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Logics of Truth

RAYMOND TURNER

Abstract This paper surveys three recent semantic theories of truth and
compares them from the perspective of their underlying logics. In particular,
the underlying logic of the Gupta-Herzberger theory is investigated, and an
analysis of modal logics of truth arising from this semantic theory is given.

/ Theories of truth In recent years there has been a revival in the develop-
ment of semantic theories of truth. They are all attempts to develop theories of
truth for languages which contain their own truth predicates and moreover they
are all semantic theories in that they are grounded in some semantic interpreta-
tion of the truth predicate. In this paper we shall compare these theories from
the perspective of their underlying logics of truth. We shall concentrate on those
theories cast within the framework of classical logic, since this is where the no-
tion of truth is most at home. Three of the most influential theories are those
of Scott [10]-Aczel [1], Kripke [9]-Gilmore [4]-Feferman [3], and Gupta [5]-
Herzberger [6]. In the case of the first two kinds of semantic theories the logic
of the system is explicit. The main objective of this paper is to explore the un-
derlying logic of the last kind of theory and to explore its connections with the
other two.

LI Frege structures Aczel [1] introduces the notion of a Frege structure in
an effort to capture the consistent subtheory of Frege's Grundgesetze der
Λrithmetik. Aczel formulates his theory within a model of the untyped Lambda
Calculus and develops a theory of classes or types based upon a theory of truth
and propositions. Frege structures are models of the Lambda Calculus enriched
with two subsets: a set of propositions and a set of true propositions. These sets
satisfy very natural closure conditions with respect to the logical connectives: on
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the class of propositions the truth predicate obeys the Tar ski criteria. We shall
briefly review the theory of Frege structures and use it as a way into the theory
of Kripke-Gilmore-Feferman.

1.2 The Kripke-Feferman-Gilmore theory Various approaches to the seman-
tic paradoxes result in some logical schema to capture the safe instances of the
Tarski biconditionals. For example, the approach of Gilmore [4]-Feferman [3]
has as consequences the schemas:

T(^4) iff ^ +

Ί(~A)\ϊΐA-

where A+ and A~ are in some sense approximations to A and ~ A respectively.
This particular approach employs an inductive construction in the development
of models for the theory. Moreover, even though the theory is cast within the
general setting of classical logic the construction of the models is essentially based
on the inductive technique introduced into truth-theory by Kripke [9], and gains
its formal credibility through a nonstandard treatment of negation in wf f's such
as A+ and A~. In essence these approximations are the result of pushing all ne-
gations into atomic position and replacing all such negations by internal nega-
tions. As a consequence the internal logic of the truth predicate is nonstandard.
We develop a version of this theory in which its three-valued nature is made ex-
plicit.

1.3 The Gupta-Herzberger theory In contrast, the approach of Gupta [5]
and Herzberger [6] is totally classical and employs a semi-inductive technique in
the construction of the models. The Gupta-Herzberger theory of truth is based
upon a notion of truth as revision. Herzberger refers to his approach as "naive
semantics", in reference to those naive beliefs about the concept of truth which
lead to the paradoxes. The theory of truth advocated is a modification of
Kripke's theory within a classical framework. The theory thus employs only clas-
sical models and ordinary two-valued valuations. In Turner [11] a development
of the logic underlying the Gupta-Herzberger theory was begun. There we al-
luded to the modal logic implicit in the semi-inductive process and even stated
a version of the logic. The main aim of the present paper is to more fully inves-
tigate the logic of truth which underlies the Gupta-Herzberger semantics. We de-
velop within the context of the Lambda Calculus the theory of truth developed
in Gupta [5]-Herzberger [6]. We then investigate the various logics of truth which
are sound under the Gupta-Herzberger semantic theory. The result is a family
of modal logics of truth.

2 Truth and the Lambda Calculus In this section we introduce the formal
background to the logics we later develop. We are primarily concerned with the
development of a theory of truth for a language which contains enough formal
machinery to represent the various versions of the Liar sentence and related para-
doxical sentences. Perhaps the most elegant way to achieve this is to admit the
Lambda Calculus as the language of terms.
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2.1 The Lambda Calculus To begin, we present the basic background ma-
terial on the Lambda Calculus, beginning with the language.

Basic Vocabulary
Individual variables x, y,z,...
Individual constants c,d,e,...

Inductive Definition of Terms
(i) Every variable or constant is a term

(ii) If t is a term and x is a variable then (λx.t) is a term
(iii) If t and t' are terms then (#') is a term.

We adopt the following standard axiomatization of the β-Lambda Calculus,
where t [s/x] is the result of substituting s for every free occurrence of x in t.

Axioms of the λβ-Calculus
λ c. t = λy. t[y/x], y not free in t
(\x.t)tf = t[t'/χ].

We require a few basic facts about the Lambda Calculus. We shall be brief
and refer the reader to Hindley and Seldin [7] and Barendregt [2] for more de-
tails. We assume some standard representation of the pairing and projection com-
binators <.,.>, fst, and snd which satisfy: fst((x,y)) = x and snά((x,y)) = y9 and
some standard representation of the numerals (e.g., the Church representation)
0,1,2,3,4,5,.... We shall also appeal to the fixed point theorem of the Lambda
Calculus.

Theorem 2.1.1 There is a lambda term Y such that, for every lambda term
U t(Yt) = Yt.

As regards the models of the Lambda Calculus, for the sake of concrete-
ness we employ a version of Scott models. The central notion is the following:

Definition 2.1.2 A domain is a partially ordered set, with a least element w,
which admits the least upper bounds of ω-sequences.

We can spell this out in a little more detail. Let D b e a domain and let Q
be the ordering of the domain. The element u is the least element of the do-
main D'ύu^d for each d in D. An ω-sequence is of the form rf0 ^ dx <Ξ . . . <Ξ
dn £Ξ..., where rf/ G D for / > 0. An element d is an upper bound of the se-
quence if di c d for each / > 0; it is a least upper bound if d ^ dr for any other
upper bound dr of the sequence. We write the least upper bound of the sequence
as U/tf/.

Definition 2.1.3 A function/: D-*D' is continuous iff for each ω-sequence
<έ/Λ>πeω in D,f{Όidί) = U//(rf/).

