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Near Coherence of Filters, I:
Cofinal Equivalence of
Models of Arithmetic

ANDREAS BLASS

Abstract We define cofinal equivalence to be the smallest equivalence rela-
tion on models of arithmetic such that every model is equivalent to all of its cofi-
nal submodels. It is easy to classify tall models (those with no last sky) up to
cofinal equivalence, but an attempt to do the same for short models leads to
questions independent of the axioms of set theory. We introduce the set-theoretic
principle (NCF) of near coherence of filters, whose effect is to make all short
nonstandard models of arithmetic cofinally equivalent. We give several equiv-
alent formulations and several consequences of NCF.

1 Introduction and preliminaries We are primarily concerned with models
of full arithmetic, that is, with elementary extensions of the standard model
whose universe is w and whose relations and functions are all of the (finitary)
relations and functions on w. Many of the results in the early part of the paper
remain true for arithmetic formulated in smaller languages, but we leave this
extension to the reader.

The classification, up to isomorphism, of models of arithmetic appears
hopelessly complicated, so it is reasonable to attempt a classification up to some
coarser equivalence relation. We introduce in this paper one such equivalence
relation, called cofinal equivalence, for which a reasonable classification may
be possible.

The concept of cofinal equivalence is based on ignoring the changes that
a model undergoes when new elements are added below elements already pres-
ent. More precisely, a model is cofinally equivalent to each (isomorph) of its
cofinal submodels, and cofinal equivalence is the smallest equivalence relation
with this property.

It turns out (see Lemma 3 below) that the cofinal-equivalence classes are
of two sorts, those consisting of tall models and those consisting of short models.
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It further turns out (see Theorem 4) that the classes of the former sort are eas-
ily described; they are naturally parametrized by the infinite regular cardinal
numbers. The classification of short models, up to cofinal equivalence, is a much
more delicate matter and indeed is nearly as hopeless as the classification up to
isomorphism, provided the continuum hypothesis holds. It is, however, consis-
tent with the usual axioms of set theory to suppose that all short nonstandard
models of arithmetic are cofinally equivalent (see Theorems 8 and 9 below; the
consistency proof is due to Shelah). Furthermore, this supposition is equivalent
to a combinatorial principle, which we call near coherence of filters (NCF), and
which turns out to have numerous interesting equivalents and consequences.
Some of these are presented in the final section of this paper. Others will be dis-
cussed in a sequel.

We shall use the same notation for a relation (or function) on w, its name
in the formal language, and the denotation of this name in a nonstandard model,
i.e., the canonical extension of the original relation (or function). These canon-
ical extensions will be called the standard relations (and functions) of the non-
standard model. When models are considered as linearly ordered sets, it is to
be understood that the ordering is the canonical extension of the usual order-
ing of w.

Since our models have built-in Skolem functions, all submodels are elemen-
tary submodels. Also, since pairing functions are available, every finitely gen-
erated model is generated by a single element. Each element ¢ in a model has
a type, an ultrafilter U on w defined by

U = {X € w|a € (the canonical extension of) X};

the submodel generated by a is isomorphic to the ultrapower U-prod w by an
isomorphism sending an element [ f] of the ultrapower (where f: w—w) to f(a).
In particular, elements of the same type generate isomorphic models. If a has
type U, then f(a) has type

fW) = {Xco|f1(X) €U}

In particular, f(U) is the type of [f] in U-prod w, so if two functions f and
g agree when restricted to a set in U then f(U) = g(U).

We shall need the concept of skies introduced by Puritz [12]. Two elements
a < b of a model U of arithmetic are said to be in the same sky if b < f(a) for
some standard function f or, equivalently, if the submodels generated by a and
by b are cofinal in the same initial segment of 9. The skies of U are thus order-
convex subsets of U and constitute a partition of 9. The ordering of % induces,
thanks to order-convexity, a linear ordering of the skies of 2. An element lies
in the last sky if and only if it generates a cofinal submodel of ¥. If such an ele-
ment exists, i.e., if ¥ has a last sky, or equivalently if ¥ has a finitely generated,
cofinal submodel, then ¥ is said to be short; otherwise U is zall.

