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On Purely Relevant Logics

ARNON AVRON

/ Introduction The system RMI~ (which consists of the implication-nega-
tion axioms of RM) was investigated in [3] and shown there to be an optimal
relevance logic in its language. We note there, however, that one cannot add to
it an i?-style extensional conjunction Λ, with A κB-+ A, A AB-+ B as axioms
and the adjunction rule of inference (A, B \- A A B), without losing its rele-
vance character (see [1], 29.5, and [3], III.8).

This state of affairs is not altogether surprising. Anderson and Belnap faced
a similar problem when they came to add to R^ (or E^) extensional connec-
tives. In R~, e.g., the meaning of -> is given by the "relevant deduction the-
orem", according to which a sentence of the form Ax -• (A2 -•...-> (An -+
B)...) is provable in R~ iff there is a proof in R~ of B from the assumptions
Au... ,An which uses all theAfs. (Here the meaning of "proof is the usual
one, while the meaning of "use" is to be understood according to the rele-
vantist's analysis of this term (see [1], Chapter 1).) Accordingly, if one wishes
to add to R^ an extensional conjunction such that A ΛB \- A, A ΛB \- B and
A, B h A A B are all valid modes of inference, then he must recognize A A B ->
A, A Λ B -+ B and A -• (B -> A A B) as valid sentences. However, it is well
known that by adding these schemes to R^ we get classical logic.

Anderson and Belnap's first step in order to solve this difficulty was to give
up A -+ (B -> A Λ B) as a valid sentence and to introduce instead adjunction as
a new, primitive rule of inference (besides M.P. for ->). A second, unavoid-
able step was to propose some new concepts of "proof" relative to which some
version of the deduction theorem does hold. (In [1] and [5] three competing defi-
nitions can be found of what a "proof" in R or E is.ι This is an obvious evi-
dence that the relevantists have no clear intuition at this point.) These concepts
of proofs all seem ad hoc and entail many absurdities. Consider an example:
A Λ (B -+ B) can be inferred, according to them, if we assume both A and B ->
B but not if we assume A alone, although B -> B is a logical truth of the sys-
tem and so it would be ridicuous to pretend assuming it.
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Our opinion is that the real source of these difficulties is the relevantist's
unfortunate attempt to express pure extensional inferences (like that of A from
A AB) using relevant implication. Their failure to do so in the case of adjunc-
tion and the total impossibility of this idea2 in the case of RMI~ are only indi-
cations of something more fundamental: when -> is relevant A Λ B -+ A (in
contrast to A ΛB \- A) should be taken as valid only if the conjunction connec-
tive Λ occurring in it has a relevant character too. In particular A Λ B -• B is to
be valid only if a necessary condition for the truth of A Λ B is that A and B are
relevant to each other.

In this paper we follow this line of thought by adding to R^ and RMI~ a
relevant conjunction, instead of the meant-to-be extensional one of R and RM.
Nevertheless, we shall try to keep as close as possible to the original systems and
ideas of Anderson and Belnap (leaving a more radical approach for some other
time). The most straightforward way to achieve this is to adjoin to R~ and
RMI~ the rules and axioms of Rfde (the "first-degree-entailments" fragment of
R and E3) without any further modifications. In this way we obtain two sys-
tems, PR and PRM respectively, which might be called "purely relevant" since
they possess the variable-sharing property with respect to both -> and Λ. We
show that R and RM can be obtained from PR and PRM by adding to them
axioms, the intuitive meaning of which is that any two sentences are relevant to
each other. We show further that the adjunction rule and the disjunction syl-
logism have quite a parallel role in the context of PR, PRM, R, and RM.4

For reasons which are discussed in [3], RMI~ seems to us preferable to R^
in the context of pure relevance logic. (For example, it has an appropriate idem-
potent relevant disjunction, which R^ has not.) Therefore, we devote our atten-
tion to PRM in the rest of this paper. We show, among other things, that this
system has an infinite characteristic matrix, which resembles Sugihara matrix but
has two "zeroes" instead of the single one of Sugihara. This limitation to pre-
cisely two zeroes seems nonintuitive to us, and indeed PRM contains some
unpleasant theorems like R(A, B) v R(A, C) v R(B, C), where R(A, B) is a
sentence of the language which intuitively means that A and B are relevant to
each other. By weakening a little bit the distribution axiom of PRM (which was
inherited from R), we get another system, PRM*, which has a more satisfac-
tory semantics and in which sentences of the above sort are not provable. How-
ever, PRM* still contains nonintuitive theorems like R(A, B) vR(A AB, C) and
so still leaves something to be desired.5 In order to get a really appropriate pure
relevance logic we need a more radical approach to distribution and so a fur-
ther departure from Anderson and Belnap systems is called for. This will be the
subject of another paper.6

2 Preliminaries: Logical systems

The system R

Axioms
Rl A^A
R2 {A -* B) -•. (B -+ C) -• {A -• C)

R3 A-+(B-+C) ^.B-+{A-+C)
R4 {A -> (A -• B)) -+ (A -• B)
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R5 A Λ B -> A
R6 AAB^B

R7 (A -> 5 ) Λ 04 -* C) -*. A -> ( £ Λ C)
R8 ^ -> y4 v B
R9 B-+A\iB

RIO (Λ -• C) Λ (J? -> C) -» .(Λ v β ) -• C
Rl l (.4 v £ ) Λ (A v C) - .,4 v (B Λ C)
R12 (A-+~B)->(B->~A)
R13 —Λ->>1.

