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Non-Classical Syllogistic Inference
and the Method of Resolution
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Abstract There are non-classical syllogistic inferences where only one of the
premises has the form of an ordinary categorical, while the occurrence of
the middle term in the other can be embedded in a Boolean term compound
or occupy the position of syntactical object of a transitive verb, or both. The
aim of this paper is to use the method of resolution, a technique of logical
inference widely used in computer science, to show that syllogistic inferences,
classical and non-classical alike, share an underlying pattern of cancellation-
cum-substitution. We formulate four useful rules of this wider syllogistic and
establish them as derived rules of natural deduction for first-order predicate
logic.

1 Classical Aristotelian-Medieval syllogistic restricted itself to inferences
where premises and conclusion are all categoricals of the familiar A4, E, I, O types.
Yet non-classical syllogistic patterns of a very similar kind are exemplified by
inferences where only one of the premises has the form of an ordinary categor-
ical, while the occurrence of the middle term in the other can be embedded in
a Boolean term compound or occupy the position of syntactical object of a tran-
sitive verb, or both.!

The aim of this paper is to use the method of resolution, a technique of log-
ical inference widely used in computer science, to show that syllogistic inferences,
classical as well as non-classical, do indeed share an underlying pattern of can-
cellation-cum-substitution. In the process, we formulate four useful rules of this
wider syllogistic and use the technique of resolution to establish them as derived
rules within a familiar system of natural deduction for first-order predicate logic.
We hope to demonstrate that these wider syllogistic patterns are common enough
and powerful enough to deserve closer study.

2 Valid classical syllogisms can be reduced by “immediate inference” trans-
formations of their premises and/or conclusion to one of two canonical types:
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Type I: Every M is P Type II: Every M is P
(AAA) EverySis M (AID) Some S is M

Every Sis P. Some S is P.

(Where ‘S’ stands for the subject term of the conclusion, ‘P’ for its predicate
term, and ‘M’ for the middle term that does not appear in the conclusion.)

Let us call the universal premise ‘Every M is P’ the categorical premise, and
the other premise the matrix premise. Then a first approximation to a more com-
prehensive pattern exemplified by both Types I and II would be this: the con-
clusion is identical with the matrix premise except that the middle term ‘M’ has
been replaced by the predicate term ‘P’ of the categorical premise.

The same pattern holds in a wide variety of cases, where the middle term ‘M’
in the matrix premise is embedded in a Boolean term compound or occupies the
position of syntactical object of a transitive verb, or both:

(iii) Every Mis P
Some (Every) Sis Q and M
Some (Every) Sis Q and P .

(iv) EveryMis P
Some (Every) S is R to some M

Some (Every) S is R to some P .

(v) EveryMis P
Some (Every) S is R to every non-M

Some (Every) S is R to every non-P .

(vi) EveryMis P
Some (Every) S is R to some Q and M

Some (Every) S is R to some Q and P .

The pattern holds no matter how deeply embedded ‘M’ is in the matrix prem-
ise. Yet this inference is invalid:

(vii) EveryMis P
Some (Every) S is R to some non-M

Some (Every) S is R to some non-P .

It would be useful to have a rule that demarcates occurrences of ‘M in the
matrix premise that do anchor valid syllogistic inferences from those that do not.

3 Reviewing Type II syllogisms, we see an alternative reading, with the par-
ticular premise as the categorical premise and the universal one in the matrix
position:

Type II': Some M is P
(IAI) Every M is S

Some Pis S .
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The conclusion is the same as the matrix except that the middle term ‘M’ has
been replaced by ‘P’, the predicate term of the categorical premise, with a switch
of the matrix quantifier from ‘Every’ to ‘Some’.

This pattern is equally discernible in the following cases:

(viii) Some M is P
Some (Every) S is R to every M

Some (Every) S is R to some P .

(ix) Some Mis P
Some (Every) S is R to something that is F to every M

Some (Every) S is R to something that is F to some P .
But the following case is not a valid inference:

(x) Some M is P
Some (Every) S is R to everything that is F' to every M

Some (Every) S is R to everything that is ' to some P .

Here, too, it would be useful to have a rule.

4 Patterns closely analogous to the ones discerned in Sections 2 and 3 are
exhibited in sentential logic by the resolution principle, a powerful inference rule
that anchors a comprehensive method of generating and testing inferences widely
used in computer science, the method of resolution.?