The next stage in the construction is to indicate how the class of continu-
ous functions from D to D' (where D and D' are arbitrary domains) forms a
domain.
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Definition 2.1.4 Let [D -• Df] be the class of continuous functions from D
toD'. For fg£ [D^D'] define:

f^g~ (vdeD)(f(d)^ g(d))9

where ^ ' is the ordering of D'.

Theorem 2.1.5 [D -> D'] with the above ordering forms a domain.

This completes the basic preliminaries. In the present context a Scott model
is a domain D which is isomorphic to its own continuous function space where
the isomorphisms are themselves continuous. More precisely:

Definition 2.1.6 A Scott model is a triple D - <AΦ,^> where
(i) D is a domain

(ii) Φ : D -• [D -• D] and Ψ : [D -• D] -+ D are continuous isomorphisms.

The actual construction need not detain us since we are only concerned with
the existence of such a model. From now on we shall work with a fixed Scott
model D.

The semantics is given relative to an assignment function g which assigns
elements of D to variables and an interpretation function / which assigns elements
of D to constants. We shall employ the notation g(d/x) for that assignment func-
tion identical to g except that d is bound to x. We drop all reference to D in the
semantic definition which follows.

( i l ) I [ * k =g(x)
(i2)l[c]g =i(c)

(i3)l[λx.t]g =*(\OΛ[t]giO/x))

(i4) I[*(*')]* =*(Ut]8Hl[t']g)

These clauses are all standard and we shall not pause to explain them. The im-

portant point is that the functions λOΛ[t]g{O/x) are all members of the contin-

uous function space [D-^D] and so the definition is sound. Again, we refer the

reader to Hindley and Seldin [7] and Barendregt [2] for details concerning

Lambda Calculus models.

2.2 The language of wff The language of wff (L) has three types of atomic
wff's: t = s, T(t)9 and F(/). The first is equality of terms, the second asserts that
a term is true, and the third asserts that a term is false. Terms are those of the
Lambda Calculus.

Inductive Definition of wff
(iv) If t is a term then T(0 and F ( 0 are wff's
(v) If t and t' are terms then t = t' is a wff

(vi) If A and B are wff s then so are A & B, A v B, -A, A -> B
(vii) If x is a variable and A is a wff then VxA and ixA are wff s.

We shall employ ± as an abbreviation for 0 = 1 and A <-> B as an abbreviation
for A -• B & B -> A. We also adopt some standard axiomatization of classical
logic. This brings us to the notion of a model for the language.
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Definition 2.2.1 A model for L is Λf = <D, T,F) where Z> is a model of the
Lambda Calculus, T.D-+ {0,1}, andF:Z)-> {0,1}, and where for no dinD do
we have Γ(rf) = 1 and F(rf) = 1. (The last clause simply insists that no object
can be both true and false.)

The wff 's of the language L can now be given truth conditions in the stan-
dard way, where T and F respectively provide the extensions of the truth and fal-
sity predicates.

Mtgs = t iffl[t]g = l[s]g

M¥gΊ(t) iff T(l[t]g) = 1
M\=gF(t) iΐfF(l[t]g) = 1
Λf tg A & B if f M ¥g A and Λf \rg B
M\=gAvB if f M \=g A or M Yg B
M\=gA->B iff M Yg A implies M \=g B
M Yg -A iff not MYgA
M Yg VxA iff for all d in D, Λf tgu/x) A
Λf Ng 3x4 iff for some d in D, Λf ^ ( ί // x ) ^4.

Definition 2.2.2 A wff ,4 of L is vtf//tf j/i α model M iff Λf hg A for all as-
signment functions g.

We write LC \- A if A is provable in first-order logic with equality from
the axioms of the Lambda Calculus.

2.3 The paradoxes and the Tar ski biconditionals The theory we have at pres-
ent is perfectly harmless since there are no axioms for the truth predicate. We
first need to be able to treat wff's as terms so that the truth predicate T can be
applied to them. We therefore add a new clause to the language:

(vii) If A is a wff then ΛA is a term.

Actually, we do not have to add this as a new clause since we can achieve the
same effect by coding. Using the pairing combinator and numerals of the
Lambda Calculus we can code the wff's as terms of the Lambda Calculus as
follows:

Λ(x) =x
Λ(c) =c
Λ(ts) =Λ(t)Λ(s)
Λ(λx.t) =λx.Λ(0
A(t = s) =<0,Λ(0,Λ(*)>
Λ (T(0) =<1,ΛO
Λ (F(0) =<2,ΛO
Λ(~(A)) =<3Λ4>
Λ(A&B) =(4M,ΛB)
Λ(AvB) =<5Λ4,Λ£>
Λ(A-*B) =<6Λ4,Λ£>
Λ(VxA) =<7,*Λ4>
Λ(lxA) =<8,xΛ4>.
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The details of this coding are not important. The only important point is that
Λ (A) and Λ (B) will be the same only when A and B are identical wff s, i.e., the
representation enjoys a certain independence property. Moreover, this property
is inherited by the models, i.e., if I [A(A)]g = I [Λ(B)]g then A and B will be the
same wff. In the model we let Code = {I [ΛA]g: A is a wff and g an assignment
function).

The intuitive principle which governs the logic of the truth predicate is given
by the Tar ski biconditionals:

TB Ύ{A) <+Affoτ all wff s A,

where Ύ(A) is an abbreviation for T(M). Unfortunately, the theory would
then be inconsistent; this stems directly from the fixed-point property of the
Lambda Calculus. We shall refer to the following as the Diagonalization Lemma.

Theorem 2.3.1 Let A (x) be any wff whose only free variable is x. Then there
is a sentence B such that LC h B <-> A [ ΛB/x].

Proof: Let/= λx.ΛA(x) and t — Yf Then by the fixed-point theorem we have
t - ΛA[t/x]. By the equality rule of the Predicate Calculus we have A[t/x] <->
A[ΛA[t/x]/x]. Finally, put B = A[t/x].

A simple application of this result gives us the paradox of the liar.

Corollary 2.3.2 LC -I- TB is inconsistent.

