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A Fully Logical Inductive Logic

JOHN NOLT*

Abstract Carnap and his successors have explored various a priori proba-
bility assignments to possible worlds (state descriptions) in an effort to gen-
erate plausible inductive probabilities. Such assignments typically incorporate
an a priori bias in favor of more orderly worlds. This paper presents an al-
ternative approach that abjures such a priori favoritism. Instead, inductive
probabilities are derived from explicit assumptions about the structure of the
actual world. It is shown that even very simple empirical assumptions (such
as the hypothesis that there is a specific upper bound on the number of kinds
of things) can yield plausible inductive probabilities for a wide range of in-
ferences. The results for these simple assumptions are not, however, satisfac-
tory in all cases; further work may produce better assumptions.

Any workable inductive logic must assume or presuppose that the world is
(or is likely to be) fairly orderly. In the inductive logics developed by Carnap and
his successors, for example, likely orderliness is presupposed by what amounts
to an assignment of varying a priori weights to possible worlds (state descriptions)
in proportion to their degree of order. This can be done in a variety of ways. In
Carnap's systems, for example, one does it by choosing some finite value for a
single parameter, λ.1

λ determines a relative weighting of two factors in the inductive projection
of a property: its observed frequency and its logical width. Carnap calls these
the empirical and the logical factors, respectively ([1], §7). Finite values of λ give
some weight to the empirical factor, so that the assumption that a property has
been found frequently typically increases the probability that it has further in-
stances. But if λ = oo the empirical factor is disregarded, so that premises about
one set of objects have no effect on the probability of conclusions about others.
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The result is a fully logical inductive logic, in the sense that its inductive projec-
tion of properties depends on the logical factor alone. Empirical considerations
can still influence inductive probabilities, but only if formulated as explicit as-
sumptions of inductive inferences; they are not intrinsic to the logic.

Car nap rejected fully logical inductive logics on the grounds that accepting
them "means refusing to give any regard to experience, to the results of obser-
vations, in making expectations or estimations" ([1], p. 38). But this opinion,
which has since passed into conventional wisdom, is inaccurate.2

Granted, in a fully logical inductive logic premises about one set of objects
do not affect the probability of a conclusion about others. But expectation can
still be made to answer to experience if to the specific premises of an inductive
inference we add a general assumption proclaiming the orderliness of the world.
For with the addition of such an assumption (which says something about all ob-
jects), the premises do concern the objects mentioned in the conclusion and so
can influence the conclusion's probability.

This idea is not new. The early literature on induction is peppered with at-
tempts to formulate such an assumption—a so-called principle of the uniformity
of nature. Many of these were misguided efforts to convert induction to deduc-
tion. But the sort of uniformity principle envisioned here would merely enable
premises about one set of objects to increase the probability of a conclusion
about others; it would not effect a wholesale transformation of induction into
deduction.

The idea of formulating uniformity principles remains intriguing, despite its
history of failure, because if successful it would provide a rigorous and general
account of the sorts of order needed in the actual world to make sense of induc-
tion. Carnap and his successors constructed sophisticated weightings on possi-
ble worlds to achieve desired results. But these weightings do not represent
anything real; at best they model the subjective predilections of idealized
reasoners. While we cannot avoid adopting some a priori probability assignment,
it may be interesting to see what could be accomplished by limiting consideration
to the one that in effect presupposes no likelihood of uniformity at all, Carnap's
λ = oo. By this austere rejection of a priori favoritism toward order, we leave our-
selves only one option: to introduce considerations of order exclusively through
assumptions that say something about the actual world.

To illustrate this idea, I will describe a fully logical inductive logic for the mo-
nadic fragment of the predicate calculus that uses one reasonably interesting class
of uniformity principles. While not the only uniformity principles worth consider-
ing, these are perhaps the simplest. They assert that the world contains no more
than some finite number, k, of kinds of things. (The relevant notion of kind —
which depends on a second parameter, TΓ—will be explained shortly.) Lower val-
ues of k indicate greater uniformity.3

Thus, instead of a choice among values for λ, we have (supposing π to be
fixed) a choice among values of k. The chief advantage over Carnapian meth-
ods and their generalizations is that since this choice determines an assertion
about the actual world, it is falsifiable (indeed, finitely falsifiable); the choice
of λ or other parameters of generalized Carnapian systems is not.

Induction can now be pursued conservatively by choosing a high value for
k, or riskily by making k as low as possible, consistent with current knowledge.
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In either case, we must increase the value of k if the current value is ever falsi-
fied by observation of more than k kinds. Conversely, if the accumulating data
are very uniform, we may (in the Popperian spirit of venturing the strongest hy-
potheses) be emboldened to lower the value of k.

Of course, the construction of such a logic does nothing to solve Hume's
problem. At best what it shows is that, contrary to conventional wisdom, a fully
logical inductive logic can give plausible results—if used with the assumption that
we live in the right kind of world. The Humean skeptic worries about the truth
of that assumption. I will not worry much about it here (though I have a bit more
to say below). Like Carnap's insistence on finite values of λ, it is an avatar of
induction's inevitable leap of faith.

Echoing Carnap, we define a denumerable hierarchy of languages £% for
TV, 7r > 0. £% is the first-order language consisting of the names αi, a2,..., aN,
and the monadic predicates Px ,P2,... ,P π . Where s and t are variables or names
and A is a sentence, 'A (s/t)' designates the result of replacing each occurrence
of t in A by s. Universally quantified formulas will be interpreted substitution-
ally and thus can be analyzed as (finite or infinite) conjunctions. By an Nτ-state
description we mean a state description for the language £%.4

The Nπ-range, rNηr{A), of a sentence A of £% is the number of Mr-state
descriptions in which A is true. It is easily seen that if A is a sentence of <£^,
then for any i > π, rNi(A) = 2NU-π)rNπ(A). It follows that the ratio τNτ(A)/
2ΊΐN remains constant for all values of π. (It is undefined if A is not in <£^.)
Thus for any sentence A of £% we may set:

PN(A)=τNτ(A)/2*N.

We retain the relativization to TV, since A itself may depend on TV if A is univer-
sally quantified (i.e., is an TV-membered conjunction). For any TV, PN satisfies
the Kolmogorov axioms for the probability calculus for sentences of the lan-
guages £%. PN is thus a measure of logical probability, relative to the size TV of
the possible universes of discourse.

The corresponding notion of conditional probability is defined in the usual
way:

PN(C\A) = PN(C & A)/?N(A), provided that PN(A) Φ 0.

Notice that this could be equivalently expressed as:

PN(C\A) = TNΊΓ(C & A)/τNv(A), provided that TNΊΓ(A) Φ 0.

PN(C\A) is to be regarded as a measure of partial entailment, the probabil-
ity of a conclusion C, given assumption(s) S. In this paper I will not address the
question of its relation, if any, to such notions as degree of rational belief, degree
of confirmation, or rational betting quotient.