The resolution principle operates on a pair of disjunctive clauses to yield a
third disjunctive clause, called their resolvent:

pvq
rvp (where p, g, r can be any sentences, atomic or compound).

rvgqg

The method of resolution, in its purely sentential application, works by
reducing each sentence (premise) to conjunctional normal form (CNF), i.e., an
n-place conjunction of disjunctive clauses of literals, i.e., atomic sentences or
their negations. Then, the resolution principle is repeatedly called upon to
“resolve” pairs of distinct disjunctive clauses containing opposed (positive/neg-
ative) literals (like ‘p’ and ‘—p’). The effect is to “cancel” such pairs of opposed
literals, so the method of resolution could be called, perhaps more aptly, the
method of cancellation.

Notice that the premise ‘—p v g’ plays the role of the categorical premise,
‘rv p’ plays the role of the matrix premise, and the conclusion ‘rv g’ is the same
as the matrix, except that ‘g’ has been substituted for ‘p’, in complete analogy
with the pattern discerned in Section 2.

The resolution principle includes as special cases modus ponens (—p v g, p/q)
and the transitivity of the conditional (=pv g, ~g Vv r/=pvr), and thus has the
required flexibility to anchor all the different kinds of sentential derivations that
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come up during natural deduction instantiation of the premises of classical syl-
logisms translated into standard notation (using the instantial variable ‘a’):

Type I Syllogism Type II Syllogism

(vx) (Mx— Px) (vx) (Mx- Px)

(vx) (Sx— Mx) (Ix) (Sx A Mx)

(vx) (Sx—- Px). (3Ix) (SxAPx).
Instantiated Type I Instantiated Type 11

Ma - Pa Ma — Pa

Sa - Ma Sa A Ma

Sa — Pa. Sa A Pa.

Eliminate —: Eliminate —:

-Ma v Pa —Ma v Pa

—Sav Ma Sa A Ma

-Sa v Pa. Sa n Pa.
(Straightforward instance (Application of the method
of the resolution principle) of resolution, using Modus

Ponens, an instance of the
resolution principle)

Notice that standard translations of classical syllogisms with non-compound
S, P, M terms are just two steps away from (sentential) CNF, since all that is
required to get them into CNF is instantiation and elimination of the conditional
in favor of negation and disjunction.

We will exploit the close correspondence between syllogistic patterns of infer-
ence and patterns of resolution/cancellation to provide an analysis of the for-
mer and establish useful general rules of inference, sentential versions first and
then, on their basis, quantified, syllogistic versions.

5 Our formulation of these rules of inference will require a distinction
between an affirmative as opposed to a negative occurrence of a component sen-
tence, closed or open, within a given sentence.

Let us adopt a standard notation for sentential logic, using the connectives
‘=, ‘A%, V2, ‘>, and ‘o, and follow the standard convention of negating an
atomic sentence by directly prefixing the negation sign to it, while negating a
compound sentence by first enclosing it in parentheses, and prefixing the nega-
tion sign to the left parenthesis. We proceed to eliminate occurrences of ‘—’ and
‘o’ by replacing ‘p —» g’ by ‘" pvqg’and ‘p o g’ by ‘(mpvg)A(—gvp)’

The scope of a negation sign ‘=’ is given by the following rules: (i) If a ‘=’
sign is immediately followed by a ‘(’, then its scope is all of the material between
that ‘(’ and the corresponding ‘). (ii) Otherwise, its scope is the atomic sentence
that immediately follows it.

We now define an occurrence of a component sentence p (atomic or com-
pound) within a sentence ®( p) as positive if and only if it lies in the scope of zero
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or an even number of ‘-’ signs, and we write $( 5). If p lies within the scope of
an odd number of ‘-’ signs in ®( p), then the occurrence is negative, and we write
$(p).?

For example, to find whether the occurrence of pin ‘(p Ar) — s’ is negative
or positive, we replace it by ‘= (p A r) v s’ and note that p lies in the scope of
just one ‘-’ sign; thus the occurrence of p is negative. But the occurrence of p
in ‘[(pvq)—r]—s’is positive, because p is in the scope of two ‘-’ signs when
we move to ‘- [ (pvq) vr] vs’. The sentence ‘(p v q)’ also has a positive
occurrence, while 7 has a negative occurrence in the same sentence.

