is not directly expressible in \mathcal{L} , since in order to do it, we need the notion of satisfaction. In \mathcal{W}_r , however, this concept possesses a first-order counterpart, analogously to what happens in ZF. To see it, we prove the following:

Lemma 2.2 Let \mathfrak{M} be a model of \mathfrak{W}_r satisfying the ordinal-definability condition. Then, for every $P \in M_0$ there is an ordinal $\alpha \in M_0$ and a ZF formula $B(v_0, v_1)$ such that

$$\mathfrak{M} \models (OR(v_1) \land B \land \exists! v_0 B) [P, \alpha].$$

Proof: Let $V_i^{\mathfrak{M}}$ denote the internal object of \mathfrak{M} satisfying the formula $\forall x (x \in y \leftrightarrow \exists x^i (x^i = x))$, for all i < 0, and let Ω_i be the least ordinal of \mathfrak{M} not belonging to $V_i^{\mathfrak{M}}$. Pick any element $P \in M_0$. By the ordinal-definability condition, there exists a two-free-variable formula $A(v_0, v_1)$, and an ordinal β in \mathfrak{M} such that

$$\mathfrak{M} \models (A \land \exists! v_0 A) [P, \beta].$$

The number of types in A is finite; so let us suppose that the lowest type in A is -n, for n > 0.

Our next claim is that there exists a formula $B_1(v_0, v_1, u_1, \dots, u_n)$, having only variables of type 0, whose quantifiers are bounded, and such that

$$\mathfrak{M} \models \forall v_0 \forall v_1 (A \leftrightarrow B_1) [V_{-1}^{\mathfrak{M}}, \dots, V_{-n}^{\mathfrak{M}}].$$

To construct B_1 , it suffices to replace each variable v_m^i in A by a new variable x, and the quantifications $\exists v_m^i$ and $\forall v_m^i$ by the bounded quantifiers $(\exists x \in u_{-i})$ and $(\forall x \in u_{-i})$ respectively. It is being supposed that eventual collisions of variables have been carefully avoided, of course.

Next, since the axiom of regularity holds in \mathfrak{M} , each one of the $V_i^{\mathfrak{M}}$ coincides with V_{Ω_i} (recall that V_{η} is recursively defined by the following clauses: $V_0 = \emptyset$, and $V_{\eta} = \emptyset \cup \{V_{\xi} \colon \xi \in \eta\}$, where $\emptyset x$ is the power set of x). Denote by R(u,v) the set-theoretical formula defining the V_{η} . Then, for $0 < -i \le n$, the following holds:

$$\mathfrak{M} \models (R \land \exists! uR) [V_i^{\mathfrak{M}}, \Omega_i].$$

Now, consider the formula $B_2(v_0, v_1, w_1, \dots, w_n)$ given by

$$B_2 \simeq \forall u_1 \dots \forall u_n (R[u_1, w_1] \wedge \dots R[u_n, w_n] \rightarrow B_1).$$

Then it is standard to prove that B_2 has only variables of type 0 and that

$$\mathfrak{M} \models \forall v_0 \forall v_1 (A \leftrightarrow B_2) [\Omega_{-1}, \dots, \Omega_{-n}].$$

Finally, it is possible to collapse the n-tuple $\langle \beta, \Omega_{-1}, \ldots, \Omega_{-n} \rangle$ into a single ordinal α by means of ZF-definable pairing functions: so, let $J_n(v_1, w_1, \ldots, w_n, v_2)$ be a formula resulting from the combination of those pairing functions encoding the n-tuple of ordinals $\langle v_1, w_1, \ldots, w_{n-1} \rangle$ into a single ordinal v_2 . Let $B(v_0, v_2)$ be the formula $\exists v_1 \exists w_1 \ldots \exists w_n (J_n \wedge B_2)$. Then, if α encodes $\langle \beta, \Omega_{-1}, \ldots \Omega_{-n} \rangle$, it follows that the ZF-formula B satisfies

$$\mathfrak{M} \models (B \land \exists! v_0 B) [P, \alpha].$$

In what follows, we present a few classical well-known results on ordinal definability for ZF Set Theory; they can be found, for instance, in Myhill and Scott [3].