By a π-predicate (or, more simply, a "predicate") we shall mean a sentence
of £ ^ that contains no names or quantifiers and has exactly one free variable.
Where Fis a predicate with free variable x and a is a name, the sentence F(a/x)
is called the ascription of Fto α. One important type of τr-predicate is a τr-kind.
A Έ'kind is a conjunction (Fxx &... & Fπx) where x is a variable and, for each
/, Fi is either P, or ~P,. τr-kinds (or, more simply, "kinds") are what Carnap
calls Q-predicates. For any TΓ, the number of possible τr-kinds is 2π, which we
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hereafter write simply as K. Each τr-predicate Fis equivalent to a unique disjunc-
tion of 7r-kinds, the number of which is the τ-width of R

A -Kπc-kindstatement (1 < c < K, c < n) is a conjunction of n ascriptions
of 7r-kinds to n distinct names, in which a total of c kinds are ascribed to these
names. Note that each TVπ-state description is a ττΛ/c-kind statement for some c.
We often use the notation 'e^nc to stand for some arbitrary τr«c-kind statement.
Whenever such an expression occurs within the scope of the operator ΎN

9 we
implicitly assume that the n names in e^nc are all in £ ^ . (Otherwise the result-
ing expression is ill-defined.) Thus in such contexts we assume that n<N. Ob-
serve that:

(1) For any πrtc-kind statement erncy FN(eπnc) = 2~xn.

If Q is a kind with free variable x, then we say that Q occurs in a kind statement
A if Q(OL/X) is one of A's conjuncts, for some name α.

If A is a sentence of £% containing no quantifiers and exactly n names, then
A is equivalent to a disjunction of mutually exclusive kind statements of the form
e^nc This disjunction, which we shall call ^4's ir-normalform, is constructed as
follows. List the nir atomic sentences constructible from the n names in A and
the 7r predicates in £% in some standard order at the top of a bivalent truth ta-
ble. Each horizontal line on the table then represents a unique τrAic-kind state-
ment in which an atomic sentence occurs negated or unnegated according to
whether it is T or F on the line. A9s π-normal form is just the disjunction (in
order from the top to the bottom of the table) of each statement represented by
a line on which A itself is T.

We now introduce the concept of a principle of the uniformity of nature. The
U*-principle \J*Nlΐk for N,τr > 0 and 0 < k < K, is the assertion that there are ex-
actly k 7r-kinds. More specifically, it is the disjunction of all Nττ-state descrip-
tions that are τNk-kmά statements. U*-principles have sometimes been called
"consituent-structures" or "structural hypotheses" (see, e.g., Kuipers [9], p. 257).
Notice that U ^ * is the null disjunction (a contradiction) for k > N or k = 0.

The U-principle UNΊrk is the assertion that there are at most k τr-kinds. More
precisely, UjvτΛ- = U^ π l v . . . v \J^k for 0 < k < K. If k = K, UM-K/C is tautolo-
gous, since each 7Vτr-state description is a disjunct of one of its disjuncts, and in
each Mτr-world, M > N, an AΓτr-state description is true. Moreover, for any sen-
tence A of £ ^ :

(2) PN(υNτk\A) = ΣU?N(U*NJA)

since for k Φj, U%πk and U^πy are mutually exclusive.
A note on notation: we shall consider UNπk or U%πk only in the context of

probabilities of the form P^. Thus in expressions such as T ^ U v ^ l A ) ' the
double occurrence of W is redundant; we shall henceforth abbreviate this to
Pjv(Uπfc|A)\ and likewise for other similarly redundant expressions.

As explained above, we regard P^(C|^4) as the inductive probability of con-
clusion C given assumption(s) A. However, as noted at the outset, our logic will
be unable to "learn from experience" unless we supplement the premises with a
uniformity principle. Thus we are interested mainly in probabilities of the form
FN(C\A &-UTjt) —that is, PN(C\A & UNrk) —where U ^ ^ is some appropriate
U-principle. It remains to say which U-principles are appropriate.
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U-principles are determined by three parameters: TΓ, k, and N. TΓ specifies a
degree of "coarseness" for kinds, while k limits the number of kinds of that
coarseness. TV is the number of objects in the world. Our interest will focus, not
on specific values of N, but on limN^ooPN(C\A & Uγπ£) This may be regarded
as an approximation of PN(C\A & UN7Ck) for large finite values of N, and also
as the probability of C, given both A and the assumption that at most k τr-kinds
are instantiated, for countably infinite worlds.

It is possible, though at the cost of uninteresting complication, to consider
PN(C\A & UNπk) where either C or A contains predicates or names not men-
tioned in \JNΊΓ/C We shall not do so. Rather, we shall regard the choice of a U-
principle as determining the choice of language, so that assuming \JNηrk means
adopting JE^, to which any C and A we wish to consider must therefore belong.
Conversely, given specific C and A, we may vary TΓ and k in PN(C\A & \JNlrk)
freely, so long as TΓ does not get so small as to exclude predicates of C and A,
Thus Ujvπ£ may (and typically will) contain more predicates than occur in C and
A. Intuitively, these "extra" predicates represent (familiar or unfamiliar) prop-
erties whose presence or absence might be a factor in regularities involving the
predicates of C and A.

Though we may vary the value of k freely, the interesting values are limited
to a fairly specific range. Clearly we want k <K. For if k = K, UNlΓk is tautolo-
gous and so adds nothing to the original assumptions. Moreover, on any inter-
pretation of a language <£^, if no stronger U-principle than ΌNπK is true then
there are no true nonlogical laws; every true universally quantified sentence is
a tautology. (For every nontautologous universal generalization implies that at
least one kind is uninstantiated.) Inductive reasoners certainly take it for granted
that some nonlogical laws hold. Hence it does no great violence to their method
to represent them as assuming that k takes some value less than K. (Justification
of this assumption is something else again, but that is not our concern.)

At the other end of the scale, U ^ * is reasonable only if k > 1. For Hvn im-
plies that for any τr-predicate F and name a, if Fa is true then so is (x)Fx. Not
only is this unreasonable, for any interestingly interpreted language it is false.
Indeed, in general UNηrfc is plausible only if k is considerably greater than 1, since
typically we know that the universe contains many kinds of things. Thus U v ^
is plausible only if k < K and k is at least as large as the minimum number of
τr-kinds compatible with current knowledge.

Of course, inductive reasoners do not actually think in these terms, and it
would certainly be gratuitous to suppose that they ever had some specific value
of k in mind. They rely, rather, on a vague sense that the world is not too
chaotic. U-principles are idealized representations of that vague sense.

Before examining the details of the logic just described, it may be useful to
compare it with the axiomatizations of generalized Carnapian systems developed
by Hintikka, Niiniluoto, and Kuipers (see [4], [6], and [9]-[12]). Direct compar-
ison is not possible, since none of these writers employs U-principles as assump-
tions in the way outlined above. But indirect comparison can be achieved by
treating a U-principle \JNτk not as an assumption, but as the a priori stipulation
that 7Vτr-state descriptions containing more than k kinds have probability zero.
Probabilities are then distributed evenly among the remaining Λ/τr-state descrip-
tions. This yields a new probability operator of the form P^πk such that
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^Nτrk(C\A) = PN(C\A & U/Mt)> and one may inquire about the place of P ^ ^
(or, more precisely, its value in the limit as N-+ oo) in the Hintikka-Niiniluoto-
Kuipers systems.

On such a reconstrual ^Nπk(eπnc) = 0 for c> k; that is, it is regarded as im-
possible that more than k kinds should appear in a string of n ascriptions of kinds
to individuals—because according to PNτk no more than k kinds can exist. This
makes Pjshrk nonregular in Kuipers's sense.5 The attention of Carnap and his suc-
cessors has been focused primarily on regular systems; in particular, the nonregu-
lar systems defined by PNηrk have not to my knowledge been singled out for
extensive study. One reason for this inattention is obvious: nonregular systems
entail certain finite empirical propositions. Carnapians, who wish to map the lim-
its of plausible a priori probability distributions, generally eschew such empiri-
cal entanglements.