Moving to first-order quantification theory in a standard notation that
includes the quantifiers ‘3’ and ‘v’, variables ‘x’, y’, ‘z’, etc., and atomic and com-
pound open sentences ‘Sx’, ‘Px’, ‘Mx’, ‘Ay’, ‘By’, ‘Rxy’, ‘Fxy’, ‘Gxyz’, ‘Ay ARx)’,
etc., we can assign a positive or negative occurrence to every closed sentence,
atomic or compound, and every open sentence, atomic or compound; in partic-
ular, we can assign a + or — value to every open sentence in one free variable
(this is the widest possible generalization of a traditional monadic term, and it
is monadic terms that play the central role in syllogistic reasoning).*

For example, in the sentence ‘(vx) [(Vy)(Ay = Rxy) = Bx]’, ‘Bx’ has a pos-
itive occurrence, ‘Rxy’ has a negative occurrence, ‘4y’ has a positive occurrence,
‘(Vy)(Ay - Rxy)’ has a negative occurrence, etc., as we see once we move to
“(vx) [ [(vy)(mAy v Rxy)] v Bx] .

6 The premises and the conclusion of the resolution principle

pvg
pvr

qvr

are all in CNF relative to p,q,r, i.e., treating p, q,r as literals (even if they are
not atomic). We will express the result of reducing a sentence ® to CNF relative
to a sentence p contained in ¢ as CNF &(p).

The inferential mechanism of the resolution principle can be seen to oper-
ate through a mutual cancellation of the pair of affirmative-versus-negative
occurrences of the recurrent component p (the “middle term” of classical syllo-
gistic) and an insertion/substitution of the partner of the negative occurrence of
p in the place of the positive occurrence of p.

But what if the matrix premise ®( p) is not in CNF relative to the “middle
term” p? We will show that when ®( p) is reduced to CNF ®( p), all the occur-
rences of p in CNF &( p) that were generated from the original occurrence of p
in question will have the same + or — value as the original. This means that the
value of p remains invariant through all the equivalence transformations that are
required to get us from ®(p) to CNF &( p), and, therefore, that value in ®(p)
predicts one or more corresponding affirmative or negative occurrences of p in
CNF ®( p); hence, it predicts the possibility of cancellation against the negative
occurrence of p in the categorical premise in accordance with a direct applica-
tion of the resolution principle. Thus, + or — values function as indicators of
forthcoming cancellation/substitution.
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The steps that lead from &(p) to CNF &( p) are the following?:

Step 1: Eliminate — and < in favor of A, v, and —.

Step 2: Move every — sign as far inward as it can go, by:
(2.1) eliminating double negations
(2.2) using De Morgan’s Laws.

Step 3: Use the distributive laws for A and v.

Of these steps, (1) has been built into the method of assigning + or — val-
ues, so it has been already performed.

Step (2.1) obviously leaves overall + or — values unaffected because it
removes two — signs at a time, leaving the overall number of — signs even or odd
just as before.

Step (2.2) proceeds in accordance with DeMorgan’s laws to distribute a — sign
whose scope is an entire conjunction or disjunction to the components of that
conjunction or disjunction which were within the scope of the original — sign
anyway, so it leaves the overall value unaffected by neither increasing nor dimin-
ishing the number of — signs that each component is in the scope of.

Step (3) obviously leaves + or — values unaffected. It may multiply the num-
ber of occurrences of a given sentence, but each occurrence will retain the pos-
itive or negative value of the original.

Therefore, we conclude that reduction to CNF ®( p) leaves the overall +
or — value of p in ® unaffected. (The sequence of steps is not relevant either.)

7 Now it becomes easy to show that the following two rules hold for senten-
tial logic (SR for “Syllogistic Rule”):

SRI: (1) —p Vg SRII: (1) —pvq
@ @) 2 Q)
@) ®(g/D). @) ®(p/q).

(Where &( q/p) represents the result of replacing one or more positive/negative
occurrences of p in ®( p) by g. Note that the resolution principle is a special case
of SRI.)

Proof outline of SRI: (There may be more than one occurrence of p in & but
each one can be treated separately.)