Rules of inference - — ^ — — (M.P.) — - (Adj.)
B A AB

R-> and R~ are the {-̂ } and the { —, -*} fragments, respectively, of R.
RM is the system obtained from i? by replacing Rl by RM1: A-> (A->

A).
RMI^ is the system in the { —, -+} language having RM1, R2-R6 as

axioms, and M.P. as the rule of inference. RMI^ is the implicational fragment
oϊRMI^.

A thorough investigation of both systems, including a characteristic matrix
and Gentzen-type calaculi, is given in [3].

RM~ is the implication-negation fragment of RM. It is a proper extension
of RMI^, and is usually called Sobocinski three-valued logic (see [8], [7], and
[1], pp. 148-149). RM~ (as well as RM^) has only the classical logic as a
proper extension (see [3]).

RM^ is the implicational fragment of RM (see [6] and [3] for two differ-
ent formulations).

Other connectives
A+B=df(~A)^B
Aoβ=~(~A + ~B).

The importance of ° is due to the fact that A -* (B -> C) and (A ° B) -> C are
equivalent in R ~.

TΛtf system Rfde (first-degree fragment of R and E)

Axioms
(1) AΛB~*A

(2) AΛB-+B

(3) A^AvB
(4) £-+y4v£
(5) Λ ^ — ^
(6) — A - + A
(7) (.4 v B) A (A v C) -* ,4 v (5 Λ C).

In (l)-(7) ^4, B, C do not contain ->.

Rules of inference:



ON PURELY RELEVANT LOGICS 183

κ ι v (AvB)-+C '

All theorems of Rfde are first-degree-entailments, i.e., sentences of the form
A -> B where A and B do not contain -•.

An ordinary Sugihara matrix is a structure (S, < ,- ,-•> in which <S, < )
is a linearly ordered set. — is a unary operation satisfying De-Morgan conditions
( — a = a, a <b ^> ~b < -a), -> is a binary operation defined by:

{ ~avb a<b

~aΛb otherwise,

we call a G S designated iff —a < a.7 An ordinary Sugihara matrix S is called
normal if a Φ ~ a for a E S. By TVS, //*e normal Sugihara matrix, we shall mean
here the integers without 0 (with the usual < and ~ ) , and by the abnormal Sugi-
hara matrix we similarly mean the integers. We note the Meyer has shown that
the normal Sugihara matrix AS as well as the abnormal one are characteristic
fori?M(see [1]).

/. Definition 1
(a) PR is the system obtained from R by replacing (adj) by the following rele-
vant adjunction rule:

A-+B A-+C , _
^ J Λ C < r e - a d J>

(b) PRM is the system obtained from RM by the same replacement.

Theorem 1
(i) PR is equivalent to R^ U Rfde (i.e., the system in the language o/R which
has as axioms and rules of inference exactly those of R^ U Rfde, M extended
to the language of R).
(ii) PRM is equivalent to RMI~ U Rfde.

Proof: (i) It is not hard to see that R^ U Rfde ^PR.ΨQ show here, as an exam-
ple, that PR is closed under rule 14 of R/de- We need first a lemma:

Lemma 1
(a) // ̂ A -> B and \^A -> C then \^{A -+B)A(A-+C)

(b)If\MC-+A and^B-^A then l^(C-> A) Λ (£-• A).

That PR is closed under 14 is an immediate consequence of part (b) of the
lemma and Axiom Rll.

Proof: (a) If \pmΓ)A -• B and ijη^A -> C, then [pjΰj^A -> (B Λ C) by
re. adj. Since \PR(M)B Λ C -> B, also 4̂ -• (B Λ C) -• .̂ 4 -> 5 is provable, and
similarly >1 -* ( 5 Λ C) -• .A -• C is. Using re. adj. once more, followed by M.P.,
we see that (A -• 5 ) Λ (A -> C) is provable.
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(b) Suppose \PR{M)C -* A and \p^B -> A. Then \PR(M) ~A -+ ~ C and

| _ _ ^ 4 _> ~ # . By part (a) \pR^f){-A -> ~ £ ) Λ (~Λ -» ~C). Since ( ^

(~,4-> ~B) -» (£->.4), we get easily that \pmm(B-^A) A (C-^ A).