Proof: Let A(x) = ~Ί(x). Then by Theorem 2.3.1 we have B <* A[ΛB/x] <•»
~T(B). By the Tarski biconditionals we have a contradiction.

As a matter of interest notice that other paradoxes are derivable in the set-
ting of the Lambda Calculus. The facility for abstraction available in the Lambda
Calculus enables the derivation of the Russell paradox without explicit appeal
to the fixed-point combinator, whereas the Curry paradox again uses the fixed-
point property.

Russell: Write {x:B} for Xx.tfandxG y for T( cy). Let t = {x: ~(x€x)}
and then put A = (t G t). Now tt is equal by ̂ -reduction to ~ (t G t). By the
equality rule we have Ύ(tt) <-• T(~ (t G t)), i.e., A ++ T( ~A), which by the Tar-
ski biconditionals yields the equivalence A ++ -A.

Curry: Let t = Y[\z.T(z) -• (T(z) -> T(Z))]. Then we have t = Ύ(t) -•
(Ύ(t) -+ T(Z)) = (T(0 -> (T(0 -> T(Z))) -+ (T(0 -+ T(Z)). Hence by the equal-
ity rules we have Ί(t) +->T(T(O -> (T(/) -^T(Z))) ̂ T((T(O -> (T(/) ̂ T(Z))) ->
(T(O-*T(Z))). Notice that (T(ί)^(T(/)-*T(Z)))-> (T(/)-*T(Z)) is a tautol-
ogy and so by the Tarski schema we have Ί((T(t) -+ (T(t) -• T(Z))) -• (T(0 ->
T(Z))) and hence T(T(/) -* (T(/) -^T(Z))) and T(/). Moreover, we have T(/) ->
(T(0 -> T(Z)) by the Tarski biconditionals. Consequently, we obtain by modus
ponens Ί(t) -* T(Z) and finally T(Z).

Given that the theory based on TB is inconsistent the urgent questions are
what principles T can satisfy and under what circumstances we can maintain the
Tarski biconditionals. Different answers to these questions will lead to differ-
ent theories of truth.
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3 A theory of truth and propositions The first theory we shall consider is due
to Scott [10] and Aczel [1]. The central notion is AczePs concept of a Frege struc-
ture. These structures are models of the Lambda Calculus together with two dis-
tinguished subsets —a set of propositions and a subset of this set called truths.
In addition, such structures come equipped with the usual logical constants to-
gether with rules for building propositions from such constants and rules for their
associated truth conditions. We shall not actually consider AczeFs set-theoretic
models but concentrate rather on an axiomatization of such structures. The the-
ory is stated in terms of two basic predicates: the truth predicate T and a second
predicate P, where intuitively P(t) asserts that t is a proposition. The truth predi-
cate obtains its correct interpretation only on those objects which are proposi-
tions. In the present context we define P(t) =def Ύ(t) v ¥(t), i.e., propositions
are those objects which are true ox false. The axioms of the theory SA (the ax-
ioms of a Frege structure) are given in two parts, corresponding to those for truth
and those for propositions.

Axioms of Propositions
(i)P(Λ) AP(ί)->P(i4 &B)

(ii)P(^l) & P(B)^P(AwB)
(iii) Έ>(A) & (T(,4) -* P(B)) -• P(A -+ B)
(iv)P(Λ)->P(~,4)
(v) VjtP04)-*P(v;&4)

(vi) VxP(A)^>P(3xA)
(viϊ)P(s = t).

Axioms of Truth
(i) P(A) & P(B) -* (Ί(A &B)++ Ί(A) & Ύ(B))

(ii) P(A) & P(B) - (Ύ(A v B) <+ Ύ(A) v T(B))
(iii) PM) & (T(i4) -> P(B)) - (Ύ(A -+B)++ (Ί(A) -* Ύ(B)))
(iγ)P(A)^(Ί(~A)++~Ύ(A))
(v) VxP(A) -> (T(VJ&4) <+ VxΎ(A))

(vi) VxP(̂ 4) -• (Ί(3xA) ++ 3xΎ(A))
(yii)T(s = t)++s = t
(viii) ~{Ύ(A)&F(A)).

The theory does not assign the standard Tarski truth conditions to all the
wff's but only those which are provably propositions. Moreover, the structure
of propositions is predicative in that we can establish that something is a prop-
osition only by proving that its subformulas denote propositions. The axioms for
truth are then the standard Tarski ones, where propositions are the objects of
the truth predicate. In an important sense these axioms reflect the minimal con-
ditions one would expect of any theory of truth. The other theories we shall con-
sider all have the above theory as a consequence.

3.1 Models of SA Our set-theoretic models of SA are given by a slight vari-
ation on AczeFs construction, one that is similar to the account of Scott [10].
This is done largely to compare this theory with that of Kripke-Feferman-
Gilmore we shall consider in the next section. To construct the models we first
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give a different semantics for L, namely that of Kleene (strong) three-valued
logic. We define two semantic relations h (true) and H (false) by simultaneous
recursion as follows:

The strong Kleene truth conditions for L
MVgs = t iff l[t]g = l[s]g

MVgΊ(t) iff T(l[t]g) = l
AfbgF(t) iff F(l[t]g) = \
M\-gA&B iff M\-gA and M\-gB
M\-gAvB iff M \-g A or M\-gB
MVgA-+B iff M\AoxMVgB
M Vg -A iff M\A
M Yg VxA iff for all d in D, M \-g(d/x) A
M\-g3xA iff for some din D, M Vg(<d/X) A.

M-\gs = t iff l[t]gΦl[s]g

M-\gT(t) iff F(I[t]g) = l
M-\gΈ{t) iff T(l[t]g) = l
M-\gA&B iff M -\g A or M -\g B
M ΛgA\i B iff M X A and M\B
MΛgA-^B iff MVgA and MΛgB
MΛg~A iff MYgA

M Λg VxA iff for some d in D, M ~\g(d/x) A
M -\g ixA iff for all d in D, M Λg{d/X) A.

The main theorem for the construction of models for SA employs the
monotonicity property of the above truth conditions.

Definition 3.1.1 Let M = </>, T,F) and N = <£>, T\Fr) be models. Define
Λ/cJViff (VdGD)(T(d) = l^T'(d) = 1 & F(d) = \-+F'(d) = 1). Define
Λ/= JViffΛfc Nand NQ M.