A nonprincipal ultrafilter U on w is called a P-point if all the nonstandard
elements of U-prod w constitute a single sky; an equivalent condition is that
every f: w— w become constant or finite-to-one when restricted to a suitable set
in U. U is called a Q-point if each element of the top sky of U-prod w gener-
ates this whole model; an equivalent condition is that every finite-to-one f: w—
w be one-to-one on some set in U. A selective ultrafilter is a P-point that is also
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a Q-point; equivalent conditions are that ‘U-prod w be generated by each of its
nonstandard elements (i.e., that it be a minimal nonstandard model) and that
every f: w— w become constant or one-to-one when restricted to some set in U.
For more information about these special sorts of ultrafilters, see [3], [12], and
[13].

2 Cofinal equivalence Cofinal equivalence is defined to be the smallest
equivalence relation, on the class of models of arithmetic, such that, whenever
9 is isomorphic to a cofinal submodel of B, then ¥ is equivalent to B. In other
words, 9 and B are cofinally equivalent if and only if there is a finite sequence
of models (a “zigzag”) A = Ay, Ay, ..., A, = B such that, for each i < n, one of
A; and A;,, can be cofinally embedded in the other. Our first lemma provides
a slight simplification of this description of cofinal equivalence, shortening the
zigzag to one zig and one zag.

Lemma 1 If a model U of arithmetic can be embedded cofinally into each
of B and B,, then there is a model § into which both B, and B, can be cofi-
nally embedded.

Proof: An easy compactness argument gives a model €’ into which 8, and B,
can be embedded with the cofinal copies of ¥ identified. (In fact, one can
arrange that no other identifications occur; see [2], Theorem 1.) Then B, B,
and the copies of 9 in them are all cofinal in the same initial segment € of §'.
Finally, it is well known that such a € is an elementary submodel of §’; see [5],
Proposition 2.2.

Corollary 2 A and B are cofinally equivalent if and only if there is a model
Q€ into which both can be cofinally embedded.

Proof: “If” is obvious. For “only if” note that the binary relation on models
defined by “% and B can be cofinally embedded in the same model” is transi-
tive, by the lemma, hence is an equivalence relation such that cofinal embed-
dability implies equivalence, hence includes the relation of cofinal equivalence.

Our objective is to classify the cofinal equivalence types of models. Toward
this end, we note the existence of two invariants of cofinal equivalence type: cofi-
nality and shortness.

The (ordinal) cofinality of a model, or indeed of any linearly ordered set,
is the minimum cardinality of a cofinal subset. It is well known that all cofinal
subsets of a linearly ordered set have the same cofinality, and it follows that cofi-
nally equivalent models have the same cofinality.

Recall that a model is short if it has a finitely generated cofinal submodel;
otherwise it is fall. The following lemma shows that these properties of a model
are invariants of cofinal equivalence type.

Lemma 3 If A is cofinally embedded in B and if one of U and B is short
then so is the other.

Proof: Without loss of generality, % is a cofinal submodel of B. If A is short,
then its finitely generated cofinal submodel is also cofinal in 8, which makes
9 short. Conversely, suppose that B has a cofinal submodel generated by finitely
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many elements, hence by a single element . Since 9 is cofinal in B, choose an
a € A with a = b. We shall show that the submodel generated by « is cofinal in
. Let any a’ € A be given. By choice of b, there is a standard function f with
a’ < f(b) in B. Let g be the standard function defined by

g(x) = max{f(y)|y < x}.
Then a’ < f(b) < g(a), and g(a) is in the submodel generated by a.

Thus, in studying cofinal equivalence types, we may treat short and tall
models separately. The tall case is easier, so we handle it first.

3 Tall models For tall models, the cofinality is a complete invariant.

Theorem 4

(a) Any two tall models of arithmetic with the same cofinality are cofinally
equivalent.

(b) The cofinalities of tall models of arithmetic are all the regular infinite cardi-
nal numbers.

Proof: Recall that every model is the disjoint union of its skies, that skies are
order-convex, and that a tall model has no last sky. It follows that the cofinality
of a tall model ¥ is the same as the cofinality of its linearly ordered set Sk(()
of nonstandard skies.

Now let ¥ and B be two tall models of the same cofinality. Since Sk()
and Sk(®B) have the same cofinality, it is easy to linearly order their disjoint
union in such a way that each of Sk() and Sk(®B) retains its original ordering
and is cofinal in the union. By [2], Theorem 3, we can amalgamate 2 and B8 to
a model € in such a way that only the standard parts of % and B are identified
in € and the nonstandard skies of % and B are ordered in € in the way just
described. Then ¥ and B are both cofinally embedded in the same model and
are therefore cofinally equivalent. This proves part (a) of the theorem.