Returning now to the proof of Theorem 1, we note first that all the
systems we deal with in this paper are easily shown to be closed under sub-
stitutions of equivalents. As a consequence we can replace everywhere A -»
(B -* C) by A o B -* C, A v B by ~(~A Λ ~B)9 A -> C by ~C -* -,4 and
vice versa. Now, in order to show that PR <Ξ R^ U /fy^ we only have to
show that Axioms R7 and RIO are deducible in R~ U R/de, and by the above
remarks it is clear that it suffices to deduce R7 (say). Since \R^ UR (A -•

B) Λ {A -* C) ->. A -+ B we have that l/^u / ? / r f g[(04 -* 5) Λ (A -> C)) oyi] ->

B. Similarly \R^URdel((A -+ B) Λ (A -+ C)) * A] -+ C. From these theorems

R7 follows easily using re. adj. and the equivalence of A -> (B -» C) and 4̂ °

B-+C.
The proof of (ii) is similar.

The next definition introduces a matrix that will be shown later to be char-
acteristic for PRM:

Definition 2 AS, the augumented Sugihara matrix, is the matrix differing
from the ordinary Sugihara matrix S by having two "zeroes", U! and 02, for
which θ! v 02 = 1, 0χ Λ 02 = —1, ~0i = Oi, ~0 2 = 02. (As a consequence Oi -•
Oi =0u 0 2 ^ 0 2 = 02, 0 1-^0 2 = 0 2-^0 1 = -1.)

Note: In any other respect AS behaves exactly like 5 (e.g., a -> b = ~a v 6 if
a < b, a-+ b = ~aΛb otherwise). Hence, in order to show that a particular for-
mula, known to be valid in S (i.e., a theorem of RM), is also valid in AS it is
enough to check assignments involving both θ! and 02. Using this fact the proof
of the following is straightforward:

Theorem 2
Every theorem of PRM is valid in AS.

As an immediate corollary we have:

Theorem 3 PR and PRM have the sharing-of-variable property for both ->
and Λ, i.e., A -* B and A Λ B are provable only if A and B share a variable.

Proof: Suppose A and B do not share a variable. Let v be a valuation such that
v(P) = Oi for every P occurring in A, v(P) = 02 for every P occurring in B.
Then υ(A) = 0 l f v(B) = 02, v(A/\B) = v(A -+B) = - 1 . Hence, by Theorem 2

We introduce now two kinds of sentences, both expressing formally that
A and 5 are relevant to each other:

Definition 3
(a) RA(A, B) **# (A-+A)Λ (B-+B)
(b)R+(A,B) =4f(A-+A) + (B-+B).

The next theorem contains the most important proof-theoretical properties of
PRM:
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Theorem 4

(a) A, B, R*(A9 B) \^AAB

(b)lMM(AΛB)-+(A+B)

(c) R + (A9 B)9 (A-*B) + (B -+A) and (A-> B) v (B-+A) are equivalent in
PRM
(d) For any particular A and B, R+(A9 B) and RA(A, B) are interdeducible in
PRM:

R + (A, B) \pmRΛ(A9 B) RA(A9 B) \FmR + (A9 B)

(€)A-B\pmRA{A9B)

(f) (i) \μmRA(A9 AY, (ii) \FmRA(A9 B)-+RA(B, A)

(g) RA(A9 B) tPmRA(A, ~B)

(h) (i) R*(A9 B) \—R*(A9B^C); (ii) RA(A9 B) \PmRA(A9 C-+B)

(i) (i) R\A9 B) \PmRA(A ΛC,BΛ C); (ii) R*(A9 B) \pmRA(A vC9BvC)

0) IfT, A\FmC and T, B\pmC then T9AyB\FmC

{k)B\FmAy{A-B).

Proof: (a) Since \^A^ ((A^A) -+A)9 we have that A \pR^{A -+A)-*A.

Hence, by RA definition, A \FnR
A(A9 B)^>A. Similarly, B \p^RA(A, B)-+B.

By re. adj. A, B | M / ? Λ ( ^ , B) -> A /\B and (a) follows.

(b) ^ 3 (C^A) -> ((C->5) -> .C-* .A + B).8 Substituting^ Λ ^ for C

we obtain (b).

(c) fevTTΓ Λ + (^, 5 ) o ( ( ^ ->£) + ( Λ - ^ ) ) . Also, since | ^ ( ^ - C) ->.

((B -• C) -K {A + B) -> C) we have, by taking C to be Λ v B^\^A + B-+

AwB. Hence | ^ ( ( > l - * f i ) + (B->A)) ->. (^ -• B) v ( £ - > , 4 ) . Finally, since

\]mz(A-+B)^R + (A9B)9 \miz(B->A)->R + (A,B)9also\pm(A^B)v

(B^A)^R + (A9B).

(d)That RΛ(A9 B) ^ R+{A9 B) follows immediately from (b). For

the other direction we have \RMI^ ~(A -+ A) -+ (A ̂ > A) and R+(A9 B) \^^

-{A -> A) -• ( 5 -* 5 ) . Hence,"by re. adj. we deduce that Λ + t 4 , 5 ) l^^g

^ ( > l - > ^ ) - ^ J R Λ ( y l , 5 ) andso/? + (>4,5) | ^ ^ ^ ^ Λ ( ^ , B)-+(A-+A). Simi-

larly / ? + ( ^ , 5 ) fp^?~JR
Λ(^4, 5 ) -• (B^B). Applying re. adj. we get: R+(A,

B) ^PRM ~RA(A9 B) ̂  R»(A9 B). But ^ (~C ̂  C)-+C, so /? + (>!, 5 ) fe^

RΛ(A,B).