In order to construct a model for SA we revise the extensions of truth and
falsity in an attempt to force the Tarski biconditionals. Let M = <Z>, T,F) be a
model for L. Define M' = <£>, T',F'), where

7"(I[,4]s) = 1 iff Af \~gA
F'(I[A]g) = I iff M-\g A.

On those elements of D which are not elements of Code, Γand F do not
change. This definition is legitimate since the Λ function enjoys the previously
mentioned independence property.

Theorem 3.1.2 Let M and N be two models of L. Then M c N implies
M' c N'.

Proof: By induction on wff s we show that MYgA implies N \-g A and MΛgA
implies N ΛgA, where the atomic cases follow directly from the assumption.

Using this basic step of revision we can define an ordinal sequence of truth
and falsity predicates: T(a), F(a) and models M(a) for a > 0 where
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Γ(0) = JL, where (Vrf G D) (JL(rf) = 0)
F(0) = JL
Γ ( α + 1) = T(aY
F(a + 1) = F ( α ) '
Γ(δ)(t/) = 1 iff (3α < δ)V/3(α < j8 < δ)(T(β)(d) = 1), for limit ordinal δ
F(δ)(d) = 1 iff (3tf < δ)Vβ(cx < β < d)(F(β)(d) = 1), for limit ordinal δ.

The following fixed-point theorem facilitates the construction of models for
SA.

Theorem 3.1.3 There is a modelM* = <Z), Γ* ,F*> such that M* = (M*)'.

Proof: Using the monotonicity of the ' operation we prove by induction that for
all ordinals β and μ if β < μ then M(β) c M(μ). It then follows that there ex-
ists a least δ such that M(δ) = M(δ)'. Let M* be this model. Then it is easy to
see that T*(l[A]g) = 1 iff M* \-gA, andF*(I[^l]^ ) = 1 iff M* -\gA.

Theorem 3.1.4 M* is a model of SA.

Proof: The axioms of SA are then automatic from the Kleene truth conditions.

The elegant theory SA forms a core for all the theories we shall consider.
In fact the model M* supports a stronger theory of truth, one which satisfies the
Kleene truth conditions exactly.

4 A theory of truth and falsity The second theory we shall consider is essen-
tially classical and is a version of the theory of Kripke [9]. The theory is due to
Gilmore [4] and Feferman [3]. The theory, although classical in its external logic
(i.e., the logic of wff's is classical), has a residue of three-valued logic in its in-
ternal logic of the truth predicate.

4.1 The axioms of the theory KFG The theory is stated in terms of certain
principles which govern the logic of the predicates T and F.

Axioms of KFG

Al T( ί ) "T(T(0)
A2 F(0~F(T(0)
A3 F( f)"T(F(0)
A4 T(0«F(F(0)
A5 Ί(t = s)++t = s
A6 T(/ Φs)<r>tΦs
DIS Ύ{A) -• C(^), where C(^) =def ~F(A)
Fl Ύ(A &B)++T(A) &Ύ(B)
F2 F(A &B)<+F(A)vF(B)
F3 T(AvB)++T(A)\/T(B)
F4 F(A yB)^Έ(A) &F(B)
F5 T(~A)++F(A)
F6 F(~A)++T(A)
F7 T(A -+B)++ Ύ(B) v F(^4)
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F8 F(A -+B)++ T(A) & F(B)
F9 T ( V X 4 ) ^ V J C T U )

F10 F(VxA) <* 3xF(A)
Fll Ί(lxA)++lxΊ(A)
F12 F(3xA)++VxF(A).

The first group of axioms (A1-A6) concern the behavior of atomic sentences un-
der T and F and allow the derivation of the Tarski biconditionals for atomic as-
sertions. The main group of axioms for truth and falsity (F1-F12) are exactly the
expression of the truth conditions of Kleene (strong) three-valued logic. We al-
luded to this earlier: the internal logic of truth is three-valued.

Theorem 4.1.1 The model M* = (D, T*,F*)isa model of the theory KFG.

Proof: The model constructed for SA serves as a model for KFG. The sound-
ness of the axioms is automatic from the Kleene truth conditions.

The following is almost immediate:

Theorem 4.1.2 The theory SA is derivable in KFG.

In addition we have the following equivalences:

Theorem 4.1.3 The following are provable in KFG:

(i)P(Λ)"P(T(Λ))
(ii)P(>l)~T(P(yl))

(iii) V(A) <H> (T(A)^A & T(~Λ) ++ -A).

Proof: All are straightforward.

We can also prove the following derived rules of inference which govern the
truth predicate.

A Natural Deduction System for Truth

„ . . Ί(A) Ύ(B) Ύ(A & B) Ύ(A & B)
Conjunction —-— —^ — —

Ύ(A&B) Ύ(A) τ(B)

IT(A)]

j ,. . T(£) P(A) Ύ(A) Ύ(A-+B)
Implication —— —^ —^—^ -

Π(A)] Π(B)]

Disjunction Ί ( A ) T ( B ) T^v^) T(C) T(C)
J T(AvB) T(AvB) T(C)
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IT(A)]

JL Έ>(A) Ί(A) Ύ(~A)
Negauon - ^ - ^ - -±

[T(~Λ)]

Classical ± PQ4)

Negation T(A)

Universal T(A[c]) T(VxΛ)

Quantification T (VxA) T(A[t])

[T(A[c])]

Existential T(A[t]) T(lxA) T(C)

Quantification Ύ(lxA) T(C)

We assume the normal side-conditions on the quantifier rules for existential elimi-
nation and universal introduction. Observe that there are side-conditions on
propositions in the implication introduction rule whereas there are no such con-
ditions for disjunction or existential elimination.

Theorem 4.1.4 The above rules are derivable in KFG.

Proof: Once again the details are tedious but simple to check.