For part (b), given any infinite regular cardinal x, we can construct a tall
model of cofinality « by the following inductive construction of length «. Start
with any model of arithmetic. At successor stages, form an elementary exten-
sion of the previous model such that some element of the extension is greater
than all elements of the previous model (easy by compactness). At limit stages,
take the union of the chain of previous models. Clearly, the model at stage «
is tall and has cofinality «. (Such models can also be obtained by Gaifman’s tech-
niques [5], which yield a good deal more.)

Theorem 4 completely classifies the cofinal equivalence classes of tall mod-
els of arithmetic. We may therefore confine our attention from now on to short
models.

4 Short models For short models, there is a description of cofinal equiva-
lence dual to that in Lemma 1 and Corollary 2. (Instead of a zig and zag, we
can now have the zag first and then the zig.)

Lemma 5 If short models B, and B, can be cofinally embedded in the same
model G, then there is a model N that can be cofinally embedded into each of
581 and 582.
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Proof: By definition of “short”, we may assume without loss of generality that
B, and B, are each generated by a single element. The desired conclusion is
then given by [1], Theorem 1.

Corollary 6 Two short models are cofinally equivalent if and only if they
have isomorphic cofinal submodels.

Proof: The relation of having isomorphic cofinal submodels is, by Lemmas 3
and 5, transitive on short models, hence is an equivalence relation for which cofi-
nal embeddability implies equivalence, hence includes the relation of cofinal
equivalence. This proves “only if”, and “if” is trivial.

Corollary 7 Two minimal nonstandard models of arithmetic are cofinally
equivalent if and only if they are isomorphic.

Proof: “If” is trivial, and “only if” follows from the previous corollary, since
the standard model is never cofinal in a nonstandard one and therefore a min-
imal nonstandard model has no cofinal submodels except itself.

This corollary shows that minimal (nonstandard) models constitute a seri-
ous obstacle to any attempt to classify models up to cofinal equivalence. Any
such classification must contain a classification of minimal models up to isomor-
phism.

The existence of minimal nonstandard models of (full) arithmetic is inde-
pendent of the usual (ZFC) axioms of set theory. The continuum hypothesis (or
Martin’s axiom, or any of several weaker hypotheses) implies the existence of
22% nonisomorphic minimal models, namely the ultrapowers U-prod o for
selective ultrafilters U, and the task of classifying them seems hopeless. On the
other hand, Kunen [9] showed that, in some models of ZFC (obtained by adding
many random reals to models of the continuum hypothesis), there are no selec-
tive ultrafilters, hence no minimal nonstandard models of arithmetic. In such
models of ZFC, a classification of cofinal equivalence types of models of arith-
metic seems conceivable.

(If, instead of working with full arithmetic, we had used a countable lan-
guage, then there would always be 2*° nonisomorphic minimal nonstandard
models, by [5], Theorem 3.9, and a classification of them does not seem pos-
sible.)

Actually, there are other obstacles to the classification in Kunen’s model,
for in it there are many short models of arithmetic which, although not mini-
mal, have no proper cofinal submodels (namely ultrapowers of the standard
model with respect to Q-points). Corollary 6 implies that such models are cofi-
nally equivalent only if they are isomorphic, and again the task of classifying
them seems hopeless.

Miller [10] has shown that, in certain models of ZFC (obtained by itera-
tively adding X, Laver or Mathias reals to a model of the continuum hypoth-
esis), every short nonstandard model of arithmetic has a proper cofinal
submodel, so the problem in the last paragraph does not arise.

Rather than outlining more problems that may impede the classification of
cofinal equivalence types of short models of full arithmetic, we turn to a con-
sideration of the possibility that (under suitable set-theoretic hypotheses) this
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classification may be trivial. (Corollary 15 below implies that, even in the models
mentioned in the preceding paragraph, the classification is not trivial.)

5 Near coherence of filters

Theorem 8 The following three statements are equivalent.

(a) Every two short nonstandard models of full arithmetic are cofinally equiv-
alent.

(b) If U, and U, are nonprincipal ultrafilters on w, then there is a finite-to-one
[ w—=wsuch that f(U;) = f(U,).

(©) If §, and F, are filters on w, each containing all cofinite sets, then there is
a finite-to-one f: w— w such that f(F,) U f(F,) has the finite intersection
property.