(e) This is a direct consequence of (c) and (d).
(f) We leave the proof to the reader.

(g) Since \WMΪz R+(Af B)-+R+(A, ~B), (g) is a consequence of (d).

(h) Similar to (g).

(i) We show, for example, that RA(A9 B) \pj^RA(A Λ C, B Λ C). Now

we have: \wmz R + (A9 B) -* .{A -+ (B -• (-B-+A))). Hence, by (d), RA(A,
B) \pjϊMΛ-* &-+ (~B-+A)) and so:

(l)RA(A,B)\pm(AΛC)^((BΛC)->(~B-+A)).

Also, since \wmz (B + C) -> ( C - ^ ( ~ 5 -• C)), we have that I p ^ / ί ^ + C) ->

(AΛC-+ (~B-?O). Hence, by (b), ^ ( 5 Λ C ) -> ( W Λ C ) -> ( - 5 - C)), or:
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(2) \Pm(A Λ C) -> ( (ΛΛ C) - (-B-+C)).

From (1) and (2) we infer RA(A9 B) ^ (A Λ C) ^ ((B Λ C) -+ (~B -+.
A Λ C)), so:

(3) R*(A, B)\pm(AΛC)-+ ((BΛ C) -> (~(Λ Λ C) -* 5 ) ) .

Using (b) and the fact that \κmz {A + C) -> (C-+ {~C-+ A)) we infer
that:

(4) IPRM(A ΛC) ̂  «BΛC) ^ (~C-+ A)).

Also, since \RMJZ C-» (C-+ (~C-> C)), we have that

(5) ta (^ Λ C ) -+ ( ( ^ Λ c ) - (~C-> C)).
Applying re. adj. to (4) and (5) followed by a contraposition we get:

(6) ^PRM(A ^C) -> {B^C) ̂  (~{A ^C) -> C).

(6) and (3) give, again by re. adj.: RA(A, B) \p^(A Λ C) -• (B A C) -> (-(A Λ

C) -> (fiΛC)), i.e., i?Λ(,4, 5) ^ + M Λ C , 5 Λ C ) (since ^ #+(,4, B) #

(A ->. £ ^ (~Λ -•£)). Now use (d).

(j) As a consequence of (a), (h) and (i) we have: A v B, A v (B -» C) | ^ ^

( ^ V 5 ) Λ ( ^ I V ( 5 - > C ) ) . Hence, using distribution,9 ,4 v # , ^l v^-> C) (p^^

>4v(fiΛ(5-*C)). Similarly: A v (B-+C), Av (B-+D) \pmA v ((B-+C) Λ

Since it is easy to show that 1^2? Λ (B -> C). -» C and that E -+ F \p^j

(G v is) -> ( G v F ) , we can conclude that

(1)^V5MV(5->C)^VC

(2) ̂  v (5 -> C), ̂  v (B -+ D) \mMA v (B - (C Λ £>)).

We can now use (1) and (2) to follow the proof in [1], pp. 301-302 and show

that if T, B \ p m C, then T,A\ιB \p^A v C and, then, (j).

(k) Since \ψ^^A -+ A \ιB we have, by (e), that [p^^RA(A, A v B) and so,

by (g) and (f), \p^jR(-A, Av B). It follows now, by (a), that ~A, Av B \p^j

-A Λ (A v B), and so, using distribution and B \p$A v By that ~A> B [p^^

(~AΛA) v M Λ ί ) . But (p^(~^Λ^l) ->^4 and \MM(-AAB) -+ (A ^ B)

(by (b)), hence ~A, B \p^jA v (A-+B). Obviously A> B\pχAvA-+B, and

so, by G) ~A \ι A, B \p^[A \ι (A-^ B). But \p^A\/ -A (since |̂ 7y4 + ~A

and ( ^ ( ^ + -A) -^(Av ~A)). Hence (k).

We turn now to prove the converse of Theorem 2, i.e., completeness of
PRM relative to AS. The proof is similar to that used by Dunn in [4] in order
to show the completeness of RM relative to Sugihara matrix (first shown by
Meyer). As a first step we generalize the semantics:

Definition 4 By an augumented Sugihara matrix we mean either an ordinary
Sugihara matrix or any structure obtained from a normal Sugihara matrix M,
having a minimal designated value (we denote by 1), by adjoining to M two
"zeroes" 01 and 02 and defining: 01 -• 01 = - 0 ! = 0j, 02 -• 02 = ~0 2 = 02, 0j v
02 = 1, θ! Λ 02 = - 1 , θ! -• 02 = 02 -• θ! = - 1 . The designated values of the
augumented matrix are those of M, together with θ! and 02.