Things appear quite differently, however, if our aim is to explain as much
of induction as possible in terms of tentative but categorical assumptions about
the structure of the actual world. To that task we now return.

We shall consider the performance of the fully logical inductive logic de-
scribed above in its application to four common kinds of inductive reasoning:
simple induction, inductive generalization, singular predictive inference,6 and
analogical inference.

A simple induction is an inference from an assumption of the form Fax

&.. . & Fan to a conclusion of the form Fan+ι for some new name an+\. We
must therefore characterize the function PN(Fan+\ \Fax &. . . & Fan & U ^ ) .
The probability calculus allows us to re-express this as PN(Fa\ &. . . & Fan+χ
|UτrA:)/Piv(^i &.. . & Fan\Όrk); so it suffices to describe the function PN(Fctι
&.. . & Fan\Urk) for any value of n.

Let w be the τr-width of F Then the π-normal form E = V,̂ - of Fax &... &
Fan is a disjunction of mutually exclusive τrΛC-kind statements for 1 < c < w. So
PN{Faι &. . . & Fan\UTk) = Σ , Piv(£Ί|U^). Now we may think of the dis-
juncts of E simply as Λ-term sequences (with replacement) of the w kinds in F
The number of disjuncts containing exactly c kinds is equal to the number of
Λ-term sequences (with replacement) of a w-membered set containing exactly c
members of that set. Let us designate this quantity as seq(c,Λ, w). Thus the num-
ber of disjuncts of the form eπnc in E is seq(c,π, w). We shall see below (Cor-
ollary 1.1) that if A and B are both π^c-kind statements, then P^MIU**) =

PN(B\Vxk). Therefore Έ>N(Faι & . . . & Fan\υτk) = E £ i seq(c,A2, w) PN(eπnc\
υτk). But clearly PN(em\Vτk) = 0 if c > k. So:

(3) PN(Faλ &. . . & FanWτk) = ΣS?α (*'w ) seq(c,«,u>) P,v(<W|lU).

Hence:

(4) PN(Fan+ι\Faλ &...&Fan& Uπ*)

= Σ?iniik'W) seq(c,κ + 1, w) P^(^ ( , + i ) c |U^)

Σ£x*'w) seq(cf Λf w) P;v(<w|lU)

Since PN(eTnc\Urk) = P^i^ciPAriU^I^^/P^iU^), by (1) this may also be
expressed as:
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Σ"J" (*'w )seq(c,n + l,w) PN{υτk\ew(n+i)c)

KΣ?Z(k w)seq(c,n,w)PN(υπk\eπnc)

Our task is now reduced to describing seq(c,«, w) and either PΛKU^*I ê πc)
or P A K ^ / I C I U ^ ) - When no ambiguity threatens, we shall often omit mention
of the parameter TΓ. Thus, for example, 'PAKU^I^/IC) ' becomes simply ΨN(ϋk

\enc)'\ and likewise for similar expressions.
The function seq is definable by induction on c and nP For all nonnegative

integers c,n, w:

(51) seq(c,tf,w) = 1, if c-n = 0
= 0, if c = 0 or n = 0 and cΦn

seq(c + l ,/ i+ 1, w) = ( w - c ) seq(c,/i,w) + (c + l)seq(c + l,«,w).

Some important consequences of this definition are stated below without proof:

(52) If c> n or c> w, then seq(c,«, w) = 0

(53) seq(c,rt,w) = seq(c,rt,c)
\ ^ /

(54) Σ?=iSeq(/,/!,c)=c Λ

(55) For c < «,w, lim^^oo seq(c,«, w)/seq(c + l,/i,w) = 0

(56) For c < Λ,W, lim^^oo seq(c,Λ,w)/1 )cΛ = l

(57) For c < n, w9 lim^^oo seq(c,« + 1, w)/seq(c,«, w) = c.

We now examine some fundamental characteristics of PΛr(U^|βΛC). For
three special cases, the value of ¥N(\Jk\enc) is fairly obvious:

(6a) P N ( U * | e Λ C ) = 0 , i f * < c
(6b) =1, if N-n<k-c
(6c) = 1, if k = K.

If k < c (6a), then given enc there must be more than k kinds; hence \JNτk must
be false. UN— n < k — c (6b) then, given enc, even if the N — n objects not
mentioned in enc are all of different kinds, none of which occur in enc, the num-
ber of kinds in the world cannot exceed k; hence UNπk must be true. Finally, if
k = K (6c), \3NVk is tautologous.

Clauses (6a) and (6b) serve as basis cases from which the following theorem
provides a general way of computing PN(\Jk\enc) (substituting enc for A) by in-
duction on N and k.

Theorem 1 For TV,TΓ,/: > 0 and any quantifier-free sentence A of £%
such that τ{N+l)r(A) Φ 0: P ^ + ^ U ^ I ^ ) = [(K - k) P N ( U 1 r ( ^ _ l ) μ ) +
kVN(VTk\A)\/K.

Proof: PΛ + 1(Uτ A : |>4) = r ( N + 1 ) τ ( U x * & A)/x{N+X)ηc(A). Since A is in £ ^ , any
(Λ^+ l)τr-state description contains at least one name, aN+\, that does not oc-
cur in A. Moreover, each (N + l)τr-state description has the form (S &
QaN+ι), where S is an TVπ-state description and QaN+i is the ascription of some
7r-kind Q to aN+ϊ. Now (U τ* & A) is true in exactly those (N + l)7r-state
descriptions (S & QaN+ι) in which A is true and either (i) fewer than k kinds



422 JOHN NOLT

occur in S or (ii) exactly k kinds, one of which is Q, occur in S. Since A is
quantifier-free and does not contain aN+\9 an (TV + l)τr-state description (S &
QaN+\) satisfies (i) iff (U7 Γ(Λ Γ-D & A) is true in S and Q is any τr-kind. Since
there are K 7r-kinds, the number of such (N + l)τr-state descriptions is K
*Nτ(\J<κ{k-\) & A). And an (N+ l)τr-state description (S & QaN+x) satisfies (ii)
iff (U** & A) is true in S and Q is one of the k kinds in S. Thus the number of
such (N+ l)τr-state descriptions is k τNπ(Ulk & A). Moreover, r(N+ι)π(A) =
KTNΊΓ(A), since A is true in an (N+ l)τr-state description S & QaN+i iff A is
true in S and Q is one of the K π-kinds. Therefore:

PN+ι(Mπk\A) = [KτNτ(U*ik-i)&A) + krNηr(Ulk&A)]/KrNAA).

But by (2) and the definition of conditional probability this is:

[ίP^(uf(*-i)|i4) + k [PN(υτk\A) - p^υ^.^Am/K

which is the desired result.