4.2 A reformulation The original formulation of the theory was not given
in terms of the above axioms A1-A6, DIS, and F1-F12 but in terms of these
schemas:

Cl Ύ(A)^A +

C2 ¥(A)^A~

where A+ &ndA~ are defined as follows:

Definition 4.2.1 Let A be any wff of L. Then A+ and A~ are defined by
recursion:

(i) If A is t = s then A+ = A and A~ = t Φ s
(\ϊ)lϊA isT(O then,4 + =,4 a n d ^ ~ = F(O

If ,4 isF(/) then ,4+=,4 a n d ^ " = T(O
(iii) If A is ~B then A+ = B~ and A~ = B +

(iv)If^4 i s £ & CthenA+ = B+ & C+ and A~ = B~ v C "
(v) If A is B v C then A + = B+ v C+ and A~ = B~ & C~

(vi) If A is VxB then A+ = VxB+ and A~ = 3xB~
(vii) If A is 3xB then A+ = 3xB+ and A~ = VxB~

(viii) If A is B -> C then >1+ = J9~ v C + and A~ = B+ & C~
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In essence these approximations are the result of pushing all negations into
atomic position and replacing all such negations by internal negations.

Lemma 4.2.2 For each wff A we have:
(i)A+-+A

(n)A-->~A
(iii) (A++A+)-> (T(A)^A)
(iv) (~A ++A-) -+ (¥(A) <-> ~A)
(v) (A+++A &A-++~A)~P(A).

Proof: The proofs of (i) and (ii) are routine and are established by simultaneous
induction. The third, fourth, and fifth parts are immediate.

Theorem 4.2.3 The theory (A1-A6) + DIS + (F1-F12) is equivalent to DIS +
(C1-C2).

Proof: It is obvious that each of the axioms A1-A4 and F1-F18 follow from Cl
and C2. The converse direction is by induction on wff's. Use A1-A6 for the
atomic cases and F1-F12 for the induction clauses.

This version of the theory slightly disguises its three-valued origins, and the
theory is best summarized by saying that T(A) means that A is true in all Kleene
models.

4.3 KFG as a modal theory To prepare the route to the next theory we now
investigate some more of the consequences of KFG and in particular the deriv-
ability of certain modal principles.

Theorem 4.3.1 The following are provable in KFG:

T T(A)-*A
S4 Ύ(A)->Ί(Ύ(A))

IP T(Λ->fl)-*(TG4)->T(Λ))
BAR VxT(A)-+T(VxA).

Proof: We illustrate the proof for IP. It is sufficient to show that (A~~ v B+) <->
(T(A)- v T(B)+), which is clear.

T, S4, IP, and BAR are the characteristic axioms of S4 modal logic. As
regards the S5 axiom the following is provable:

(C(A)^Ύ(C(A)))^P(A).

As a consequence S5 is not derivable: its truth renders everything a proposition
and hence the theory is inconsistent. However, there are further modal axioms
which are provable.

Theorem 4.3.2 The following are provable in KFG:

S T(T(A)-+A)<^P(A)
IPT T(T(>1) - Ύ(B)) <* Ύ{A -» B)
R Ύ{A)-+Ί(C(A))
L T(C(Λ))-*T(Λ).

Proof: Once again these are all easy to verify.
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With these axioms in place it appears that KFG supports a distinctive modal
theory of truth. But one important factor is missing, namely a rule of necessi-
tation:

KFG YA implies KFG Y T(A).

This rule is not provable in KFG. Indeed, its addition renders the theory incon-
sistent. To see this observe that KFG YA v ~A, hence by the rule of necessita-
tion KFG Y T(A v -A) and so by the axiom for disjunction we have Ί(A) v
F(v4), i.e., everything will be a proposition. Indeed this follows from a weak rule
of necessitation (one which allows the derivation of T(A) only when A is prov-
able in classical logic). Although the logic has the appearance of a modal the-
ory, it is not very interesting given the lack of any obvious rule of necessitation.
Indeed, the schemas Cl and C2 under the above rule would lead to:

T(T(^1)^^ + )
T(F(Λ)~Λ-),

but the truth of either again yields that everything is a proposition. This is rather
unfortunate since one would like the assertion of the truth of the schemas of the
theory to be true. We now turn to a theory which looks more promising as a mo-
dal theory.

5 A theory of truth The theory KFG is characterized by a classical external
logic and a three-valued internal one. In this section we investigate a theory of
truth where the internal logic of the truth predicate is classical. The point of
departure is the semantic theory of Gupta-Herzberger.

5.1 The Gupta-Herzberger semantic theory The Gupta-Herzberger ap-
proach to the theory of truth is based completely on classical semantics. Wff's
are given a classical interpretation both internally and externally. To begin with,
we offer an account of the Gupta-Herzberger process of revision. We shall be
brief since our main concern is with the logics of truth that result. We shall follow
the exposition given by Herzberger.

The idea behind this approach to truth is simple enough and resides in the
desire to maintain as many instances of the Tarski biconditionals as possible. We
shall construct an ordinal sequence of models for L where the extension of the
truth predicate is continually revised.

Initially we let T: D -• {0,1} and F: D -• {0,1} be arbitrary. We revise the
extension of truth and falsity in an attempt to force the Tarski schema:

T'(l[A]g) = \iffMYgA
F'(l[A]g) = 1 iff M 1=2-.4.

On those elements of D which are not elements of Code, Γand Fάo not change.
The important point to observe is that this process of revision is not monotone
since T(d) = 1 does not imply T'(d) = 1.

Using this basic step of revision we can define a sequence of truth and falsity
predicates T(a), F(a) for α > 0 as follows:
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(i) Γ(0) = T
F(0) = F

(ii) T(a + 1) = T(a)'
F(α + 1) = F(a)'.

Because the operation of revision is not monotone, in order to carry the process
through to transfinite ordinals we cannot simply select the union of all the Γ's
at limit ordinals. Here we follow the lead of Herzberger:

(iii) For limit ordinal δ define:
T(δ)(d) = 1 iff (3α < δ)V/J(α < β < δ){T(β)(d) = 1)
F(δ)(d) = 1 iff (3α < δ)Vβ(a < β < δ)(F(β)(d) = 1).

It should be pointed out that there are many options concerning the definition
of the truth predicate at limit ordinals and no doubt different choices would lead
to different theories of truth. Gupta [5] and Herzberger [6] contain indications
of the different choices available, but we shall not pursue this here.