Let the sequence of steps that got us from &( p) toCNF ®(p)be Sy, S,,...,S,.
CNF @( p) may contain more than one occurrence of p generated from the orig-
inal affirmative occurrence, but they will all be affirmative as well. Now pair the
first premise ‘—p v g’ with each disjunctive clause in CNF &( p) that contains one
of these affirmative occurrences, apply the principle of resolution, and replace
the clause which functioned as the second premise in resolution by the conclu-
sion of the resolution argument. The cumulative result can be represented as CNF
®(p) (q/p) Now apply a sequence of corresponding steps in exact reverse

order, i.e.: S;,,S,_;,...,5%,8], to get from CNF <I>(p)(q/p) to <I>(q/p).6
Proof outline of SRII: This is a special case of SRI:
—pV q is equivalent to

1)y = (-g)v-p
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&(q) is equivalent to
2) ®(~(—q)/q).

Since q is in the scope of an odd number of — signs in ®, —¢ is in the scope
of an even number of — signs in ®, hence we can reinterpret (2) as:

Q") 2(q).
Applying SRI to (1’) and (2”) we get:
3) &(~p)/(Fg)).

But substituting (affirmative) occurrences of —p for affirmative occurrences
of —q in ® can be reinterpreted as substituting (negative) occurrences of p for
negative occurrences of ¢ in ®. Hence we get our desired conclusion:

3) 2(p/9).

8 We are now in a position to state and prove the syllogistic, quantified ver-
sions of the sentential principles SRI and SRII.
SRI*: Categorical Premise: (Vx) (Fx— Gx) or (vx) (—Fxv Gx)
+
Matrix Premise: d(Fy)

Conclusion: <I>(Gy/FJ3’) .

where Fx, Gx are open sentences in one free variable x, and Fy, Gy are open sen-
tences in one free variable y, not necessarily distinct from x.

In our proof we will use standard techniques of natural deduction.” The
result will be to establish SRI* and SRII* as derived rules of natural deduction.

Proof outline of SRI*: We begin by working on the Matrix Premise. We have
already eliminated — and « in favor of A, v, and —. We now drive negation signs
in until no quantifier is in the scope of a negation sign. Let the sequence of equiv-
alence transformations that ja}ccomplishes this be: S1,8,,...,8,-1,83,. Let the
result be represented as ®'(Fy).

We instantiate each bound variable in ®'(Fy), moving from left to right and
using US (Universal Specification) or ES (Existential Specification) according to
the case. Let the steps of instantiation be iy,i,...,ik_1,ik.

Step i; uses US or ES to eliminate the j-th quantifier in &’ (Fy), say (Q;z;),
and substitute the instantial variable a; for the bound variable z;. Let y = z,,.
Then the cumulative result of this sequence of instantiations is a complex truth-
function of atomic sentences of the form <I>”(FJ;1,,,).

We now use the same instantial variable a,, to instantiate the bound variable
X in the categorical premise, thus ending up with the following pair of statements:

-Fa,, v Ga,,
& (Fa,,).
By the sentential version of SRI, which we have already proved, these two yield:

&"(Ga,,/Fa,,).
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We now use generalization in reverse. We use a sequence of steps g, 8x—15- - - »
£2,81, such that g; corresponds to the step /; of instantiation. If i; used US (ES),
g; will use UG (EG) to restore quantifier (Q;z;) and bound variable z; by elim-
inating the instantial variable ;. In the case of g,,, it will restore the quanti-
fier (Q,,y) and thg:r bound variable y in the open sentence Gy. The result will
clearly be ®'(Gy/Fy). +

We now perform corresponding steps S,,S,_;,- . .,35,S51 to ®(Gy/Fy) to
restgre negation signs to positions coiresponding to their original positions in
$(Fy). We thus end up with ®(Gy/Fy).

Proof outline of SRIT*: Quantified SRII can be formulated as follows:

SRIT*: Categorical Premise: (Vx)(Fx — Gx) or (vVx)(—~Fxv Gx)
Matrix Premise: d(Gy)

Conclusion: ®(Fy/Gy).

The proof proceeds exactly as that of SRI*, except that it uses sentential SRII
instead of sentential SRI in the relevant part of the proof between the chains of
instantiation (specification) and generalization.

9 We must now tackle the issue of the proper formulation of syllogistic rules
that cover cases where the categorical premise is a particular, not a universal
predication.

It will help if we keep two things apart: (a) The detailed process of inference,
which proceeds first through reduction to CNF and then cancellation (resolution)
of opposed sentences, and (b) the result of this process, the conclusion of the
inference, which may or may not be easily recoverable from the matrix prem-
ise as it stands by simple substitution or some other transformation of compa-
rable simplicity.