Note: It is not difficult to see that, like in an ordinary Sugihara matrix, the desig-
nated values are those α's satisfying ~a < a and that a-+ b = ~~av b if a < b,
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~a Λ b otherwise. (The order relation is determined, of course, by Λ and v.)
Further, any augumented Sugihara matrix is a distributive lattice in which ~
satisfies De-Morgan conditions ( — a = a, a<b & ~b < -a) and the normal
members of which form a chain.

Theorem 2* If T \p^^A, M is an augumented Sugihara matrix, and v is a
valuation in M in which every member of T has a designated value, then v(A)
is designated too.

We leave to the reader the proof of the above theorem, as well as of the
following lemma:

Lemma 2
(a) If M is an augumented Sugihara matrix, v a valuation in M, A a sentence
all atomic variables of which are among {Px,... ,Pn}, then v(A) £ {Oi, 02, ±1,
±v(Pι),..., ±v(Pn)}.
(b) If, under the above conditions, v(A) is not designated then A is not valid
in AS (Definition 2).

Theorem 5 The completeness theorem
(a) If T is a PRM-theory, T ^ ^ φ, then there is an augumented Sugihara
matrix M and a valuation v in M such that v(C) is designated for any C E T,
but v(φ) is not.
(b) \PRMA iff A is valid in AS.

Proof: (b) follows immediately from (a), Theorem 2, and Lemma 2. To show
(a), let Γand φ be as above. Following [1] and [4], we call a theory "prime"
if, whenever T \- A v B, then either T h A or T f- B. Using Theorem 4(j), we can
extend Γto a prime theory 7Ό such that To \—/—φ. Let M— (M, <, ~, v, Λ,
-•, TM) be the Lindenbaum algebra of T, constructed in the usual manner,10

and denote by [A ] the equivalence class of a sentence A. It is easy to see that
Mis a distributive lattice in which — satisfies De-Morgan conditions. Also, since
To \PRMA v -A and To is prime, a G TM or -a E TM for any a E M. Since
t^^ζ A# (~A^A), aeTM iff -a < a. Further, if a E TM and a < b, then
b E TM. As usual, if we define v(A) = [A], we get a well-defined valuation for
which exactly the theorems of To are true. Hence all theorems of Γare true for
it and φ is not.

Call now a EM "normal" if a Φ -a. Since \RMI_ A ->. — A -> (A <* -A),
\RMJ{A & -A) -* A, \^jj(A & -A) -• — A, a is abnormal iff both a and —a are
in TM.

To end the proof we must show that M is (isomorphic to) an augumented
Sugihara matrix. For this it suffices to show that: (a) The normal members of
TM form a chain under <. (b) If a and b are abnormal and different, then a φ
b, b φ a. (c) If a is abnormal, b normal and designated, then a <b. (d) There
are at most two abnormal members in M. (Note: if there are two, θ! and 02,
then (a)-(c) imply that Oi v 02 is a first normal and designated member of M.)

{ -aw b a <b

~a Λb a φ b.
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A key result in the proof of (a) and (c) will be the following consequence
of Theorem 4(k) and the primeness of To:

(*) If ToM, To\-B, then To\-A-+B.

To prove (a) suppose [A], [B] G TM and that both are normal. Then To \f

-A and To \- B. (*) implies, then, that To ̂  -A -+ B. But ̂ 7 {-A -> B) -•

R*(A, B), so by Theorem 4(c) and the primeness of Γo, either [A] < [B] or

[ £ ] < IA].
For (b), assume [Λ] = [~A], [B] = [-5] and [A] < [ 5 ] . Then To h

.4 -•£ and so Γo h ~fi-> ~Λ. But [5] = [~B] and [-/I] = [A] and so Γo h
B-+A also. Hence [Λ] = [B].

For (c) suppose [̂ 4] is abnormal and [B] is normal and designated. Then
To Y- ~B, T0\-~A. (*) entails, therefore, that T0\-~B-+~A, and so To \- A ->
5 and [Λ] < [B].

(d) follows easily from (a)-(c) and the fact that (M, <, -> is a distribu-

tive De-Morgan lattice. For (e) we note first that since \pg(A + 5 ) ->. A v B

and \p^^A A B -> A + B (Theorem 4(b)), it is always the case that ~a Λ b <

a-^b < ~ α v b (a, b G M). Suppose now that [A] < [B], i.e., To \- A -+B.

Since fe^ (A-+B)^> (~A - (>1 -*S)) and ^ (^ ->5) -> (5-> (A-+B)),

the assumption Γo h A -> 5 implies that Γo h (-^4 v 5 ) -• (A -+ B) and so

[A]-+[B] = ~[A]v [B] in this case.
Suppose finally that [A ]φ[B]. Then TQΫA-+B and so To h - (̂ 4 -• B).