Definition 5.1.1 An element d in D is positively stable iff ΞαVβ > a
(T(β)(d) = 1); it is negatively stable iff 3αV0 > a(F(β)(d) = 1). An element
d of D is stable iff d is positively or negatively stable. We say that d is positively
stable from an ordinal a (negatively stable from a) iff V/3 > a(T(β)(d) = 1)
(\fβ>a(F(β)(d) = l)).

Definition 5.1.2 An ordinal σ is a stabilization ordinal iff
(i) For each d in D9 d is positively stable iff T(σ)(d) = 1. For each d in D, d is

negatively stable iff F(σ)(d) = 1.
(ii) For each d in D, d is positively (negatively) stable implies that d is positively

(negatively) stable from σ.

Stabilization ordinals characterize the stable objects exactly. The central re-
sult for our purposes is the following.

Theorem 5.1.3 (Herzberger) There exists a stabilization ordinal

We are primarily interested in those wff's which are valid at such models.

Definition 5.1.4 A wff is sound iff it is valid at every stabilization ordinal.

This is only a brief account of the Gupta-Herzberger theory of truth. It is
sufficient for our purposes; the two papers referenced contain more details. We
shall be concerned with exploring the logic of stable truth. In this regard observe
that the Gupta-Herzberger semantics for the truth predicate has a modal flavor
to it: for a wff A to be stably true A must be true in all models after some point
in the revision process. Moreover, at stabilization ordinals T(v4) means that A
is stably true and F(^4) that A is stably false. In the rest of the paper we explore
this modal interpretation of the truth predicate and consider various modal logics
all consistent with this stability interpretation.

5.2 A simple deontic logic of truth The weakest system we shall consider is
not really capable of being interpreted as a logic of necessity and possibility. It
is a weak deontic logic, whose interest lies in its connection with Frege structures.
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The Theory M
DIS Ύ(A) -• C U ) , where C(A) =def ~F(A)
IP Ύ(A -+B)-+ (Ύ(A) -+ Ύ(B))
BAR VxΎ(A)-+Ύ(VxA)
NEC If LC h A then Ύ(A) is a thesis of M.

This is a very weak modal theory. In particular, it has a weakened rule of neces-
sitation. One can only conclude that Ύ(A) if A is derivable from the underly-
ing theory of the Lambda Calculus LC. The axiom IP is self-explanatory. The
axiom BAR is essentially the Barcan formula. The axiom DIS, familiar from
deontic logic, prevents both T(^4) and T(~A) from being simultaneously true.

We first establish the soundness of this logic under the stability interpreta-
tion, where by soundness we mean that all its theorems are sound.

Theorem 5.2.1 If M h A then A is sound.

Proof: The axiom IP follows because modus ponens preserves stability: if T(^4)
and Ί{A -• B) are true at a stabilization ordinal then A and A-+B will be sta-
bly true and so will B. Hence T(B) will be true at this stabilization ordinal. Next
consider the Barcan formula. This follows because the domain of individuals is
fixed throughout the revision process. The inference rule of weak necessitation
NEC preserves soundness, because any wff provable in the underlying theory of
the Lambda Calculus will be true in all models and will thus be stably true. DIS
is true at any stabilization ordinal because Ύ(A) means that A will be true from
the stabilization point onwards, and so there is no possibility of A being false
let alone stably false.

Theorem 5.2.2 The following are derivable in M:

( i ) T μ &B)~T(A) &Ύ(B)
(ii)F(A) vF(B)-+F(A & B)

(iii) Ί{A) v Ύ(B) -» Ί(A v B)
(iv) F(A V 5 ) H F(A) & F(B)
( V ) T ( ^ ) H F ^ )

(vi)F(~,4)~T(.4)
(vii) Ύ(B) v F{A) -^ T(A ̂  B)

(viii) F(^4 -> B) ~ Ύ(A) & F(B)
(ix)Ί(VxA)~VxΎ(A)
(x) 3xF(A)^>F(VxA)

(xi) lxT(A)^>T(3xA)
(xiϊ)F(lxA)++VxF(A).

Proof: These are all quite straightforward and follow from the appropriate clas-
sical truths and judicious applications of IP, BAR, and NEC. We illustrate with
(i). From left to right we employ the tautology A & B -> A, NEC, and IP; from
right to left we employ the tautology A -+ (B -* A & B), NEC, and two appli-
cations of IP.

The converse directions of (ii), (iii), (vii), (x), and (xi) are not generally de-
rivable. In fact, the theory which results from the inclusion of these converse di-
rections gives precisely the strong Kleene truth conditions for T and F, which is
essentially the theory KFG of Gilmore [4]-Feferman [3].
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By way of further unpacking the content of the theory M we consider the
theory SA of AczePs Frege structures. In the present context we again define
P(^) =def T(t) v F(t), i.e., propositions are those objects which are true or
false. Under the present interpretation propositions are those objects which are
stable.

Theorem 5.2.3 The axioms of a Frege structure are derivable in M.

Proof: For propositions we illustrate with (v). The assumption yields
Vx(Ί(Ax) v T(~Ax)). This implies VxT(Ax) v BxT(-Ax). By BAR we obtain
T(VxA) v 3JCT(-Ax). By the classical truth -At -> 3x~A, NEC, and IP we ob-
tain T(VxA) v T(~VJt4), as required. For the axioms of T consider the case of
negation. T(~A) -> ~Ί(A) follows from the axiom DIS whereas ~T(A) ->
Ί(~A) follows only because P(A).

We can also derive a natural deduction formulation of a logic of truth.