The efficacy of SRI* and SRII* as rules of inference is due to the fact that
the result of inference by cancellation in these cases can easily be recovered from
the matrix premise by simple substitution, so that we are able to “jump to the
conclusion” eschewing the actual mechanics of inference. In the cases where the
categorical premise is particular, however, such “jumping to the conclusion” is
possible only under rather stringent conditions.

Let us initially restrict ourselves to sentential logic for the sake of simplicity.

The simplest possible case exemplifying sentential patterns corresponding to
the syllogistic ones discerned in Section 3 above is this:

“Categorical” Premise: PAQ
Matrix Premise: apvr
Conclusion: gnar.

The conclusion can be recovered from the matrix premise by substituting q
for —p, but also changing v to A.

But if we introduce a little additional structure in the matrix premise, get-
ting the result involves considerable rearrangement of the matrix.
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For example, let us consider the following premises:

(1) prg
@) (pAr)—-s.

The CNF for (2) is (2’): =pv —rvs.
From (1) and (2”) we get the conclusion

B)ga(nrvs)(orga (r—s))

which departs quite considerably from (2) in its structure.
Even worse is:

1) prg
2) (pvr)—-s.

The CNF for (2) is ") (-p v s) A (—rvs) which together with (1) gives us
the conclusion

(B) (gAas)A(—rvs).

In both these cases, the negative value of the occurrence of p in the matrix
premise is still a reliable indicator of forthcoming cancellation, but the results
of cancellation depart considerably from the structure of the matrix premise and
cannot be usefully recovered from it.

It is quite clear that only under stringent conditions can we get a neat, pre-
dictable conclusion.

The only rule in the cases we are considering that is useful enough and allows
an extension involving quantification seems to be the following —a straightforward
generalization of the simplest case we considered above:

Sentential SRIII:

First Premise: pAg
Matrix Premise: ®((p % r))

Conclusion: d((gar)/(p A r)).
This rule underlies another one which can be reduced to it:
Sentential SRIV:

First Premise: pAgq
Matrix Premise: ®((p A r))

Conclusion: d(g—-r)/(pAr)).

Principle SRIV applied to the first case we considered above gives a differ-
ent conclusion:

prg
(pATr)—>s
(gq—or)—s.
This conclusion is weaker than the one we got before by going through the

detailed process of inference, but it can be recovered by an orderly process of
substitution from the matrix premise.
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The province of syllogistic reasoning can now be seen to consist of those cases
where the combinatorial possibilities for cancellation/resolution of opposed pairs
of “middle terms” are tractable enough to permit the reaching of a conclusion
from the matrix premise through simple substitutions.

10 Proof outline of Sentential SRIII: Our premises are:

First Premise: (1) pAgq
Matrix Premise: (2) ®((p ).

We use steps Sy, S5, . . .,S,—1,3, to reduce (2) to its CNF, say (2’). In the pro-
cess we get one or more disjunctive clauses with positive occurrences of p — r.
Each one of these clauses has the form (p — r) v ¥, or, equivalently, ~pvrv V.
Using resolution on (1) and each such clause, we obtain in each case:

g A (rv V¥) or equivalently (g Ar) v (g A ¥) which implies (gAar) v V.

The cumulative result of substituting in (2’) the results of such resolution for
the clauses containing the positive occurrences of p — r will clearly be (3"): CNF
(p->r)(gan/(p5r).

Applying to (3)’ a sequence of corresponding steps S;,S,_,...,32,5] we
get (g Ar)/(p S r)).

Proof outline of Sentential SRIV: We start with the premises:

First Premise: (1) pAg
Matrix Premise: (2) ®((p A 1)).

Since (p A r) has an overall negative value in (2), it is in the scope of an odd
number of negation signs.
(2) is equivalent to

@) e(~(=(pAr)/(pAT)).

Clearly, = (p A r) has an overall positive value in (2’) and (2’) can be rein-
terpreted as:

Q") @~ (p A r)).
Applying SRIII to (1) and (2”) we get
(3) (= (g-r)/(~(p A 1r)).

But substituting (affirmative) occurrences of — (g — r) for affirmative occur-
rences of = (p Ar) in ® can be reinterpreted as substituting (negative) occurrences
of (g — r) for negative occurrences of (p A r). Hence we get our desired con-
clusion:

() 2(g—>nr)/(pAr)).