Theorem 1, together with (SI), (5), and (6), provides an algorithm for com-
puting PN(Fan+i \Fa{ & . . . & Fan & Uτk). For the most part, the results are
what one would expect. Where w is the TΓ-width of F9 if w, k < K and k > 1, then
PN(Fan+ϊ \Faι & . . . & Fan & U τ A :) exceeds PN(Fan+ι) and becomes greater as
m increases —with certain exceptions, noted below.8 For w = K, Fan+{ is tau-
tologous, and so PN(Fan+ϊ \Fa\ & . . . & Fan & Uπk) = 1 for all values of n.
For k > K, Uπ A : is tautologous, so that PN(Fan+i \Fax & . . . & Fan & Uπk) =
PN(Fan+ι) = w/K. For k=U ^N(Fan+ι \Fa1&...& Fan & Vπk) = 1. We have
already seen, however, that all reasonable values for k lie between 1 and K.

The only surprise is that as n increases and gets very close to N, PN(Fan+ι |
Fa\ &. . . & Fan & Uπ£) may actually decrease. To see why, let us consider the
specific case in which TΓ = 2, N = 3, w = 1, and k = 2. Since w = 1, F is a kind;
for example, F might be P ^ & P 2 * . Now P 3 (Fα 3 ) = w/K = .25. Calculation
reveals that P3(Fα3|Fαii & U2,2) = A which seems reasonable, but P3(Fa3\Faι
& FOL2 & U2,2) drops again to .25.

The drop occurs because we are considering only three-membered worlds.
Given Fa\ & Fα 2 , two of the three objects must be of the same kind; hence
there can be no more than two kinds. So U2,2 is redundant: P 3 (Fa3 \Fa\ & Fa2

& U2>2) = P 3 (Fa3 \Fax & FOL2) = .25. The drop, then, is a result of artificially
restricting N to some finite value—in this case 3. We can in effect lift this restric-
tion by considering P̂ v in the limit as N-> oo. To do so, however, we need ad-
ditional results, beginning with some corollaries to Theorem 1.

Corollary 1.1 If A and B are both -κnc-kind statements of £%, then for
k>0:

( i )p Λ , (u^μ) = p i V(u7 r ) t |5)
(iϊ)j>N(A\υ7Γk) = Ί>N(B\υπk).

Proof: We establish (i) by induction on N. The basis case is N = n. Then
by (6) if k < c, ?N(\3Tk\A) = P Λ K U ^ I * ) = 0, and if k > c, P ^ U ^ ) =
PN(\Jrk\B) = 1. The inductive step is a straightforward application of the
formula of Theorem 1. (ii) follows from (i), since by Bayes' Theorem
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PN(A\υπk) = PN(A)PN(υ7rk\A)/PN(υ7rk), which by (1) and (i) is PN(B)PN

(υrk\B)/pN(υiek) = pN(B\υ1Γk).

Corollary 1.2 PN+ι(υk\enc) < P ^ U ^ ) .

Proof: PN(ϋt \ enc) > 0, so that PN{\Jk.x \ enc) < P,v(U*_i | enc) + PN{\J*k \ enc) =
PN(Uk\enc) by (2). But then by Theorem 1, PN+x{\Jk\enc) = [(K - k)PN

(\Jk_x\enc) + kPN{Vk\enc)]/K< [(K-k)PN(Vk\enc) + kPN(υk\enc)]/K =
P*(U*|έ? Λ C ) .

Corollary 1.3 For k>0, PN(elΛ \Όk) = PN(elΛ) = l/^

Proof: By Bayes' Theorem, PN(eu\υk) = PN(ei,i)PN(Vk\ei,i)/PN(Vk).
We show by induction on TV that PΛKU^) = PN(Uk\eiΛ), so the desired re-
sult follows by (1). The basis case is TV < k. Clearly for TV < k, PN(Uk) =
P^(U^|^1 }i) = 1, since the number of kinds had by objects cannot exceed the
number of objects. Now suppose TV > k. Let Γbe the tautology P\ct\ v — P ^ i .
Then

P W U * ) = P W U * | Γ )

= [(K- A:)P^(U(^_υ |Γ) - kPN(υk\T)]/K (Theorem 1)

= [(K- ^PΛrίU^-D) - kPN(Όk)]/K

(Inductive hypothesis)

= PN+ι(Vk\elΛ) (Theorem 1)

Theorem 2 For any positive integer x, PN(Vk \ enc) = PN+XQJk \ e(n+x)c).

Proof: By induction on TV. The basis case is N = «, so that TV + x = n + x. But
then either k < c, in which case by (6a) both probabilities are 0, or k > c, whence
by (6b) both are 1. The inductive step is a straightforward application of the for-
mula of Theorem 1.

Corollary 2.1 For any positive integer x, P^ίU^ | enc) < P^ίU^| ein+x)c).

Proof: Immediate by Corollary 1.2 and Theorem 2.

Theorem 3 For c < k, PN(Όk\enc) > 0.

Proof: We can expand enc into an TVτr-state description S by conjoining to it (in
a standard order) ascriptions of one of the kinds in enc to the TV - n names not
in enc. Exactly c kinds occur in S, so that if c < k, (UNk & enc) is true in S, and
hence ^ ( 1 ^ & enc) > 0. But then by (1) and the definition of conditional
probability, PN(Vk\enc) > 0.

Theorem 4 For c < k and c < K:

PN(Uk\e{n+i)(c+i)) = [KPN{Uk\enc) - cPN(υk\e{n+1)c)]/(K- c).

Proof: Let a be any name of £% not in enc, and let Sx,..., Sc be the ascriptions
of the c kinds in enc to a and Tγ,..., 7^_c the ascriptions of the K — c kinds not
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in enc to a. Clearly (Si v . . . v Sc) v (T\ v . . . v Tκ_c) is a tautology whose two
disjuncts are mutually exclusive. Hence:

PN(S{ v...vSc\enc &Όk) = l - PN(TX v . . . v Tκ_c\enc & U*).

But now the disjuncts of Sx v . . . v Sc and 7\ v . . . v Tκ_c are also pairwise mutu-
ally exclusive, so this becomes:

ΣP*(S/k,,c & vk) = l - Σ P^(7] |^C & υk)

which may be expanded by the probability calculus to:

y PNJSj&e^PNiυ^Sj&e^) = χ _Ky PNW & e^P^Ό^T,& enc)

ftί PN(enc)PN{Oe\enc) ,tί Piv(^c)P^(U^|βM C)

(By Theorem 3 the assumption that c<k guarantees that both denominators are
nonzero.) But for each /, Sz & enc is a τr(« + l)c-kind statement and 7} & βrtC is
a TΓ(Λ + l)(c + l)-kind statement. So by (1) this becomes:

ftί KP^ίu^iβ^) ftί KP^ίu^i^)

i.e.,

Σ PΛrίUitIS/ & enc) = KPN(Vk\enc) - Σ P^(U*|7/ & **c).

But by Corollary 1.1 this is just:

cPN(Vk\e(n+l)c) =KPN(υk\enc) - (K-c)PN(υk\e(n+l)(c+l)).

Corollary 4.1 For c < k, c < K, and a nonnegatiυe integer x:

?N(Vk\en(c+x)) < PN(Vk\enc).

Proof:

*N(Uk\eHic+i)) = lKPN(Uk\ein-i)C) ~ cVN{\]k\enc)]/(K- c) (Theorem 3)

< [KPN(υk\enc) - cPN(υk\enc)]/(K - c) (Corollary 2.1)

= P;v(U*|eΛC).

Iterating this yields the desired result.

Theorem 5 For c < k < K, lim^ooPivίU^i |enc)/PN(\]k\enc) = 0.