The equivalence of (a) and (b) is essentially implicit in the well-known con-
nection between cofinal embeddings and finite-to-one maps of ultrafilters, while
the equivalence of (b) and (c) is nearly trivial; nevertheless, we give proofs for
the sake of completeness.

Proof: (a)— (b). Let U, and U, be nonprincipal ultrafilters on w. Then the
ultrapowers U;-prod w of the standard model are each generated by one ele-
ment, the equivalence class of the identity function, and are therefore nonstan-
dard short models. By (a), they have isomorphic cofinal submodels, which can
be taken to be generated by a single element, by Lemma 3. Let [f]«,, the
equivalence class of f;: w—w in U;-prod w, generate one of these submodels,
and let [f]a, be the corresponding (via the isomorphism) generator of the
other model. Because of the isomorphism, these two generators have the same
type, i.e., fi(U;) =f2(U,). Also, since [f]a, generates a cofinal submodel of
U;-prod w, there is a standard function g; such that g[filq; = [id]q, SO
gi(fi(n)) = n for all n in some set 4; € U;. This implies that f; is finite-to-one
on A;.

We may assume that U; # U,, as otherwise (b) is trivial. We may then
also assume that A; and A4, are disjoint, as we can intersect 4, and A, with dis-
joint sets from U; and U, respectively. Let f: w— w agree with f; on A; and
with the identity function on w — (4; U A,). Then fis finite-to-one, and

S(Uy) = fi(U)) = H(U) = fF(Uy)

since f agrees with f; on a set 4; € U,.

(b) = (a). Let A, B be short nonstandard models of full arithmetic. Let
a € A and b € B be generators of cofinal submodels A’ and B’ (as Y and B are
short), and let U, and ‘U, be the types of these generators. By assumption (b),
let f: w— w be a finite-to-one function such that f(U;) = f(U,). This means
that f(a) and f(b) have the same type and therefore generate isomorphic sub-
models %" and B".

Each element of 9 is of the form g(a) for some standard g. Since fis finite-
to-one on w, we can define #: w—w by

h(x) = max{g(y)|f(y) = x}

(with some arbitrary convention for max @). Then it is true in the standard
model, hence also in ¥’, that A(f(y)) = g(y) for all y. In particular, the arbi-
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trary element g(a) of ¥’ is majorized by an element A(f(a)) of A”. So A” is co-
final in %', hence also in . Similarly, B” is cofinal in B. Since ¥” and B” are
isomorphic, the proof of (a) is complete.

(b) = (c). If F, and T, are filters as in (c), extend them, by Zorn’s lem-
ma, to ultrafilters U, and U, respectively. Let f be as in (b), and observe that
f(F1) US(F,) is included in the ultrafilter £(U;) =f(U,) and therefore has the
finite intersection property.

(c)— (b). Given ultrafilters U, and U, as in (b), apply (c) to get f such that
JS(Uy) U f(U,) has the finite intersection property. But each f(U;), being an
ultrafilter, is maximal with respect to the finite intersection property, so we have

S =f(Uy).

The remainder of this paper will be devoted to the study of the equivalent
statements in Theorem 8. For brevity, we shall refer to these statements, in par-
ticular (c), as the principle of near coherence of filters (NCF).

The discussion at the end of the preceding section shows that NCF is false
in many models of set theory. The study of NCF is not, however, vacuous:

Theorem 9 (Shelah) NCF is consistent relative to ZFC.

The proof of this theorem will appear in [14]. Here we mention only that
a model in which NCF holds can be obtained from a model of the continuum
hypothesis by a countable-support forcing iteration of length X, in which each
stage is the rational perfect set forcing studied by Miller [11].

We close this section by pointing out that some variations on conditions
(b) and (c) in Theorem 8 are equivalent to NCF. The first variation is to allow
two different functions; thus, (b) would be changed to assert that f;(U,) =
f>(U,) for some finite-to-one f; and f,, and (c) would be changed analogously.
These apparently weaker versions of (b) and (c) are not really weaker, because
the proof that (b) implies (a) still works with the new (b).

The second variation goes in the opposite direction by apparently strength-
ening (b) and (c); it requires that the finite-to-one function f be nondecreasing.
Thus, the filters f(F;) can be thought of as being obtained from the F; by col-
lapsing certain intervals /! {n} in w to single points. An equivalent way of stat-
ing this variation of (c) is that, given ¥, and F,, we can partition w into a
sequence of finite intervals such that every set from F, and every set from &,
meet at least one common interval.