11 We can now state and prove the quantified versions of SRIII and SRIV.
The expressions used in stating these principles appear complicated, but the sub-
stitutions involved are simple and clearly indicated.
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SRIIT* SRIV*

Categorical Premise: (1) (3x) (FxaGx) (3x) (FxAGx)
+ +

l+| l___|

Matrix Premise: (2) ®((vy)¥ ((Fy— Wy))) ®((vy)¥ ((Fy A Wy)))
T -
Conclusion: (3) Q{ ()Y ((GyA Wy)/ (Fy—> Wy)) } o Y (G =W/ (Fya W)
(V) ¥ ((Fy— Wy)) (V2)¥ ((FyAWy)) )

Quantified SRIII* s e

Proof outline: We begin as in the proof of quantified SRI* by working on the
Matrix Premise. We have already eliminated — and < in favor of A, v, and —.
We now drive negation signs in until no quantifier is in the scope of a negation
sign. Since the expression consisting of the universal quantifier and its scope has
a positive occurrence, the quantifier itself remains unchanged. Let the sequence
of equivalence transformations that accomplishes this be: S1,S,,...,8,-1,3,.
The result can be represented as:

| +
@) (V)Y ((Fy > Wy))).

We first instantiate the categorical premise by ES using an instantial variable
not present in (1) or (2), say ‘ay’:
We get:

(1) Fag A Gay.

We now instantiate each bound variable in (2’), moving from left to right
and using US or ES according to the case. Let the steps of instantiation be
Isdoyeevsbp_1yig-

Step i; uses US or ES to eliminate the j-th quantifier in (2'), say (Q;z;), and
substitute the instantial variable g; for the bound variable z;. Let y = z,,,. Then
Q. is ¥ and a,,, can be chosen to be ay. The cumulative result of this sequence
of instantiations is a complex truth-function of atomic sentences of the form

+
+

[ — ]
2") @"(¥Y"((Fag— Way))).
Applying sentential SRIII to (1’) and (2”) we get:
+
(3) ®"(¥Y"((Gaogn Way)/(Fag— Way))).

+

We now generalize in reverse. We use a sequence of steps gx,8x—1,- - -,82,
g1, such that g; corresponds to the step i; of instantiation. If i; used US(ES), g;
will use UG(EG) to restore quantifier (Q; z;) and bound variable z; by eliminat-
ing the instantial variable a;. In the case of g,,, however, it will use EG to put
the quantifier (3y) in place of the former quantifier (Vy) because premise (1)
was obtained by ES from (1). The cumulative result will clearly be:
+

(3" (EY(Gy A Wy)/ (V)Y (Fy - Wy))).
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Applying corresponding steps Sy, S,_1, - - .,5%,S51 to (3”) to restore negation
signs to their original positions, we end up with
+
() 2(()Y((Gy A Wy)/(Fy - W)/ (¥2)¥ (Fy — Wy))).

S

Quantified SRIV*: Proof Outline:

The proof proceeds exactly as that of SRIII*, except that it uses sentential
SRIV instead of sentential SRIII in the relevant part of the proof between the
chains of instantiation and generalization.

12 The reader can easily verify that cases (iii) to (vi) of Section 2, when trans-
lated in a standard way into the language of first-order predicate logic, are
instances of SRI*, since the middle term ‘M’ yields an open sentence that has a
positive occurrence in the matrix premise, so that cancellation can occur against
the negative occurrence of ‘Mx’ in the categorical premise ‘(Vx)(—-Mx v Px)’
upon instantiation. The contrary is the case with case (vii).

Similarly, cases (viii) and (ix) of Section 3, when translated, are instances of
SRIII*, while (x) is not. The matrix premise in case (ix) translates as:

(3x)/(vx) {Sx A (3y) [(VZ)(Mz — Fyz) A Rxy]}

where the expression ‘(vz)(Mz — Fyz)’ has an overall positive occurrence, and
the expression ‘Mz — Fyz’ has an overall positive occurrence within the scope of
the quantifier ‘vz’, so the conditions of SRIII* are met.