Proof: Since c < k, 0 < P ^ U * ! ^ ) ^ 1 by Theorem 3. Hence [PN(\Jk-ι\enc)/
P^(U^|eΛC)] < P^(U^_!\enc) < PN(U^_!\en ϊ) (Corollary 4.1) < PN{υκ^\enl)
by (2), since k<K.Ψe show that lim^^ooP^ίU/j:.!\eni) = 0. Since for all N,
PΛKU*-I \enc)/VN(Uk\enc) ^ 0, this proves the theorem. Now PN(UK-X \enΐ) =
ΐNπ(VK-i & eni)/τNr(enι). But rN7Γ(enl) =κ(N~n\ Let UTJ, . . . ,#„ be the names
in enX. (U^-i & eΛ l) is true in just those state descriptions in which the kind Q
that occurs in en\ is ascribed to a\,...,an and in which the kinds ascribed to the
remaining N — n names belong to some (K — 1 )-membered subset of the K kinds
of which Q itself is a member. There are K - 1 such subsets, but in general they
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are not disjoint. And for any such subset, there are (K - \)N~n ways of assign-
ing its members to the TV - n names not in en ι. So for all N, τNlΓ (Uκ-ι & en i) <
(K-l)(K-l)N-n.B\xtlimN^00(K-l)(K-\)N-n/KN--n = (K-l)\imN^00(K-

χ)N-n/KN-n = Q χ h u s > s i n c e fQr a Π ^ P ^ U * - ! |eΛl) > 0, lim^ooPjvttJjr-i |

en\) = 0.

Theorem 6 For c < fc, lim^oo[Piv(^(π+i)c|Uit)/PN(^c|Uit)] = 1/*.

PAΌO/: Consider the reciprocal ?N(enc\\Jk)/?N(e{n+i ) C |U^). This has a
definite nonzero value by Theorem 3. By the probability calculus this is:
[PN(enc)FN(υk\enc)]/[PN(e(n+l)c)PN(υk\e(n+1)c)]9 which by (1) is KPN(Ok\
e#ic)/P;v(U*k<#H-i)c) B u t by Theorem 1 this is:

K[(K- k)PN^(^k-ι\enc) + frP;v-i(U*|g*c)]

which by Theorem 2 is:

(/ :- /:)p^(u^-1lβ ( / z + 1 ) c) + k?N(υk\ein+ι)c)

Piv(U^k(/i+l)c)

But by Theorem 5, as N-+ oo this tends to: (K - k) 0 + k = k. The desired limit
is then the reciprocal \/k.

Theorem 7 Let c < k and c < K. Then:

lim VPN(e^mc+l)\\]k)/VN{enc\υk)} = (k - c)/k(K- c).
N-*oo

Proof: P^(e ( Λ + 1 ) ( c + 1 ) |U i t )/P^(β w |U A : ) = [PN(e ( π + 1)(C +i))P^(UA : |β ( Λ + 1 ) ( c + 1))]/
[PΛr(^c)PΛr(U^|^c)], which by (1) is PNOJk\e(n+iHc+i)/KPN(Vk\enc). Now by
Theorem 4 this is:

K?N(υk\enc) - cPN(Vk\ein+l)c)

(K-c)KPN(Vk\enc)

= __J cPN(Uk\e{n+l)c)

(K-c) (K-c)KPN(υk\enc)

which in turn by the probability calculus and (1) is:

l cjαv(β(,,+1)ciUfr)

(K-c) (K-c)KPN(enc\υk)'

But by Theorem 6, as iV-> oo this tends to: (k - c)/k(K - c).

( k\ 11 K\
)/( )'

Ik\
Proof: If c> k, I = 0 , and so the result holds by (6a). Suppose, then,

w
that c < k. Then by repeated applications of Theorem 6:

(i) \imN^[PN(enc\υk)/PN(ecc\υk)] = kc~\
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And by repeated applications of Theorem 7:

(ii) lim^ooIPivίβcclU^/P^ίβ!,!!^)] =Ώ!j=l(k-i)/k(K-i).

But by Corollary 1.3, PN(elΛ \υk) = 1/K, i.e., (k - 0)/k(K-0). Thus (ii) be-
comes:

(iii) lim^ooP,v(ecc|U*) = k~cUU(k - i)/(K-i) = W * ) / ( * )•

Combining (iii) with (i) gives the desired result.

We now obtain a formula for simple induction as N-+ oo:

Theorem 9 If F is a τ-predicate of π-width w and k>0:

Σ 8βq(c,ι,+ l , W ) ( * ) / r )
UmPN(Fαn + 1 | JPα1&...&Fαn&U^) = ̂ Ξ i _ .

* Σ eq<c.π.w>(*)/(f)

Proof: Immediate from (4) and Theorem 8.

Notice that by (S3) this is:

A number of interesting results follow from this formula. For k = K, U ^ *
is tautologous, so that (7) reduces by (S3) and (S4) to w/K = PN(Fan+ι). More-
over, as k decreases from K the value of (7) increases. Hence for k <K, (7) al-
ways exceeds w/K, so that the premises of the simple induction do indeed
enhance the probability of its conclusion. For k — 1, (7) takes the value 1, regard-
less of 7r and n. This is because the premises of the inference then assert both that
the universe contains only one kind and that at least one object ax has F, so that
the one extant kind must be in F; hence all objects must be F This is counterin-
tuitive; the inductive probability of the inference should vary directly with the
sample size n. We have already seen, however, that the value k — 1 is extreme
and antecedently implausible. For 1 < k < K, the probability generally does vary
directly with n.

There are two exceptions, namely the extreme values for w: w = 1 and w =
K. For w = K, Fan+ι is tautologous. Accordingly, (7) reduces by (S3) and (S4)
to 1. For w = 1, (7) always takes the value 1/k. Thus the limiting probability of
simple induction as 7V-> oo does not vary with the sample size n if Fis a predi-
cate of width 1 (a kind). This peculiarlity is explained below, following Theorem
10. Where 0 < w, k < K, however, the limiting probability does vary directly with
n. The next theorem sets an upper bound on its variation.



LOGICAL INDUCTIVE LOGIC 427

Theorem 10 For a τ-predicate F of π-width w and k > 0:

lim lim PN{Fan+i \Faγ &. . . & Fan & Uτ*) = min(w//:,l).

Proof: By (S7), as n -• oo the quantity in Theorem 9 approaches:

min(fc,w) /^\ I / Jζ\

Σ cseq(c,W,w)(cj^J
min(A:,w) / *Λ //J^\

* Σ κ,<ft«..)(*)/(^)

But by (S5) all the terms of both sums for c < min(k, w) become negligible rel-
ative to the term for which c = min(£, w) as n -» oo. Hence as n -» oo, this tends
to min(/r, w)/£ = min(w/λ:,l).

The explanation of this result is that as N -* oo the assumption U ^ ^ be-
comes, for the purposes of the inference, indistinguishable from U%vk9 the as-
sumption that there are exactly k kinds. This is so because as iV-» oo the number
of possible worlds containing fewer kinds becomes negligibly small relative to
the number containing k. Now our logic regards all possible distributions of kinds
among the N objects equally; and for large TV, kinds are distributed in roughly
equal numbers in nearly all the worlds containing k kinds. Thus the net effect
of assuming \JNlrk as TV gets very large is to make it virtually certain that there
are exactly k kinds, equally distributed among objects. The identity of these k
kinds, however, is unknown. If the TΓ-width of Fis w, at most w of them can be
in F; hence w/k is an upper bound on the probability of the inference.