Theorem 2.3 Let $\mathfrak{M} = \langle M, E \rangle$ be a model of ZF. The following conditions are equivalent:

- (a) every element of M is definable in $\mathfrak M$ by a one-free-variable formula of ZF having an ordinal as parameter
- (b) for every $x \in M$, there exists an ordinal $\alpha \in M$ and a (internal) formula $\lceil A(v_0) \rceil$ of the language $\lceil ZF \rceil$, defining x in $\langle V_{\alpha}^{\mathfrak{M}}, E | V_{\alpha}^{\mathfrak{M}} \rangle$.

The sentence

$$\forall x \exists \alpha \exists [A(v_0)] (\langle V_\alpha, \in \rangle \models [(A \land \exists! v_0 A)][x])$$

will be abbreviated by the expression 'V = OD'.

As a consequence, we obtain

Theorem 2.4 Let $\mathfrak{M} = \langle M_i, E \rangle$ be an intended model of \mathfrak{W}_r . Then $\mathfrak{M} \models (V = OD)$.

This theorem is a direct consequence of Lemma 2.2, Theorem 2.3 and the fact that \mathfrak{M} is a model of ZF.

As a direct consequence of theory ZF + (V = OD), the universe possesses a canonical well-ordering definable in the language of ZF. It is denoted by \leq_D . To define it, given x, let $\langle \alpha_x, n_x \rangle$ be the pair associated to x according to the following clauses:

- (i) α_x is the least ordinal for which x is definable in $\langle V_{\alpha_x}, \in | V_{\alpha_x} \rangle$.
- (ii) n_x is the smallest Gödel number of a formula which defines it in $\langle V_{\alpha_x}, \in |V_{\alpha_x} \rangle$.

Then, the well-ordering \leq_D can be expressed in ZF by the following formula:

$$x \leq_D y$$
 iff $\alpha_x \leq \alpha_y \vee (\alpha_x = \alpha_y \wedge n_x \leq n_y)$.

Definition 2.5 (Definable substructure of a model for W_r) Let $\mathfrak{M} = \langle \mathfrak{M}_i, E : i \in \omega \rangle$ be a model of W_r . We denote by $Def(M_0)$ the set of elements of M_0 for which there exists a one-free-variable formula of \mathfrak{L} , without parameters, which defines it in \mathfrak{M} . In symbols,

$$\alpha \in Def(M_0) \ iff \ \alpha \in M_0 \ \& \ \mathfrak{M} \models (A \land \exists ! xA) [\alpha]$$

for some formula A(x) of \mathcal{L} .

The definable substructure of \mathfrak{M} is the substructure whose universe is $Def(M_0)$. We denote it by ' $Def(\mathfrak{M})$ '

$$Def(\mathfrak{M}) = \langle Def(M_0) \cap M_i, E | Def(M_0) : i \in \omega \rangle.$$

Lemma 2.6 Let \mathfrak{M} be a model of $\mathfrak{W}_r + (V = OD)$. Then the definable substructure $Def(\mathfrak{M})$ is an elementary substructure of \mathfrak{M} , and, moreover, it is an intended model of \mathfrak{W}_r . In symbols,

$$Def(\mathfrak{M}) \leq \mathfrak{M}.$$

This result is an immediate consequence of Tarski's criterion for elementary substructures, and an analogous proof of a similar result can be found in Zimbarg Sobrinho [4]. We omit details.

Now, our main result:

Theorem 2.7 Let T be a consistent extension of \mathfrak{V}_r . Then, the theory

$$\mathfrak{F}(T) = T + (V = OD)$$

is a solution for Hiller's problem.

This result can be derived from Theorem 2.4 and Lemma 2.6. As a byproduct of the results presented above we simply mention that the axiom schema $A_6^{(n)}$ stated in [1] is derivable in the theory $W_r + (V = OD)$.

REFERENCES

- [1] Hiller, A. P. and J. Zimbarg Sobrinho, "Self-reference with negative types," *The Journal of Symbolic Logic*, vol. 49 (1984), pp. 754-773.
- [2] Hiller, A. P. and J. Zimbarg Sobrinho, "Fundamentals of self-reference," to appear.
- [3] Myhill, J. and D. Scott, "Ordinal definability," pp. 271-278 in Axiomatic Set Theory, Proceedings of Symposia in Pure Mathematics, vol. XIII, Part 1, ed. D. Scott, American Mathematical Society, Providence, Rhode Island, 1971.
- [4] Zimbarg Sobrinho, J., "On the consistency of self-referential systems," *The Journal of Symbolic Logic*, vol. 52 (1987), pp. 425-436.

Instituto de Matemática e Estatística Universidade de São Paulo São Paulo, Brazil