B u t feζ ^ W "> Λ> "* (W -^ Λ > -* ~ ^ ) ' fev?ζ -(^4 - Λ) ->. (>1 -> 5) - 5,
so the present assumption implies that To\- (A^> B) -+ (-A Λ B) and so [A ->
Λ ] = ~ [ > 1 ] Λ [ Λ ] .

This completes the proof of the theorem.

As an immediate corollary we have:

Theorem 6 PRM is decidable.

II. (A) Adjunction and the disjunctive syllogism

Theorem 7
(a) Adding adj to PR we get R.
(b) Adding RA(A, B) or R+(A, B) to PRM we get RM.
(c) Adding R+(A, B) to PR we get RM.

Proof: (a) Follows immediately from the definitions of PR and R.
(b) Follows from Theorem 4 (a) and (b).
(c) In [3] it is shown that, if we add R+(A, B) to R^9 we get RM^, which

is an extension of RMI~. Hence PR U {R+(A, B)} is equivalent to PRMΌ
{R+(A, B)} and part (c) follows from part (b).

Remark: Theorem 7 shows that R and RM are really close relatives. Both are
obtained from PR by adding schemes that are interdeducible in PRM and which
intuitively mean that any two sentences are relevant to each other.

Theorem 8 The adjunction rule (adj) and the disjunctive syllogism (γ) are
equivalent in the context of PR: closing PR by either of these rules gives R. Sim-
ilar relations hold between PRM and RM.
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Proof: That R{M) results from adding adj. to PR(M) is trivial. By Meyer-
Dunn theorem ([1], Section 25) we know also that R and RM are closed under
7. Finally, in order to show that the system obtained from PR(M) by adding
(7) is R(M)9 it is enough, by Theorem 7, to show that RA(A9 B) is derivable in
this system. But \m-(RA(A,B)) * (~(A-+A)v~(B-+B)), hence \jηϊ~(A-+
A)v(~(B-+B) vRA(A, B)). Since ^ — (C-+C), two applications of (7)
give RA(A, B).

Theorem 8 shows great similarity in the role of adj. and 7 with respect to
relevance logic.11 (This must not surprise us: Adj. can be used, in order to
derive the "paradox" A -• (B-+A) in a way which is parallel to that in which
7 is used in order to derive ~A -+(A-+B).) This similarity is strengthened by
the next theorem which shows that ~A A (AMB.) ^ B can also be included in
a system of "relevance" logic.

Theorem 9 The system resulting from R by replacing R7 and RIO by
-A A (Ay /?).-• B has the sharing-of-variable property for ->. This remains the
case even if we add also the associative and commutative laws for v and Λ,
all forms of De-Morgan laws and all tautologies in the {~, v, Λ} language.

Proof: We use a structure similar to the matrix Mo of [1], pp. 252-253. We
only change the definition of XAy, xvy as follows: Λ behaves like classical con-
junction on {-1,1} and on {-2,2}. Also XΛy = +0 if x, y are both designated
but the previous cases do not apply, x Ay = —3 otherwise, xvy is defined to be
— (— XA —y). It is now easy to check that all theorems of the system described
in the formulation of the theorem get designated values under each valuation
in this structure. Now if A and B share no variable, we can define V(P) to be
1 if P is a propositional variable of A, V(P) = 2 otherwise. Then V(A) E
{1, -1>, V(B) G {-2,2} and V(A-+B) = - 3 , which is not designated. Hence
A -• B is not a theorem in this case.

//. (B) A maximal pure relevant logic

Definition 5
(a) A2 is the submatrix of AS consisting of {-1, 1, 0^ 02}.
(b) PRM2 is the set of sentences valid in A2.

Note: A2 is a combination of two known four-valued matrices: the truth-table
for ~ and -+ and the designated values are like those in the matrix we call by the
same name in [3], and which is isomorphic to the matrix introduced by Parks
in [7] (see [1], p. 168). On the other hand, the truth tables for ~, vand Λ are like
those in the Smiley matrix and introduced in [1], Section 13.3.12 It is important
that the order relation defined on the Smiley matrix according to the lattice oper-
ations v and Λ corresponds exactly to the one induced on the Parks matrix by -•
and by the choice of designated values (i.e., a < b iff a -• b is designated).

Theorem 10
(a) PRM2 has the variable-sharing property for both -> and Λ.
(b) Every logic extending PRM which has the variable-sharing property for -+
is included in PRM2.
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(c) An axiomatization of PRM2 is obtained by adding to PRM the scheme
Av(A-+B).
(d) PRM2 has only two proper extensions: the classical calculus and RM3 (the
set of sentences valid in the Sugihara matrix M3 = {-1, 0, 1}; (see, e.g., [1],
p. 470).

Proof: (a) This is proved exactly as in the PRM case.
(b) Let L be an extention of PRMhaving the sharing-of-variable property

for -+. Then ¥R+(A, B). Repeating the argument in the proof of Theorem 5,
we can find an augumented Sugihara matrix M in which all theorems of L are
valid but R+(A, B) is not. Since R+(A9 B) is valid in any ordinary Sugihara
matrix, M contains both 0j and 02 and so A2 is a submatrix of M. Hence all
theorems of L are valid in A2 and L c PRM2.