To show that the second variation is only an apparent strengthening, we
actually show somewhat more; the additional information will be useful in the
next section. Fix, for the time being, a dominating family D, i.e., a family of
functions 4 : w— w such that, for every f: w— w there exists # € D such that
h(n) > f(n) for all but finitely many n. For example,  could consist of all
functions w — w, but we shall be interested in smaller families later. For each
h € D, partition w into intervals

Iy=10, a), I, = [ay, @), ..., I, = [ay, Any1),. ..

in such a way that h(x) is at most one interval beyond x, i.e., if x < a, then
h(x) < a,;. This is easily accomplished by defining the a,’s inductively. Let
h’: w— w be the function that takes the value n on the interval I,,, for each n.
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Let ™ (x) (respectively A~ (x)) be A’(x)/2 rounded up (respectively down) to
the nearest integer. Thus, the dominating family D gives rise to a family D* =
{h*, h~|h € D} of finite-to-one monotone functions. We shall show that these
suffice in statements (b) and (c) of Theorem 8.

Lemma 10 If U, and U, are nonprincipal ultrafilters and f(U,) = f(U,)
for some finite-to-one f: w— w, then f(U,) = f(U,) for some f&€ D*.

Proof: Fix a finite-to-one f such that f(U,;) = f(U,). Define g: w—w by
g(n) = max{p € w| for some g < n, f(p) =f(q)};

this makes sense as f is finite-to-one. Let # € D majorize g from some 7, on.
We shall show that either A% (U;) = AT (U,) or A~ (U;) = A~ (U,). Suppose,
for a contradiction, that neither of these equations holds. The failure of the first
equation means that there are A; € U; with A*(A;) disjoint from A*(A4,). The
failure of the second equation gives, similarly, 2~ (A;) disjoint from A~ (A4,);
we can use the same A; and A, for both A+ and 4™, as different A;s in the
same U; could be replaced by their intersection. Now f(A4,) and f(A,) meet
infinitely often, since they are both in the nonprincipal ultrafilter f(U;) =
f(Uy). Choose a; € A; such that f(a;) = f(a,) and a; = ny. Then

h(ay) = g(a;) = max{p € | for some q < ay, f(p) = f(q)}
= max{p € w|f(p) =f(a)} = a,

and, symmetrically, #(a,) = a;. By definition of #’, h'(a;) and h’(a,) differ
by at most 1, so either A" (a;) = h*(ay) or k™ (a;) = h™ (a,). In either case, we
have a contradiction to the disjointness of h*(A4;) and A*(A4,).

Corollary 11 NCEF is equivalent to statements (b) and (c) of Theorem 8 with
f required to be in D*, where D is any dominating family. In particular, f can
be required to be monotone.

6 The dominating number Following the notation of [16], we let d be the
smallest cardinality of a dominating family of functions w— w. This cardinal,
which lies between R, and 2%0 (inclusive) has been extensively studied; see [7].
To avoid possible confusion, we point out that d can be different from the mini-
mum cardinality b of an undominated family, i.e., a family & of functions
w—w such that no single function eventually majorizes every function in ®. In
general, b is a regular cardinal and

R, <b=<cf(d) <d=2%.

Martin’s axiom implies » = d = 2%0. If one adds many Cohen reals (respec-
tively random reals) to a model of CH, the resulting model satisfies 8, = b <
d = 2%0 (respectively 8, = b = d < 2%0). For other possibilities, see [6].

The cardinal d is relevant to NCF in several ways.

Theorem 12 If §, and F, are filters on w, containing all cofinite sets, and
generated by fewer than d sets, then there exists a finite-to-one f: w— w such
that £(F,) U f(F5) has the finite intersection property.
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Proof: We may assume that the given small generating families ®; for F; are
closed under finite intersections, since closing them won’t increase their cardi-
nalities. Thus, every set in &; includes a set in ;.

For each infinite B < w and each n € w, define next (B, n) to be the
smallest element of B that is =n. Consider the functions g = g, 5, defined by

g(n) = max{next(B,, n), next(B,, n)}

for B; € ®,. Since each ®; has fewer than d members, there are fewer than d
of these functions g. By definition of d, there is #: w—w not eventually majo-
rized by any of these g’s. Thus, for each B; € ®;, there are infinitely many »
such that

h(n) = max{next(B;, n), next(B,, n)},

which means that, for infinitely many n, the interval [n, A(n)] meets both B,
and B,.

