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Partial Functions in Type Theory

FRANCOIS LEPAGE

Abstract This paper proposes a general recursive definition of the notion
of partial functions in type theory. According to the given definition, the set
of partial functions is a meet semi-lattice for the order "<" where "/— g"
means "g is at least as defined as/" . Two notions are introduced. These are,
first, the notion of total partial functions (functions that behave like ordinary
functions, the latter being called standard functions), and second, the notion
of maximal functions (functions that make the most of the information of
their arguments). It is then proved that the set of total maximal partial func-
tions is isomorphic to the set of standard functions. The rest of the paper
studies the properties of the space of partial functions. Applications to the
semantics of intensional logic are suggested.

0 Introduction There are a number of good reasons to pay attention to par-
tiality in semantics, that is, to the fact that expressions may not always be de-
fined. One of these is that the hypothesis that all expressions are fully defined
is equally unnatural both for natural language and formal languages (consider,
for example, such expressions as "the present King of France is bald" or
" V l / ( * 2 - 1)") Considerations of this sort have led some to begin working
on partial logic (see Blarney [3], Alves and Guerzoni [1], Farmer [5], and van
Benthem [2]).

There is another reason —an epistemic one —for taking partiality seriously.
Classical semantics seems to have been created for a demiurge: in classical se-
mantics there is no place for a gap between the semantic value of an expression
and the semantic value an agent gives to the expression. From this point of view,
classical semantics, i.e., semantics using only totally defined values, appears to
be a limiting case of partial semantics: the limiting case where the undefined char-
acter vanishes. In other words, partiality may be seen as an approximation of
totality.

This very general property of partial functions rests on a vague idea of con-
tinuity between the completely undefined and the completely defined. For exam-
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pie, let us suppose that a complex expression A is built from the expressions
#i,02> »#!!» i*e > ^ =/(tfi>#2> >#«)• As the partial values of the at become
more and more defined, so should the value of A. This is desirable from a com-
putational point of view as well as from an epistemic point of view: as informa-
tion concerning the parts increases, so does information concerning the whole.

In the last few years, many attempts have been made to define model struc-
tures for formal languages using partial relations or partial functions. Many dif-
ferent positions have been adopted (cf. Tichy [13], Kindt [7], and Farmer [5]),
not all of them compatible with the idea of continuity or approximation. In par-
ticular, what should be the truth value of a statement containing undefined
terms? Always undefined? Sometimes undefined? Sometimes true and sometimes
false? Before trying to answer these questions, we need to clarify the concept of
a partial semantic value. In doing so, the simple theory of types will be our
framework (after Church [4]). In what follows, I shall characterize the notion
of a partial function in type theory following the idea of continuity, not using
partial relations (cf. Muskens [11]), and without loss of generality. The basic idea
is to postulate the identity of a partial function in type theory with a certain kind
of monotonic function; I shall then study the general properties of the space of
these functions.

To begin with, let us first define the set of types.

Definition 0.1 The set of types Γis the smallest set such that
(i) e E T (e is the type of individuals)

(ii) t E T (t is the type of truth values)
(iii) if a,β E T, then <αβ> E T «α/?> is the type of functions from entities of

type a into entities of type 0).1

Entities of each type can now be defined:

Definition 0.2 For every a E Γ, the set of entities of type a is the set Da

such that
(i) De = E (where E is any nonempty set E is the set of individuals of the uni-

verse);
(ii) Di = {0,1} (the set of truth values);

(iii) Daβ = Dp*" (the set of functions from Da into Dβ).

At first sight, the introduction of partial functions seems unproblematic.
Why not simply define a partial function from Da into Dβ as a function which
is defined for some arguments and not for others? Two problems arise when one
tries to apply this "definition" to the hierarchy of functions. The first is that some
expressions are not interpretable because they do not refer to any plausible ob-
ject. Suppose t h a t / E BΆ, g E CB, and that/(#) is undefined. What about
£(/(#))? We surely want to say that this expression is undefined, but it is not
clear what that will commit us to. Strictly speaking, iff(a) is undefined, g(f(a))
is not an undefined expression but a meaningless one because in order for
g(f(a)) to be undefined,/(α) must be an argument for which g is not defined.
Yet if f(a) is undefined, it is not an argument at all. The solution to this prob-
lem will be to give to the "undefined" a status inside the theory.

The second problem is about uniformity. At the basic level, i.e., for func-
tions that take as arguments individuals or truth values and give as values indi-
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viduals or truth values, it is possible simply to state that a partial function is a
function that is undefined for some arguments, but this cannot be done at other
levels. Let Pa be the set of partial functions of type α. According to the above
"definition", we should have Paβ = P(DPa)9 but one of our intuitive and in-
compatible desiderata is that Paβ = P(Pβa), i.e., a partial function of type aβ
should be a function that takes partial functions of type a as arguments. In other
words, a function from Da into Dβ which is not always defined is not the same
object as a function from Pa to Pβ. This is essential in order to give content to
the idea of continuity; partial functions should take partial functions as argu-
ments and their values must be more defined as the arguments are more defined.

A much more recursive definition of a partial function is clearly needed. I
will now give a rigorous definition of partial functions, after which I shall study
the properties of the space of partial functions.

/ What is a partial function? The first step is to give a precise character-
ization of the concept of "undefinedness". In order to do this, let us borrow the
concept of an undefined object introduced by Scott [12].