Moreover, when w = 1 no more than one of the k extant kinds can be in F,
so the observation of even one F implies that exactly one of the extant kinds is
in F Observation of additional F's therefore cannot increase the probability that
more of the extant kinds are in F, as it does if 1 < w < K. Given that kinds are
equally distributed among the unexamined objects (which as N-+ oo vastly out-
number the examined ones), the proportion of F's among the unexamined ob-
jects therefore tends to \/k as N -+ oo, no matter how many F's we have
observed. This is the explanation of the peculiarity noted above.

Notice, however, that for any language with a reasonably large number of
predicates, we are hardly ever concerned with properties of width 1. Moreover,
for any fixed finite value of N, PN(Fan+ϊ \Fa\ &.. . & Fan & Uπk) generally in-
creases as n increases toward N, even if w = 1 (though when n gets very close
to TV there is a final drop, as we saw earlier).

We turn next to inductive generalization, the inference from premises of the
form Fax & . . . & Fan to the conclusion (x)Fx, for some predicate F From the
probability calculus and the semantics for universal quantification, P^((Λ:)FΛ:|

Faι&...&Fan&υ7rk) = PN(Faι&...&FaN\υπk)/PN(Faι&...&Fan\υirk).
Hence by (3), for a τr-predicate F of τr-width w:

(8) TMFAFa, &...&Fa,& Urt, - Jff,** * " * *»'»•*> .
Σ SQq(c9n9w)PN(enc\υπk)
c=l
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Theorem 11 For any τ-predicate F of τ-width w and k>0:

lim PN((x)Fx\Fai &...&Fan& Uxfc) = . ,. . ' ,, x .

Proof: By Theorem 8, as 7V-* oo (8) approaches:

lim VN(Fax & . . . & FaN\lJπk)
N->oo

min(k,w) ( u\ 11 ϊζ\

k~" 5 - < ^ ">(!)/(c)
But P^ίFα, &.. . & FUWIU^) = P^ίFα! &...&FaN& υτk)/PN(υπ/c), which
by (2) is Σ * = 1 FN(FOl &...&FaN& U; c )/Σc=i P^v(U;c) But Fax &. . . &
FaN & UJvIC is true in just those Nir-worlds containing exactly c kinds, all of
which are in F. The number of such worlds is seq(c,iV, w). Thus PN(Faι &... &
FaN\υπk) =

Σseq(c,N,w)/KN

c = l

~~k '

Σ seq(c,N,K)/KN

c=l

Now by (S2) seq(c,Λ ,̂ w) = 0 if c > w. So by (S6) as N-+ oo this approaches:

Suppose k < w. Then as 7V-> oo, all other terms of the sums in the numerator
and denominator become negligible relative to the term for which c = k. So this

becomes ί j / ( J and so the theorem holds. On the other hand, suppose
\k11 \kI

ίw\
k > w. Then the largest term in the numerator is I wN = wN. But in that

VW
case, as A -̂̂  oo, the whole expression goes to 0, in which case again the theorem
holds, since its numerator is 0 whenever k > w.

Theorem 12 Let F be a τ-predicate of it-width w and k > 0. Then:

lim lim PN((x)Fx\Faλ &...&Fan& Vπk) = 1, ifk < w
n-+oo N-+00

= 0, ifk> w.
Proof: For k > w the desired result follows immediately from Theorem 11. Sup-
pose, then, that k < w. Now consider the denominator of the formula of The-
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orem 11. As n -> oo, we know by (S5) that for c > c', seq(c',rt,w) becomes
negligible relative to seq(c, n, w). Hence all other terms of the sum in the denomi-
nator become negligible relative to the case c = k. So as n -+ oo, the formula of
Theorem 11 tends to:

(D/ffl
*-«,(*;«.»)(ί)/(*)

But by (S6) this approaches:

(:)/(3 ,
-CK)/(ί)= '

This is a reasonable result. Provided that we adopt a sufficiently strong "in-
ductive method" (i.e., set k < w), we can ensure that inductive generalization on
F approaches 1 as the sample size m increases. Of course, U ^ * may be false un-
der the intended interpretation if we make k too small. But if VNirk is false for
all k < w, then (x)Fx is false too, since there exists an object of a kind not in
E In that case we certainly do not want the generalization to have probability
1, and indeed there is no true U-principle which makes it so.

We next investigate the singular predictive inference. This is an inference
from the premise that exactly s of n specified objects have some predicate F to
the conclusion that some other object has F We must therefore describe the func-
tion PN(Fan+ϊ \Fax &...&Fas& ~Fas+i & . . . & ~Fan & \Jτk). This may be
rewritten as:

ί 9 ) ^N(Fan+ι &Faι&...&Fas& ~Fas+ι & . . . & ~Fan\Vvk)

PN(Fax &...&Fas& ~Fas+ι & . . . & ~Fan\υrk)

Theorem 13 Let F be a τ-predicate of τ-width w and ax,..., an+\ distinct
names. Then for 1 < s < n and k > 0:

lim PN(Fan+ι \Faι & . . . & Fas & ~Fas+ι & . . . & ~Fan & Vπk)
N->oo

Σ Σ seq(/,5 + 1, M>)seq(c -/,Λ - s,K - w) ( * ) / ( ^ )

k Σ Σ seq(M w)seq(c - fn - s,K - w) (k) I(K)
c=\ f=\ \c/1 \ c I

Proof: Let Dλ and D2 be the τr-normal forms of the conjunctions exhibited
in the numerator and denominator of (9), respectively. Dx is a disjunction of
TΓ(H + l)c-kind statements for various values of c. Each such kind statement con-
sists of s + 1 ascriptions of kinds in F and (n + \) — ( s + l ) ascriptions of kinds
in ~F. In each, if the number of kinds in Fisf, then the number of kinds in — F
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is c — f Therefore, since there are w kinds in F and K — w kinds in ~F, the
number of iτ(n + l)c-kind statements in Dx containing exactly/ kinds in Fis
seq(/,s + 1, w)seq(c -/,(« + 1) - (s + 1),^ - w). Similarly, the number of
TΓtfc-kind statements in D2 containing exactly/ kinds in Fis sεq(f,s, w)seq(c -
fn - s,K - w). So by Corollary 1.1, (9) is:

k c

Σ Σ s e c K/>' s + l>w)seq(c-/, n - s, K - w)PN(e(n+l)c)\\Jk)
c=l f=\

k c

Σ ΣseQ(/>5>w)secl(c-/> n-s,K- w)PN(enc)\\Jk)

Applying Theorem 8 gives the desired result.

Notice that Theorem 9 is just the special case of Theorem 13 in which s =
n. For if s = n, then by (SI) seq(c —/,/i — s,K- w) = 0, unless/= c, in which
case seq(c — f,n — s,K — w) = 1 and seq(/,s, w) = 0 whenever/> w.

As with simple induction and inductive generalization, we wish to know how
the inductive probability of the singular predictive inference changes as the sam-
ple size increases. But the important limiting value in this case is not the one in
which n-+oo while other parameters stay the same; for in that case the propor-
tion s/n of positive instances in the sample would continually decrease. Rather,
we want n to increase while the proportion s/n remains constant. This occurs
when both s and n are multiplied by some positive integer x; the larger the value
of x, the greater the sample size. We want to know what happens as x-* 00. The
solution is given by Theorem 14.

