Iterated Images on Manifolds

LEON HARKLEROAD

Many results of classical recursion theory carry over nicely when generalized to recursive manifolds. However, this paper shows that a standard classical property of the basic operation of iteration does not hold in the generalized setting. Specifically, the result

(*) If f is p.r., then
$$\{f^n(x_0)\}_{n=0}^{\infty}$$
 is r.e. for any x_0

does not carry over to recursive manifolds.

By way of comparison and contrast, consider the state of affairs for uniformly reflexive structures (URS). The result of this paper has a parallel in Friedman's example [1] of a URS with a nonsemicomputable splinter. However, if a URS has one nonsemicomputable splinter, then it cannot, in fact, have any infinite semicomputable splinter; this implication does not transfer to manifolds, as can easily be seen.

To keep the paper self-contained, this paragraph briefly reviews the relevant terminology from [2]. A simple example of a manifold is N^2 , written as the disjoint union $\bigcup_{i=0}^{\infty} A_i$, where $A_i = \{i\} \times N$ is enumerated by α_i , with $\alpha_i(j) = (i, j)$. B, a subset of N^2 , is \mathfrak{A} -r.e. iff $\alpha_i^{-1}(B)$ is r.e. for every i. A function f from N^2 to N^2 is \mathfrak{A} - \mathfrak{A} -rec iff for each m and n there exists partial recursive $f_{m,n}: \alpha_m^{-1}(f^{-1}(A_n)) \to N$ such that $f \circ \alpha_m = \alpha_n \circ f_{m,n}$. A compact f from N^2 to N^2 is one such that each $f(A_i)$ is contained in a finite union of A_k 's. If f is 1-1 and \mathfrak{A} - \mathfrak{A} -rec such that both f and f^{-1} are compact, f is an embedding. And, as usual, for $S \subseteq N$, χ_S denotes the characteristic function of S.

We will show that (*) does not generalize to N^2 (much less to other, more complicated manifolds). In fact, there is an embedding f from N^2 onto N^2 and $x_0 \in N^2$ such that not only is $\{f^n(x_0)\}_{n=0}^{\infty}$ not \mathfrak{A} -r.e., but $\alpha_k^{-1}(\{f^n(x_0)\}_{n=0}^{\infty})$ is not r.e. for any k.

Proof: Define
$$h: N^2 \to N^2$$
 by
$$h(\alpha_k(2n+1)) = \alpha_{k+1}(2n+1)$$

Received June 11, 1984; revised October 12, 1984

$$h(\alpha_0(2n)) = \alpha_0(2n+1)$$

 $h(\alpha_k(2n)) = \alpha_{k-1}(2n), k \ge 1.$

Clearly, h is an onto embedding. Using an infinite lattice in which the circle in the i'th row, j'th column represents $\alpha_j(i)$, $i, j = 0, 1, 2, \ldots$, the function h may be graphically represented as follows:

$$0 \leftarrow 0 \leftarrow 0 \leftarrow 0 \leftarrow 0 \dots$$

$$0 \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow 0 \dots$$

$$0 \leftarrow 0 \leftarrow 0 \leftarrow 0 \leftarrow 0 \dots$$

$$1$$

$$0 \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow 0 \dots$$

$$\vdots$$

$$\vdots$$

Let $A \subseteq \{2n | n \in N\}$ be a non-r.e. set containing 0. Let $a_0 = 0$ and $a_k =$ the k'th nonzero element of A for $k = 1, 2, 3, \ldots$ Set

The picture for g looks like this:

Finally, to produce a bijection, set

The diagram for f is:

Both f and f^{-1} are compact, since $f(A_k)$ and $f^{-1}(A_k)$ are contained in $A_{k-1} \cup A_k \cup A_{k+1}$. Further, because on each A_k f and h agree at all but at most two points, f is \mathfrak{A} - \mathfrak{A} -rec. Thus f is an embedding. Let $x_0 = (0, 0)$, $S = \{f^n(x_0)\}_{n=0}^{\infty}$. Then, defining B as $\alpha_0^{-1}(S)$, $B = A \cup \{a+1 | a \in A\}$ and so is not r.e. In addition, for each k, $\alpha_k^{-1}(S)$ almost equals B. More precisely, $\chi_{\alpha_k^{-1}(S)}(x) = \chi_B(x)$ for all $x \geq a_{k-1}$. Thus $\alpha_k^{-1}(S)$ is non-r.e. for each k.

NOTE

1. The author wishes to thank the referee for calling this parallel to his attention.

REFERENCES

[1] Friedman, H., cited (with construction outlined) in [3].

- [2] Harkleroad, L., "Recursive equivalence types on recursive manifolds," *Notre Dame Journal of Formal Logic*, vol. 20, no. 1 (1979), pp. 1-31.
- [3] Strong, H. R., "Construction of models for algebraically generalized recursive function theory," *The Journal of Symbolic Logic*, vol. 35, no. 3 (1970), pp. 401-409.

Department of Mathematics Bellarmine College Louisville, Kentucky