As in the discussion preceding Lemma 10, use 4 to define intervals 7, and
functions A’, h*, and h~. We shall show that either 2™ (F,) U A" (F,) or
h™(F,) U h~(F,) has the finite intersection property. If not, then, as in the
proof of Lemma 10, we could find 4; € &, such that A1 (A4,) N h*t(4,) =
h=(A)) N h™(A,) = O, and by shrinking the A’s we could arrange that 4; €
®;. The disjointness properties of the 2*(A4;) mean that the union of two con-
secutive intervals I; U I, ; can never meet both 4; and 4,. But we saw above
that there are intervals of the form [n, A(n)] meeting both A, and A4,, and the
definition of the I,’s implies that [n, A(n)] is included in I, U I, for some k.
This contradiction completes the proof of the theorem.

Corollary 13 Any two nonprincipal ultrafilters on w that are generated by
fewer than d sets have a common finite-to-one image.

Proof: See the proof of (¢)— (b) in Theorem 8.

It follows from results of Ketonen [8] that ultrafilters generated by fewer
than d sets are P-points but are not selective. The consistency of the existence
of such ultrafilters was recently proved by Shelah, but it also follows, as we shall
see, from his Theorem 9 above. (His proof of Theorem 9 also shows directly that
some ultrafilters in the model have fewer than d generators.) This contrasts with
Solomon’s result [15] that no ultrafilter can be generated by fewer than b sets.

Theorem 14 NCEF is equivalent to the statement that for every nonprincipal
ultrafilter U on w, there is a finite-to-one f: w— w such that f (W) is generated
by fewer than d sets.

Proof: If the statement holds, then, given any two nonprincipal ultrafilters on
w, we can find finite-to-one images generated by fewer than d sets. These, in
turn, have a common finite-to-one image by Corollary 13. Thus, we have (b)
of Theorem 8, in the first of the variations that were discussed after Theorem
9 and shown to be equivalent to NCF.

Conversely, suppose U were an ultrafilter with no finite-to-one image gen-
erated by fewer than d sets. We shall construct another nonprincipal ultrafilter
% such that U and ¥ have no common finite-to-one image; this will disprove
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NCF. Fix a dominating family D of cardinality d. By Lemma 10, it suffices to
construct V so that f(W) # f(V) for all f€ D*. Since D* has cardinality d,
let it be enumerated as {f,|a < d}. We construct V by an induction of length
d, ensuring at the o' stage that £, (U) # £, (V). The induction will define a
sequence of filters V,(a < d) such that

(i) Vo = {cofinite sets}.
(i) If o < 8 then V,, € Vg.
(iii) Vy\ = Ugen V,, for limit A.
(iv) V441 is generated by V,, plus one set 4,.
V) fa(Ao) € fo(W).

Once this is done, any ultrafilter extending V, clearly serves as the desired V.
To construct the V,’s, it suffices to show how to choose 4, when V, is given.
We must show that there exists a set A, such that V, U {4,} generates a filter,
i.e., A, meets every set in V,, but f,(A4,) is not in the ultrafilter £, (‘). To do
this, it suffices to find B € £, (W) such that f;!(B) & V,, for we can then set
A, =w—f71(B). Indeed, since V, is a filter not containing £, !(B), it contains
no subsets of £71(B), i.e., no sets disjoint from A,. Furthermore, f,(4,) is
disjoint from B, hence not in f,(U).

To complete the proof, we suppose that no B of the desired sort exists, and
we derive a contradiction. The supposition means that each B € f,(U) also
belongs to f,(V,), so, as f,(U) is an ultrafilter, we must have f,(U) = f,(V,).-
Inductive hypotheses (i), (iii), and (iv), for ordinals <«, imply that V, and,
therefore, f,(V,) are generated by fewer than d sets, since « < d. This con-
tradicts the assumption that no finite-to-one image of U (such as f,(U) =
fo(Vy)) is generated by fewer than d sets.

van Douwen has informed the author that J. van Mill had shown that NCF
implies the existence of ultrafilters generated by fewer than 2%0 sets. Presum-
ably, van Mill’s proof was similar to the preceding.

Corollary 15 NCF implies each of the following statements.

(a) There are nonprincipal ultrafilters on w generated by fewer than d sets.
b)b<d

(c) For every nonprincipal ultrafilter on w, there is a finite-to-one f such that
f(W) is a P-point.

(d) There are no Q-points.