Theorem 14 Let F be a τ-predicate of τ-width w and ax,..., an+x distinct
names. Then for 1 < s < n and k > 0:

lim lim PN(Faxn+1 \Fa1&...& Faxs & ~Faxs+ι &.. . & ~Fam & Vτk) =f/k,
Λ:-X» N-κx>

for some real number f such that:

(i) / = w if s/n > w/k
(ϋ) / = k + w - K if s/n < ( H w - K)/k

(iii) otherwise, \f/k - s/n\ < \/k {i.e., f/k approximates s/n with an "er-
ror" of no more than 1/k).

Proof: Applying (S6) to the formula of Theorem 13 we see that as n -> 00 this
quantity tends to:

IJJ(;M*:;)^-(:)/(C)
*lii(;w*:;)-^o/(f)"

Now (c —f)χ(n-s>> attains its maximal value in both sums only when c is max-
imal, i.e., c = k. Thus as x-+ 00 all the terms of the outer sums in both the numer-
ator and denominator become negligible relative to the term for which c = k, so
that this approaches:
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l(;)/-(r-;)^-/'-(:)/a)
*jg(;Hί:;)<-^C)/(ί)

Σ/(;)(r-;)'/'̂ /)->'
*l(;)(r-><*-""->'

Now once again, with these two sums as x-* oo, all but some of the terms become

negligible. Since ( ™ ) = 0 if / < w, and ( " ^ ) = 0 if k - / > ϋΓ - w, i.e.,
\fl \ k-f )

f>w + k-K,a term in either of the sums is nonzero only if w + k- K<f<
w. Thus the nonnegligible terms are those for which / takes a positive integral
value, from w + k — K to min(£, w), that maximizes/5(k —f)n~s. For the mo-
ment, let us treat the latter expression as a real-valued function on/. The deriv-
ative of this function with respect t o / is (k - f)n~s~ι[fs(n - s) + (k -
f)sfs~x ], whose value is 0 iff/= k,f=0 (an impossible case), or fn -sk = 0,
i.e.,///: = s/n. For positive f,n,s,k and/< k (the only possible cases), the de-
rivative is positive if f/k > s/n and negative if f/k < s/n. Thus for real/,/5(A: —
f)n~s attains a unique maximum among the possible cases iff f/k = s/n and it
becomes smaller the more///: differs from s/n.

But for nonzero terms of the sums, / can take only positive integral values
from w + k — K to min(/:, w). Now suppose (Case (i)) that s/n > w/k. Then since
5 //2 < 1, min(k,w) = w. Thus/ can attain no value greater than w, so that
fs(k -f)n~s is maximal for the possible integral values of/just when/= w.
But in that case, as x-+ oo, (10) tends to w/k.

Similarly, suppose (Case (ii)) that s/n < (k + w — K)/k. Since s/n >0, k>
K — w; i.e., k + w — K > 0. Thus the minimal value attainable by/ in the non-
zero terms of the sums is k + w — K, so that/5(A: — f)n~s is maximal for the
possible integral values of/ just when/= k + w — K. So as JC-> oo, (10) tends
to (*+ w-K)/k.

Finally, suppose (Case (iii)) that (k + w — K)/k < s/n < w/k. Now there ex-
ists an integer i < k such that i/k < s/n < (i 4- \)/k. We saw that the real-valued
function (fs(k -f)n~s) has a maximum a t / = s/n and that its value decreases
monotonically a s / gets increasingly smaller or larger than s/n. Clearly, then,
among integral values of/, either /or (/ + 1) will maximize (fs(k - f)n~s).
There are three possible cases:

(a) (is(k - i)n~s) > ((/ + l)s(k - (i + I))""*)

(b) (is(k - i)"-s) < ((/ + i m - (i + l))n~s)

(c) (/5(A: - i)n~s) = ((/ 4- i m - (i + 1))Λ~5).

In cases (a) and (b), as x-* oo (10) obviously tends to i/k and (i+l)/k, respec-
tively. In case (c), as x -* oo (10) tends to:
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['(;)(*:;)™-H+

[»+ i>G"ι)( t5(;Γi))«'*'w-( <*")"> ]
* [ [ ( : ) ( * : ; H - H +

[G;.)(*-,7;,,)«'+ > <*-<'+Ή]

'(7)(r><'H:,)U:»)

•ί( f)U- ίH,+ 1)U- ( ί + 1 ))H ί + 1)U- ( ί +, ))
4(;)(*»:;K;.)U7;»)]

= V / + l / U - ( i + l ) /

" + *[(;)('*:;)+(«;.)U-;J]
which lies between //A: and (/ + 1)//:.

This result holds because (as we saw with Theorem 10) for large N, the net
effect of assuming \JNlΓk is to make it virtually certain that there are exactly k
kinds, equally distributed among the N objects. Yet, provided that k < K, equal
distribution of exactly k extant kinds is compatible with very unequal distribu-
tions of wider properties. If we sample the universe for some τr-predicate F of
π-width w > 1, as our samples get larger (i.e., as *-• oo) it becomes increasingly
likely that the proportion of F's in the universe at large is as close as possible to
the ratio of positive instances to observations, s/n. But given that kinds are vir-
tually certain to be equally distributed and that some integral number of the k
kinds are in F, this proportion must be of the form f/k, where/ is an integer.
The tendency will be for / to be such that f/k is as close as possible to s/n.

There are, however, two complications. The first is that if the k kinds are
equally distributed, then the proportion of F's in the universe cannot exceed w/k
(Case (i) in Theorem 14), since at most w of the k kinds are in F The second is
that for the same reason the proportion of F's in the universe cannot be less than
k - (K - w) (Case (ii)), since at most K - w of the k kinds are in ~E

Suppose, for example, that π = 4, k = 5, and w = 2, but that with repeated
sampling we find the proportion of F's in our sample to be running about .9.
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Continued sampling will increase the probability that some new object has F
from w/K = 2/16 = .125 (which is its probability in the absence of evidence) up
toward w/k = 2/5 = .4, but not any higher.

These complications are ameliorated somewhat by the fact that in languages
with reasonably large numbers of predicates we are almost always concerned with
properties whose widths are neither very small nor very large. (Hence the widths
of their negations are not very large or very small, either.) If all the properties
that we wish to project inductively, together with their negations, have widths
in some interval [x,y], then by choosing k < x we ensure that w > k and also
that k < K — w (since K — w is also in [x,j]), thus avoiding the limitations of
Cases (i) and (ii).

Moreover, by making TΓ large we can adopt correspondingly large values of
k, and hence allow the inductive probabilities of singular predictive inferences
to approach the sample proportion s/n to any desired degree of precision.