(c) It is easy to check that A v {A -> B) is valid in A2. On the other hand,
if PRM + {A v .A -> B) Ϋ 0, then, by repeating the argument of Theorem 5,
we can find an augumented Sugihara M in which A v .A -> B is valid but φ is
not. Clearly A v .A -» B can be valid in M iff it contains exactly one undesig-
nated value. Hence M must be a submatrix of A2, and so φ is not valid in A2.

(d) By the proof of (b), if L is an extension of PRM2, then \-R + (A, B).
This means, by (c) and Theorem 7(c), that RM+ {A v (A -> £)} c L. But it is
known that this system, called RM3 in [1], has only one proper extension,
namely, the classical calculus.13

//. (C) Fragments of PRM and PRM2

Theorem 11 Rfde is the first-degree-entailment fragment of both PRM and
PRM2.

Proof: By Theorem 1, Rfde c PRM^PRM2. On the other hand in [1], 15.3 it

is shown that \^eA -> B iff V(A) < V(B) for any valuation Fin the Smiley

matrix, so (see the note after Definition 5) \^— A -> B iff A -> B is valid in y42>

Theorem 12 PRM and PRM2 have the same {~, -*} ύr̂ rf {-•} fragments.
These fragments are proper extensions of RMI^ and RMI^, respectively. More-
over, these fragments are relevantly maximal logics in the sense that they have
the sharing-of-variable property and they include any other extension of RMI^
(or RMI^) having this property. (So no proper extensions of them in their lan-
guage have this property.)

Proof: In [3] we call the above fragments of PRM2 (i.e., the sets of sentences
in the {-, -•}" and {-•}" language valid in A2) "RMll" and "RMli" respec-
tively. We show there that a complete axiomatization of RMli(RMli) is
obtained by adding to RMI~{RMU) the scheme: [(Pι -+P2) -+P3] ->[((PX-+
^ 3 ) - ^ 2 ) ^ ( ( ( P 2 ^ J P 3 ) ^ Λ ) ^ . ( P l ^ Λ ) + (P 2 ^^2) + (P3-P3)].14NθW,
it is not difficult to check that this formula is valid in AS and so provable in
PRM. Hence, RMI^RMU) is contained in PRM, and since PRMQPRM2,
RMll(RMll) is exactly the {-, -+} ({-•}) fragment of both systems. The
other parts of the theorem contain properties of RMI% and RMli that were
proved in [3].
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//. (D) A subsystem with a more intuitive semantics Theorem 5 shows that
PRM and RM differ slightly: while in RM essentially all "paradoxical" sentences
are equivalent, in PRM we can have exactly two different such sentences. It may
seem more intuitive to have a potentially infinite number of "paradoxical" sen-
tences, irrelevant (and so non-equivalent) to each other in pairs. This can be
done, but only with the price of weakening the distribution axiom. This is not
too high a price, though. The justification of this axiom is not clear anyway,
and it is known to be the source of many unpleasant properties of the relevance
system.15

As a first step we introduce a new connective, definable in PRM, and prove
a theorem about it. Both the connective and the theorem are important on their
own right.

Definition 6 A D B =df {A -+ B) v B.16

Lemma A, A D B \p^B.

Proof: Since l^ A -> {{A -+ B) -+ B)/\t follows that A (^ {A -• B) -* B. Also,

\p#B -+ B, so A \pg (A D B) -> B. Hence the lemma.

Theorem 13 The deduction theorem Let T be an L-theory where L is any
extension of PRM (having the same rules of inference), then T, A \ιB iff 'T\χ
ADB.

Proof: The lemma gives the "if" part. For the "only if" it is enough to check
that the following three schemes are valid in AS and so provable in PRM: (i)
ADA; (ii) (A D B) D [(A D (B -+ C)) D (A D C)]; (iii) (A D .B -> C) D
[(A D.B-+D) D (A D.B->(CAD))].

We generalize now the semantics of PRM:

Definition 7
(a) By a generalized Sugihara matrix we mean any structure which is either an
ordinary Sugihara matrix, or results from a normal Sugihara matrix S9 having
a first designated value 1 by adding to it a set of neutral values {//}/ey, all taken
to be designated. We further define: ~/, = /,- -• /f = I{ A /,- = /,- v 7Z = /,-, and if
/ Φ j then // -> Ij = Ijλlj = - 1 , /,- v /y = 1.
(b) ES, the canonical generalized Sugihara matrix is obtained from the integers
(without 0) by adding to them a countable set of neutral values in the manner
described in (a).

Obviously, a sentence A is valid in any generalized Sugihara matrix iff it
is valid in ES.

Theorem 14 Let PRM* be the system obtained by replacing the distribution
axiom of PRM by the following relevant version:

(RD) [RA(A, B) vRA(A, C)vRA(B, Q] D [(AVB)A(AVC)->.AV(BA

C)].