On the contrary, the matrix premise of case (x) translates as:

(Ax)/(vx) {Sx A (VYY) [(VZ)(Mz = Fyz) - Rxyl}

where the problem is that when the second conditional is eliminated, it becomes
clear that the expression ¢(vz) (Mz — Fyz)’ has an overall negative occurrence,
which violates one of the conditions of SRIII* (when the negation sign in
‘[-(Vz)(Mz— Fyz) v Rxy]’ is driven in, ‘vz’ changes to ‘3z’ and we have to use
different instantial variables to instantiate the existentially quantified particular
categorical premise and the expression ¢(3z) - (Mz — Fyz)’ so that cancellation
of the middle term ‘M’ cannot occur).

13 In some cases, we need to “doctor” one or more premises before apply-
ing one of the SR* rules. For example, let us consider the valid argument: Some
M are B, Every R to some M is C/ Every R to every B is C. This goes over as
follows:

(1) (3x)(Mx A Bx)
@  (vx){[3y)(My A Rxy)] - Cx]}.
We have to first eliminate — before applying any of the SR* rules:

@) (vx)[~((3y)(My A Rxy)) v Cx].
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If we just drive the — sign in we get:
27 (vx) [(vy) (= (My A Rxy)) v Cx].
Now we can apply SRIV*, to get:
(3 (vx)[(3y)(~(By = Rxy)) v Cx].
(3) is equivalent to
(3)  (vx) [~ ((vy)(By = Rxy)) v Cx]
and
(3”) (vx) [((vy)(By = Rxy)) = Cx].
(3”) is easily translated into: Every R to every B is C.
Another obvious form of “doctoring” is rearranging the order of quantifi-

ers in order to get a categorical premise with the “middle term” in subject posi-
tion. For example, if we have as premises:

(1) Some A is R to every M, i.e., (3x) {Ax A (Vy)(My - Rxy)}
and
(2) Some B is F to some M, i.e., (3x) {Bx A (3y)(My A Fxy)}.

(2) is subject to the following equivalence transformations:
) (3x)(3y) {Bx A (My A Fxy)}

@") (3y)(3x) {My A (Bx A Fxy)}

(2") (3y) (My A (3x) (Bx A Fxp)}.

We can now apply SRIIT* with (2”) as the categorical premise and (1) as the
matrix premise, to get:

3) () {AxA (3y)[(32)(Bz A Fzy) A Rxy]}.

In English: Some A is R to something that some B is F to.

A general strategy suggests itself. We first check to see if two occurrences of
a given monadic term in two premises are opposed so that cancellation may be
forthcoming, and then try to doctor the premises accordingly (that is, with
respect to the given term as the “middle term” of a syllogistic inference) to get
instances of one of the SR* rules.

If cases that require some such prior doctoring be included, I believe it is no
exaggeration to claim that about 80-90% of the examples of inferences in cur-
rent logic textbooks are in essence syllogistic.® The fact that logicians, when
called upon to construct fairly complex textbook examples of inferences involv-
ing quantifiers, almost invariably tend to fall back on syllogistic patterns, doc-
tored or undoctored, is adequate testimony to the pervasiveness, naturalness, and
reach of syllogistic reasoning in ordinary non-mathematical thinking.

NOTES

1. My study of non-classical syllogistic is heavily indebted to the work of Fred Sommers.
(See [8], especially Chapters 7 and 9, and [9]. See also recent studies of his work in
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syllogistic in Englebretsen [2].) His method of cancellation and his unfamiliar +—
notation are close relatives of the method of resolution and can be studied against
its background.

2. The method of resolution was developed by J. A. Robinson ([6] and [7]). A useful
account of it can be found in Davis and Weyuker [1] Part 3, Chapters 11 and 12.

3. The preceding definitions of the scope of a negation sign and the positive/negative
occurrence of a component are indebted to McIntosh [4] pp. 395-396.

4. For an illuminating discussion of the relationship among terms, predicates, and open
sentences, see Quine [5], Chapter 20.

5. See [1], pp. 236-237.

6. In the interest of brevity, we will not give an explicit formulation of the correspon-
dence intended between steps S,, and S, since it is quite obvious.

7. See Mates [3], Chapters 6 and 7, for a representative example.

8. The import of Sommers’s work is demonstrating how much inference can be accom-
plished without overt instantiation, i.e., by methods that do not employ the full appa-
ratus of bound variables of standard predicate logic. Syllogistic inference occupies
the very core of his algebraic inferential techniques.
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