Thus even our very simple uniformity principles have a surprising robustness.
While initially they might seem ill-adapted to the analysis of singular predictive
inferences, in fact they can yield fairly reasonable results. They suffer, however,
from one further anomaly; and it, unfortunately, is rather serious. As sample
size increases (i.e., as x gets larger), the inductive probability as N-> oo of a sin-
gular predictive inference does not in all cases tend monotonically toward its lim-
iting value f/k, as one would expect, but sometimes undergoes an initial
oscillation. For example, let TΓ = 4, k = 8, w = 12, s = 3, and n = 4, so that
s/n = 3/4 = .75. Then where x = 1, we obtain by Theorem 13 the value .7408;
for x = 2 (i.e., s = 6, n = 8) this increases to .7409, but for x = 3 it drops again
to .7407 and continues to drop until x = 6, at which point it has the value .7402.
Thereafter it steadily approaches the limiting value///: = 6/8 = .75.

Again, this oddity can be minimized by making TΓ large while keeping the pro-
portion k/K constant. But it has undesirable effects that will not go away. As
Carnap notes, the inductive probability of the singular predictive inference should
always lie in the closed interval from s/n to w/K.9 Yet in the example above,
s/n = w/K = .75, while the inductive probabilities for finite n are all slightly lower
than .75. The reason for this is most readily grasped by considering the case
x = 1. Here we have observed four objects of which just three are E This implies
that at least one of the extant kinds is in ~F, but it does not imply that at least
three of the extant kinds are in F, since two or more of the observed F's may be
of the same kind —a possibility which is increasingly likely the smaller the as-
sumed value of k. Thus the sample shows only that at least one of the (presum-
ably) k kinds is in ~ F and at least one (and probably more) are in F Since among
the kinds we have not observed we expect the proportion in F t o be w/K = 3/4,
this suggests that the proportion of extant kinds in F may be a bit less than 3/4;
hence the anomaly.

We turn finally to argument by analogy. Here at last our uniformity prin-
ciples seem perfectly at home. Let F and G be τr-properties such that for any
name a, Fa implies Ga. By an analogical inference I mean an inference from a
premise of the form Faγ & Ga2 to the conclusion Fa2. That is, we assume that
a2 is similar to ax in certain respects (namely G) and conclude that it is also sim-
ilar in certain additional respects (namely those, if any, which differentiate F
from G). We could, of course, consider analogical inferences involving more
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than two objects, but these are best regarded as a mixed mode, involving elements
of both analogy and simple induction.

Let the τr-widths of F and G be v and w respectively. Clearly v < w. Thus G
is equivalent to a disjunction of w τr-kinds, υ of which are in F and w - v of
which are not in E So G is equivalent to a sentence Fv D, where £> is a sentence
of π-width w — v, and F and Z> are mutually exclusive. We wish to find PN(Fa2\
Fai & Ga2 & U ^ ) . This may be expressed as:

(11) PN(Fa2 & Faγ & Ga2\\31[k)/VN(Faχ & Ga2\Vrk)

= PN(Fax & Fa2\υπk)/PN((Faι & Fa2) v (Fax & Da2)\Vrk)

= PN(Faι & Fa2\υrk)/[PN(Fa1 & Fa2\\}πk) + P^ίF^! & £>α2 |U^)].

Theorem 15 Let F and G be τ-properties of τ-widths υ and w respectively,
where 1 < v < w, and ax, a2 be names in £*. Then for k > 0:

VNίFa2\Fax & Ga2 & U^) = p ^ ^ + ( w _ 1 ) p ^ 2 | U j t ) -

Proof: The number of disjuncts in the τr-normal form of F#i & £te2 is v(w —
v). Thus, applying (3) to (11) we obtain:

seq(l,2,t;)P jv(e2>1lU^) + seq(2,2t;)Piv(g2>2lU^)

seq(l,2,ι;)PjV(e2ii|U*) + seq(2,2,ι;)Piv(e2,2|U^) + v(w - v)PN(e2,2\Ok)'

By (SI) this is:

vPN(e2Λ\υk) + (t; - l)fP;v(g2,2|U*)
t^Piv(^,i|U^) + (v - DvPN(e2f2\υk) + v(w - v)PN(e2>2\Vk)

which is the desired result.

Theorem 16 Let F and G be π-properties of τ-widths v and w respectively,
where 1 < v < w, and ax, a2 be any names. Then for k > 0:

Proof: By Theorem 8, as ΛΓ-̂  oo the formula of Theorem 15 tends to:

k/k2K+ (v - ! ) £ ( £ - l)/(k2K(K- 1)) _ 1 + (v - 1)(A: - l)/(ϋΓ-- 1)

k/k2K+ (w- l)k(k-l)/(k2K(K- 1)) ~ 1 + ( w - 1)(Λ: - 1)/(AΓ- 1)"

The important consequences are apparent at once. For k = K, so that U ^
is tautologous, Hm^ooPΛK^I^tfi & Gα2 & Uπk) = P^(Fα2 | Gα2) = y/w. With
decreasing k, limN^O0PN(Fa2\Faϊ & Ga2 & \Jπk) increases monotonically,
reaching 1 when k=l. The probability of the inference for k < K also varies di-
rectly with the degree of similarity assumed between ax and a2, as measured by
the ratio v/w. These consequences are plausible and straightforward.

I hope to have shown by these examples that fully logical inductive logics are
not quite as inimical to induction as many have assumed. But I wish to suggest
something broader: that our understanding of the relation between induction and
order can be advanced by the general method illustrated in this paper. The
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method is to use fully logical inductive logics as standard contexts in which to
compare the ramifications for induction of various assumptions about the uni-
formity of the world. We have examined one class of uniformity principles in the
context of a very limited logic; other possibilities remain to be explored.

NOTES

1. Actually λ is a function, not a constant, but in most interesting cases it is a constant
function, and hence Carnap treats it as a constant ([1], §11).

2. See, for example, [13], p. 208. Skyrms explains the conventional wisdom by saying
that in fully logical inductive logics P(^4) = P(^4|J5); but in a footnote he restricts
A and B to atomic sentences. Without the restriction, Skyrms's assertion is false; but
even the qualified form is false if A = B. (This section is omitted from the third edi-
tion of the book.)

3. These uniformity principles are reminiscent of Keynes's Principle of Limited Variety
([8], Chapter XXII). But they are importantly different. Keynes's principle is the
metaphysical assertion that (roughly) no object has infinitely many independent qual-
ities. Our uniformity principles assert that the number of actually instantiated com-
binations of properties expressible in a given language is limited to some specific finite
quantity. They are therefore both empirical and falsifiable. Moreover, though Keynes
limited the application of his principle to analogical reasoning, it is shown below that
uniformity principles based on kinds support a wide variety of inductive inferences.

4. For a detailed discussion of state descriptions, range, width, and related concepts,
see [2], Part III.

5. Kuipers provides four axioms that encompass the systems studied in the Carnapian
tradition. These vary slightly in each of [9], [10], and [11]. P^,* satisfies all these ax-
ioms, except for CA1 of [9], which would require P^Ari^c) > 0. In [10] and [11]
the axiom corresponding to CA1 is loosened, permitting nonregular systems, i.e.,
those in which eπnc may have probability zero.

6. The term is Carnap's ([2], pp. 184-185, 567-569).

ίw\
7. Equivalently, seq(c,«, w) may be defined as S£w\/{w — c)! = S%cl I I, where

W
Sn is the number of partitions of n objects into c classes, i.e., a Stirling number of
the second kind.

8. Proof of these facts is messy, and so is omitted here to save space. The general be-
havior of simple induction will be clarified when we consider what happens as N-+
oo, beginning with Theorem 9.

9. See [1], §8. In Carnap's notation, s/n is written as *sM/s9.
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