A Natural Deduction System For Truth

^ . . Ύ(A) Ύ(B) Ύ(A & B) T(A & B)
Conjunction —

J Ύ(A & B) T(A) Ύ(B)

Π(A)]

Imphcation J ( A ^ B ) ^

[Ί(A)] [Ύ(B)]

^ . . . T(A) P(A) T(A\tB) T(C) T(C)
D i s j u n c t l o n τΪAVΊf) τ(cj

[Ύ(A)] Π(B)]

Ύ(B) P(B) Ύ(A\/B) T(C) T(C)

Ί(AvB) T(C)

(T(>4)]

x τ t . -L P(Λ) Ύ(A) Ύ(~A)
Negation T ( ^ } 1

IT(~A)]

Classical i- P(A)

Negation Ύ{A)
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Universal T(A[c]) Ύ(VxA)

Quantification T(Vx4) T(A[t])

Π(A[c])]

Existential T(A[t]) WxP(A) T(lxA) T(C)

Quantification T(lxA) T(C)

We assume the normal side-conditions on the quantifier rules for existential elimi-
nation and universal introduction. These rules provide us with a natural deduc-
tion version of a logic of stable truth. The rules are not carbon copies of the rules
for the classical predicate calculus because of the additional conditions regard-
ing stability/propositions in the negation rules, the implication introduction rule,
and the disjunction and existential elimination rules. Observe the differences with
these rules and those of the system KFG; in the latter there are no side-condi-
tions on propositions for the disjunction and existential elimination rules. In this
respect the above system is more uniform.

Theorem 5.2.4 The above rules are derivable in M.

Proof: The details are tedious but simple to check. We illustrate with the rule
for implication introduction. Given P(A) there are two possibilities, T(^4) or
T(~A). Assume that T(A). Use the tautology B-> (A ->B) and NEC to derive
Ί{B -+ (A -• B)). Under the assumption that Ί(A) we can derive from the as-
sumptions of the rule that T(B). Now employ IP to derive Ύ(A -• £ ) . If T( ~A)
then use the tautology ~A->{A-+ B), NEC, and IP to get Ύ(A -• B).

This is no doubt a quite interesting logic of truth but from a modal perspec-
tive the above theory is a very weak one; so what happens when we try to
strengthen it? There are two obvious ways of achieving this: one corresponds to
the addition of further modal axioms and the other to the rule of necessitation.
We consider the latter first.

5.3 The modal logic D The modal logic which results from permitting the
full axiom of necessitation is the quantifier version of the classical deontic logic
D (plus Barcan). This is defined by the following axioms and rules:

The Logic D
DIS Ύ(A)^C(A)
IP Ύ(A - £) - {Ύ(A) -* Ύ(B))
BAR VxT(A)^T(VxA)
NEC If Ό\-A t h e n D h T M ) .

To establish the soundness of D under the stability interpretation we first estab-
lish that each of the axioms DIS, IP, and BAR is not just sound (e.g., DIS is true
at stabilization ordinals) but stably true (e.g., T(DIS) is true at stabilization or-
dinals). We thus need to establish the soundness of the following axioms:
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SDIS Ύ(T(A)-+C(A))
SIP T(T(v4 -> B) -* (T(^4) -• T(£)))
SBAR T(VxT(A)-+T(VxA)).

Theorem 5.3.1 SIP, SDIS, and SBAR are sound.

Proof: For SIP we have to show that T(T(,4 -> B) -» (T(,4) -> T(£))) is true at
any stabilization ordinal. First note that Ί{A -±B)-+ (Ύ(A) -• T(£)) is true at
any successor ordinal, by the definition of revision. Moreover, at limit ordinals
if A -> B has been true from some ordinal less than the limit ordinal, and A like-
wise, then B must have been true from the greater of the two ordinals, and thus
is true at the limit. For the stability of DIS we only have to observe that T(A)
always excludes the possibility of T( -A) at both successor ordinals and limits.
The argument for SBAR again relies on the constancy of the domain of indi-
viduals.

Theorem 5.3.2 IfΌ\-A then A is stably true.

Proof: We establish the result by induction on the proofs in D. First observe that
all the proof rules of the classical Predicate Calculus preserve stability. If A is
an instance of any of the axioms of D then the result follows from the previous
theorem. Finally consider NEC. Here we only have to observe that if a wff is
stably true then it is stably true that it is stably true. This follows essentially from
the definition of revision at successor ordinals.

Corollary 5.3.3 If M h A then A is stably true.

In the theory D we have a full principle of substitution:

Sub A+>B-+V[A]*+Ψ[B]

where Ψ is any context in which a wff can be meaningfully substituted. This is
easy to prove by induction on the context. The full rule of necessitation plays
the crucial role where the context is T itself.

The main result of this section is that the modal logic D is a consistent logic
of truth, and moreover all the theorems of D are stably true. The logic D is thus
a logic of stable truth.

5.4 Further modal axioms The axioms of the standard systems of modal
logic (T, S4, S5) are the next target for the strengthening of our logic of truth.
Here there are some real surprises in comparison with standard modal systems.
We consider various additional modal axioms beginning with those for T, S4,
and S5.

In the present context the characteristic axiom for the modal logic T is:

T T(A)->A.

Theorem 5.4.1 T is sound.

Proof: At stabilization ordinals T(A) states that A is stably true. Observe that
if A is stably true then A is true at a stabilization ordinal. This follows because
of the rule of revision at successor ordinals and the fact that if Ύ(A) is true at
a stabilization ordinal then T(^4) will be true at its successor.
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Of course, the axiom T implies DIS, but whereas DIS is stably true, T is
not. Indeed, if it were then the modal logic T would be a consistent logic of truth,
but we have:

Theorem 5.4.2 The modal logic T is inconsistent as a logic of truth.

Proof: Let / = Y(λx.~T(x)) and A = T(t). Then by the fixed-point property
of Y and the equality rule of the Predicate Calculus we have A ++ T( -A). As-
sume that T( ~ A), then by the T-axiom we obtain —A. By the equivalence A «-•
T( -A) we can conclude that ~T( ~A). But now we have a contradiction to the
assumption T(~A) and hence ~T(~A). So by the equivalence^ <->T(~A), -A
is a theorem of the modal logic T. This is not yet a contradiction, but —A leads
by strong necessitation to T(~A), which we know leads to a contradiction.

This result is essentially the truth-theoretic version of the result of Montague
& Kaplan [8], Their derivation is based upon the Hangman paradox. In conclu-
sion, we can add T as an axiom, but it must not enter into proofs involving the
rule of necessitation.

In regard to the stable truth of the T-axiom the following principle is sound:

S τ(J(A)-+A)->P(A).

Theorem 5.4.3 S is stably true.