Proof: (a) follows immediately from Theorem 14, and so does (c) in view of
Ketonen’s result [8] that every ultrafilter generated by fewer than d sets is a P-
point. Ketonen also showed that such an ultrafilter is not selective; from this,
we easily obtain (d) as follows: If U were a Q-point, then the f given by The-
orem 14 would, by definition of Q-point, be one-to-one on a set in U. So f(‘U)
would be isomorphic to U, hence would be a Q-point. But the first of the cited
results of Ketonen requires f(U) to be a P-point also. Being both a P-point and
a Q-point, f(U) would be selective, contradicting the second Ketonen theorem.

Finally, (b) follows from (a) by virtue of Solomon’s result [15] that no
ultrafilter can be generated by fewer than b sets.
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It is immediate from the definitions of b and d that the cofinality of the
ultrapower U-prod w is in the interval from b to d (inclusive) for all nonprin-
cipal ultrafilters on w. By results of Canjar [4], it is consistent relative to ZFC
that b < d (e.g., b = R, and d = 2%0 very large) and every regular cardinal in
that interval is the cofinality of some such ultrapower. If NCF holds, then the
interval from b to d contains several regular cardinals, by Corollary 15(b), yet
only one of these actually occurs as the cofinality of an ultrapower as above
since, by the formulation of NCF given in Theorem 8(a), all these ultrapowers
are cofinally equivalent. The following result, which was noticed independently
by Peter Nyikos (private communication), specifies which of the cardinals in the
interval is the actual cofinality. It is the second connection between NCF and d.

Theorem 16 NCF implies that all short nonstandard models of arithmetic
have cofinality d.

Proof: Since NCF asserts that all short nonstandard models of arithmetic are
cofinally equivalent, it suffices to prove that d is the cofinality of one of them,
say U-prod w where U is a nonprincipal ultrafilter on w generated by a family
® of fewer than d sets. As mentioned above, the cofinality is at most d, since,
if D is any dominating family, then {[f]|f € D} is cofinal in U-prod w. Sup-
pose that U-prod w had a cofinal subset {[f]|f € C} where C has cardinality
smaller than d. We shall complete the proof by deriving a contradiction.

We may, as before, assume that the generating family @ of U is closed
under finite intersections, as closing it will not increase its cardinality. So each
set in ‘U has a subset in . For each B € ® and each f € C, let g = gp s be
defined by

g(n) = f(next(B,n)).

As both & and C have cardinality smaller than d, there are fewer than d of these
functions g. Yet we shall show that every A: w—w is dominated by one of these
g’s, thereby contradicting the definition of d.

Let #: w—w be given, and assume, by increasing A if necessary, that 4 is
nondecreasing. As C is cofinal in U-prod w, find f € @€ such that [#] < [f] in
the ultrapower. Thus, the set {n € w|h(n) < f(n)} is in U, hence has a subset
B &€ ®. Let g = gg ;. Then, for all n, we have, by definition of g and B and by
monotonicity of A,

g(n) = f(next(B,n)) = h(next(B,n)) = h(n),
so g dominates /.
Corollary 17 NCF implies that d is a regular cardinal.

We close this paper with one more connection between NCF and the
dominating number d.

Lemma 18 Let {\W,li € I} be a family of fewer than d nonprincipal
ultrafilters on w, each generated by fewer than d sets. There is a finite-to-one
[ w—w such that all the ultrafilters f(U;) are equal.

Proof: The proof is a minor variation of the proof of Theorem 12. For each
i€ I, let B; be a generating family for U;, closed under finite intersections, and
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having fewer than d members. For each i, j € I, each B; € ®, and each B; € &;,
define g = gg,, B; by

g(n) = max{next(B;, n), next(B;,n)}.

Since there are fewer than d of these g’s, let 2: w— w not be eventually domi-
nated by any of them. Let 2+ and A~ be obtained from 4 as in the discussion
preceding Lemma 10. The proof of Theorem 12 shows that, for each i, j € I,
either A+ (U;) = h*(U;), in which case we write i ~* j, or A~ (U;) = A~ (U,),
in which case we write i ~~ j. Thus, ~* and ~~ are two equivalence relations
on I and their union is all of I x I. It easily follows that one of the two is all
of Ix I (Ifi #* j, then i ~~ j, and we claim that the ~~ class of i and j con-
tains all of 1. Otherwise, if k is outside this class, then i ™ k and k +~ J, so
i ~% k ~"*j, contrary to i #*j.) Thus, either 2*(U;) = h*(U;) forall i, j €
Torh=(U;)) =h (U foralli, jE L

Theorem 19 NCEF is equivalent to each of the following:

(@) If {W,|i € I} is a family of fewer than d nonprincipal ultrafilters on w, then
there are finite-to-one functions f;: w—w (i € I) such that all the ultrafilters
fi(U;) are equal.