Then PRM* is complete for the set of sentences valid in ES.

Proof: It is easy to check that all theorems of PRM* are valid in ES. For the
completeness part of the theorem we note first that PRM* has all the proper-
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ties of PRM listed in Theorem 4. This is so because one can easily check that,
whenever the distribution axiom is used in the proof of Theorem 4,17 we can
apply previous parts of that theorem and the lemma after Definition 6 for
justifying the use of RD instead of distribution. Granting this, we can repeat
now the proof of Theorem 5 for PRM* word by word. There is just one excep-
tion: in one place in that proof, distribution is used directly (i.e., not through
applications of Theorem 4): when we show that there are at most two neutral
values. In PRM* we do not have this limitation and so we just have to omit this
step.

The next theorem summarizes those properties of PRM thai PRM* has as
well. The proofs are exactly as those of the corresponding theorems for PRM
(Theorems 3, 4, 6, 7, 8, 13) and are left to the reader.

Theorem 15 PRM* has the sharing-of-variable property for both -• and Λ,
// is decidable, the deduction theorem for D holds in it, and it has all the proof-
theoretical properties stated in Theorem 4. Further, adding to it either RA(A,
B) or R+(A, B) as an axiom, or either adj or y as a rule of inference, we get
RM.

Besides the properties shared by PRM and PRM*, there are welcomed
properties that PRM lacks but PRM* has. The following theorem is a very
important example:

Theorem 16 PRM* is a conservative extension of RMI~.

Proof: In [3] we show the submatrix of ES consisting of {-1, 1, Ix, I2,...} is
characteristic for RMI~. From this fact and the fact that ES is sound for RMI~
the theorem follows easily.

Note: In [3] we show that any proper extension of RMI^ is obtained by add-
ing schemes the meaning of which is that there are just a finite number of "para-
doxical" statements. Since such a limitation is not intuitive (unless we reject the
existence of any paradoxical statement) RMI~ is preferable to any of its exten-
sions (excluding perhaps classical logic). (There are also other reasons to choose
RMI^ as the "true" relevance logic in the {-•, ~} language. See [3].)

The submatrix of ES mentioned in the last proof was called A* in [3], and
it was shown there to be a minimal matrix characterizing RMI~. For the full
language of PR we have the following:

Theorem 17 A complete axiomatization of the set of sentences in the lan-
guage of PR which are valid in A^ is obtained by adding to PRM* the scheme
Av{A^>B).

The proof resembles that of Theorem 10, and is left to the reader.

NOTES

1. Not to mention the ordinary, "official" one which is also sometimes used, e.g., in
the proof of the admissibility of (7).

2. We consider this impossibility as another evidence of the pure relevance character
of 7?M/~.
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3. We prefer here the name Rfde to E/de, which was used in [1].

4. In view of these facts, we think that like RM, R itself may hardly be called "a rel-
evance logic".

5. This observation is due to the referee.

6. In this paper, whenever we talk about provability from a set of assumptions we
assume the ordinary (sometimes called "official" by the relevantists) sense of a
"proof".

7. This definition of a Sugihara matrix is a version of Dunn's concept of a Sugihara
chain appearing in [1], p. 421. The adjective "ordinary" was added to distinguish
it from the generalization we introduce below.

8. This is shown in [3], III.8. From now on we shall not give a proof of a sentence in
RΛI~ (or RMIJ) when we claim such a proof to exist, since RMI~ and RMI^ have
an efficient decision procedure (see [3]).

9. This is the first place we use distribution in the proof of Theorem 4. Hence (a)-(i)
are true independently of this axiom.

10. I.e., we define A = B iff To \p^χfA # B. (By A # B we mean either (A -> B) °
(B -• A) or (A -• B) Λ (B -• A). Both are provable iff both A -> B and B -> A are
provable.) This is an equivalence relation. Denote by [A] the equivalence class of
A, and let M be the set of the equivalence classes. Define further: [A] < [B] iff
T 0 \ - A ^ B 9 [A] A IB] = [AΛB], [A)V[B] = [AvB], -[A] = [A], [A] ->

[B] = [A -> B]. These are all well-defined. Finally let ΓM, the set of designated val-
ues, be {[AWTo^^-A).

11. Note also the similarity with respect to R: R is closed, as a system, under both rules,
but they cannot be applied freely in ("official") i?-deduction from /^-theories with-
out violating basic relevant principles.

12. In [1] the matrix consists of {1, 2, 3, 4}. The correspondence 1 & 1, 4 *> — 1, 2 <*
0i, 3 & 02 is an isomorphism of the two matrices relative to {~, Λ, V}.

13. This is a consequence of Dunn's characterization of RM's extensions. See [1], 29.4
and p. 470.

14. For the case of RMI^ an equivalent formula containing only -• is given in [3].

15. In [1], p. 313 it is called "a headache for E and related systems" (in some respects).

16. More on this connective and its importance in the context of RM can be found in
[2].

17. Actually only parts (j) and (k) depend on distribution (see note 9).
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