Proof: S will be true at any successor ordinal since its conclusion always will be.
So suppose that Ύ(T(A)-+A) is true at some limit ordinal. Then Ύ(A) -+A will
be true from some ordinal β less than this limit. If A is true at some ordinal
greater than β but less than the limit then A will be true at every ordinal greater
than β but less than the limit. It follows that T(A) will be true at the limit; other-
wise T(~A) will be true at the limit. It follows that S is stably true.

In conclusion, we have the stability of the following logic.

The logic ST
DIS T(A)-+C(A)
IP Ί(A -*£)-* (T(A) -» T(B))
BAR V*TO4)-+T(VJ&4)
S T(T(A)-*A)-+P(A)
NEC If ST h A then ST h Ύ(A).

This logic is worthy of further investigation. We shall explore it further on an-
other occasion.

Next consider the S4 axiom which takes the form:

S4 T(A)->T(Ί(A)).

Theorem 5.4.4 S4 is sound.

Proof: S4 insists that if A is stably true then it is stably true that it is stably true.
To see that this is so one only has to observe that by the rule of revision at suc-
cessor ordinals the positive stability of A implies the positive stability of T(A).
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Once again, although S4 is sound it is not stably true. To see this we first
observe that the following axiom is sound:

IPT τ<J(A)-+τ(B))->Ύ(A-+B).

Theorem 5.4.5 IPT is sound.

Proof: This is obvious given the definition of truth at successor ordinals.

IPT is not stably true: if it were then applying IPT to the assertion of its
stable truth would yield T((T(^) -> T(B)) -* (A -• B))9 which by axiom T gives
(T(A)-+ T(B)) -*(A-+B). Any two sentences A, B where A is true but not stably
true and B is false provide a counterexample to this principle.

We can now show that S4 cannot be stably true. Assume that it is, i.e.,
Ύ{Ί(A) -> T(T(Λ))), then by IPT we obtain Ύ(A -* T(A)), which by axiom T
yields A-*T(A), and this together with T yields A <-> T(A), the Tarski bicon-
ditionals.

We now consider the S5 axiom. The addition of the S5 axiom C(A) -*
T(C(^4)) renders the theory inconsistent: from S5 and T we then obtain
~T(~Λ)~T(~T(~,4)).

Unfortunately, the Liar sentence satisfies T (/?<-* Ί(~B)), and so we obtain
(writing B for A in the above) the following equivalences: ~ T(~2?) <-•
T(~T(~B)) ++ T(~B). Indeed, in terms of stability S5 is clearly false since it in-
sists that any assertion which is not stably false is stably, not stably false.

From axioms T and S4 we can deduce that Ύ(A) <-> Ύ(Ύ(A))9 so if A is sta-
bly true it is stably true that it is stably true. We cannot deduce that A is stably
false iff TG4) is stably false, but we could if we added the following: ~T(v4) -*
T(~TC4)). But a special instance of this is the already discarded S5 axiom. In-
deed, ~Ί(A) -• T(~T(v4)) in conjunction with M allows the derivation of all in-
stances of the Tarski biconditionals. However, we do have the following
implication already:

R Ί(A)-+Ί(C(A)).

This follows from SDIS, IMP, T, and S4. Surprisingly the converse of R is also
sound:

L Ύ{C(A))->Ύ{A).

Theorem 5.4.6 L is sound.

Proof: If ~T(A) is true from some ordinal, then by the definition of revision
at successor ordinals ~A will be true from some ordinal onwards.

We often refer to the conjunction of R and L as NEG. Indeed, L is a spe-
cial case of IPT. Neither of the stable analogues of R and L is sound; indeed,
either statement leads to a contradiction. The soundness of IPT destroys the pos-
sibility: the stable truth of R leads by IPT to T(T(Λ) -> A) and the stable truth
of L leads by IPT to T(A -> T(A)), both of which are unacceptable.

Let LS be the logic D + T + S + S4 + IPT + NEG.

Theorem 5.4.7 In LS we have:
(i)F(A)~P(Ύ(A))

(ii)P(yl)«T(P(i4))
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(iii) P(A) <+ (Ί(A)^A & F(^) <-> -A)
(iv)P(A)++T(T(A)->A).

Proof: For part (i) we use S4, T, and NEC For the second part we employ
T and S4. Part (iii) employs M and T. For (iv) observe that from Ί(A)9 the
tautology A -> (T(A) -> A), NEC, and IP we obtain T(T(^4) -> A), and from
T{~A), R, the tautology ~B -* (B -+ C), NEC, and IP we again obtain
Ύ(J(A)-+A).

From (iv) and S we see that T(T(A) -*A) is both necessary and sufficient
for stability and that the positive and negative statements of the Tarski bicon-
ditionals are also necessary and sufficient.

With the T, S4, and NEG axioms we can also derive inference rules for iter-
ated truth:

Ί(A) T(Ύ(A))

TςΓ(A)) Ί(A)

T(~i4) T(~TQ4))

τ(-τμ» τ(~Λ)

The lack of a full axiom of Necessitation means that substitution fails in
LS. However, a weaker principle is derivable. First define:

A~B=defΊ{A~B).

Then the following principle:

^Sub A=B^>Φ[A]~Φ[B]

is derivable, where Ψ is any context in which a wff can be meaningfully substi-
tuted.

Theorem 5.4.8 The above principle is derivable in LS.

Proof: Use induction on the context. The case where the context is T( ) is taken
care of by SIP.

This completes our discussion of the logic of stable truth. There is no doubt
a great deal more which could be said in regard to its location within the spec-
trum of modal logics, but we hope to have done enough to convince the reader
that the logic of stable truth constitutes a quite rich modal theory of a rather dis-
tinctive kind. For those who think that all is sweet we end on a negative note.

Theorem 5.4.9 In the logic of stable truth the notion of truth is not internally
definable.

Proof: By this we mean that VzP(T(z)) is provably false. Suppose not. Let A
be the Liar, i.e., A <-• Ί(~A), then we have T(T(.4)) v Έ(Ί(A)). The first dis-
junct leads via axiom T to Ί(A) & A which yields a contradiction, while the sec-
ond leads by NEG and T to T(~A) & -A, again a contradiction.

This is the stability version of the result of Aczel [1].
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