(b) If {F;|i € I} is a family of fewer than d filters on w, each containing all
cofinite sets, then there exist finite-to-one functions f;: w—w (i € I) such that
the union of all the filters f;(F;) (i € I) generates a proper filter.

Proof: If NCF holds and {U,|/ € I} is a family as in (a), then apply Theorem
14 to get finite-to-one images g;(‘U;), each generated by fewer than d sets, and
then apply Lemma 18 to get a single finite-to-one 4 such that all the ultrafilters
h(g:(U;)) are equal. Then (a) is verified with f; = k- g;.

The implication (a)— (b) is proved exactly like Theorem 8 (b)—(c), and the
implication (b) —» NCF is clear by Theorem 8.

Corollary 20 NCF implies that any fewer than d short nonstandard mod-
els of arithmetic have cofinal submodels that are all isomorphic.

REFERENCES

[1] Blass, A., “The intersection of nonstandard models of arithmetic,” The Journal of
Symbolic Logic, vol. 37 (1972), pp. 103-106.

[2] Blass, A., “Amalgamation of nonstandard models of arithmetic,” The Journal of
Symbolic Logic, vol. 42 (1977), pp. 372-386.

[3] Blass, A., “A model-theoretic view of some special ultrafilters,” pp. 79-90 in Logic
Colloquium ’77, eds. A. Macintyre, L. Pacholski, and J. Paris, North-Holland,
1978.

[4] Canjar, R. M., “Model-theoretic properties of countable ultraproducts without the
continuum hypothesis,” thesis, University of Michigan, 1982.



NEAR COHERENCE OF FILTERS 591

[5] Gaifman, H., “Models and types for Peano’s arithmetic,” Annals of Mathemati-
cal Logic, vol. 9 (1976), pp. 223-306.

[6] Hechler, S., “On the existence of certain cofinal subsets of “w,” pp. 155-173 in
Axiomatic Set Theory, Proceedings of Symposia in Pure Mathematics XIII, Part 2,
ed. T. Jech, American Mathematical Society, 1974.

[7] Hechler, S., “A ubiquitous cardinal,” Proceedings of the American Mathematical
Society, vol. 52 (1975), pp. 348-352.

[8] Ketonen, J., “On the existence of P-points in the Stone-Cech compactification of
the integers,” Fundamenta Mathematicae, vol. 92 (1976), pp. 91-94.

[9] Kunen, K., “Some points in BN,” Mathematical Proceedings of the Cambridge
Philosophical Society, vol. 80 (1976), pp. 385-398.

[10] Miller, A., “There are no Q-points in Laver’s model for the Borel conjecture,” Pro-
ceedings of the American Mathematical Society, vol. 78 (1980), pp. 103-106.

[11] Miller, A., “Rational perfect set forcing,” pp. 143-159 in Axiomatic Set Theory,
Contemporary Mathematics 31, eds. J. Baumgartner, D. A. Martin, and S. Shelah,
American Mathematical Society, Providence, Rhode Island, 1984.

[12] Puritz, C., “Ultrafilters and standard functions in non-standard arithmetic,” Pro-
ceedings of the London Mathematical Society (3), vol. 22 (1971), pp. 705-733.

[13] Puritz, C., “Skies, constellations, and monads,” pp. 215-243 in Contributions to
Non-Standard Analysis, eds. W. A. J. Luxemburg and A. Robinson, North-
Holland, 1973.

[14] Shelah, S., “There may be simple Py, and Py, points and the Rubin-Keisler order-
ing may be downward directed,” to appear in Annals of Pure and Applied Logic.

[15] Solomon, R. C., “Families of sets and functions,” Czechoslovak Mathematical
Journal, vol. 27 (1977), pp. 556-559.

[16] van Douwen, E., “The integers and topology,” pp. 111-167 in Handbook of Set-
Theoretic Topology, eds. K. Kunen and J. E. Vaughan, North-Holland, 1984.

Mathematics Department
The University of Michigan
Ann Arbor, Michigan 48109-1003