Consider, for example, the set {0,l)*0ίl* of functions from truth values into
truth values. Let φ be the undefined object. A partial function from {0,1} into
{0,1} may be identified with a function from {0,1} into {0,l,φ}, if we adopt
the convention that/(x) = φ means that "f(x)" is undefined. This trick allows
us to replace a partial function with a certain kind of total function, for there
is a natural isomorphism between the set of partial functions P(AB) and
(A U {φ])B. The question now is how to generalize to higher types.

The first obstacle to this generalization is the loss of symmetry between the
domain and the codomain. Partial functions from {0,1} into {0,1} cannot sim-
ply be replaced with functions from {0,l,φ} into {0,l,φ}, because there are some
functions from {0,l,φ} ί(U'φ) which are, according to our convention, uninter-
pretable. For example, the existence of the function/ such that/(I) = φ,
/(0) = φ, and/(φ) = 0 is incompatible with our convention: this object cannot
be seen as a partial function. This difficulty can be bypassed by ordering our sets
with the relation < such that 1 < 1, φ < 1, 0 < 0, φ < 0, and φ < φ or, graphi-
cally:

1 0

V
φ

Clearly, x < y means x is either less defined than or equal to y. Now, if we
consider the set ({0,1,φ} -> {0,1,φ}) of monotonic functions from {0,1,φ) into
{0,1,φ) the parallelism produced by our convention is restored.

This trick can be generalized and the set of partial functions can now be de-
fined for any type.

Definition 1.1 For any a. E Γ, the set PMa of partial functions of type a is
(i) PMe = EU[φ]

(ii) PM,= {0,l,φ}
(iii) PMaβ=(PMa^PMβ)
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where (PMa -• PMβ) is the set of monotonic functions from PMa into PMβ,
monotonicity being relative to the following order:

(i) for any x E PMe, x < x and φ < x;
(ii) for any x E PMt, x<x and φ < x;

(iii) for any f,g E PMaβ,f< g if, and only if, for any x E PMa,f(x) <g(x).

Proposition 1.22 For any a9PMa is a complete meet semi-lattice, where the
meet A and (when defined) the join v are respectively:

(i) for x,y E PMe9 xΛy = x if x = y and φ otherwise',
(ii) for x,y E PMί9 XΛy = x if x = y and φ otherwise;

(iii) for f,g E PMaβ, f A g is that function h such that, for any x E PMa,
h(x)=f(x)Ag(xy,

and
(iv) forx,yGPMe, xvy = xify = φorx = y, xvy=y ifx = φ and does not

exist otherwise;
(v) for x,y E PM,, xvy = x //*>> = φ or x = y, xvy = y ifx = φ and does not

exist otherwise;
(vi) for fg E PMaβ, fvgis that function h such that, for any x E PMa,

h(x) =f(x)vg(x) iff(x)vg(x) exists.

I will denote φa the lowest element of type a, i.e., φa = Λ [X\X E PMa}.
For the rest of this paper, I will use the expression standard functions to des-

ignate ordinary classical total functions, and the expression total function will
be used for another purpose. The relation " < " is defined for the set of partial
objects.3 Because the set of these objects is ordered and is a complete meet semi-
lattice, one can hope to find the standard functions at the top. This is not ex-
actly the case, because standard functions do not have the same domain as partial
functions: they are not exactly objects of the same kind. In fact, the relation " < "
holds between partial functions. If we want to compare directly standard and
partial functions, something else must be defined.

Definition 1.3 For any aGT, let <* c pMa x Da be the following relation:
(i) for any x E PMe Π De, x <* x and φ <* x;

(ii) for any x E PMt Π Dt, x <* x and φ <* x;
(iii) for any/E PMaβ, g E Daβ, f <* g iff for any x G D α and any y E PMa

such that y<*x,f{y) <*£(*).

This definition seems formally appropriate and sufficient to show that there
is an isomorphism between the set {h E PMa | 3g GDa, h = v {/1/ <* g}} and
Da. If such an isomorphism exists, we can forget every standard function g and
work with h = v {/ | /<* g}. The trouble is that there seems to be no simple
proof for the existence of v [f\f <* g)j. Whereas there is a close connection
between <* and <, I need much more refined analytical instruments to make
the link explicit. The general strategy will be to characterize directly some spe-
cific classes of partial functions (classes of partial total functions) and then prove
that there is an isomorphism between these classes and the class of standard func-
tions. The most fundamental tool is introduced by the following definition.

Definition 1.4 For any a E T, let Φ* c PMa x PMa be the following rela-
tion (I will read Φ* as "incompatibility" or "strong difference" and "x Φ* y" as
"JC is incompatible with y" or "x strongly differs from / ' ) :
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(i) for x,y E PMe, xΦ*yifίxΦφ and y Φ φ and x Φ y;
(ii) for x,y E PMtf xΦ*yiffxΦφ and y Φ φ and JC =£ >>;

(Hi) for fg e PMα/3, fΦ*g iff there is an x E PMα such that/(x) Φ* g(y).

This relation expresses a very intuitive property. Different partial functions may
differ in two ways. One might be defined for an argument while the other is un-
defined for the same argument. On the other hand, they might both be defined
but take different values. This is incompatibility. But in a meet semi-lattice, two
different objects may be such that their join exists or such that their join does
not exist. The following proposition shows that the two properties are equivalent.

Proposition 1.5 For any a E T, any x,y E PMai xΦ*yiffxvy does not
exist.

Our problem can now be expressed in the following terms: is it possible to
prove that if / <* h and g <* Λ, then it is not the case that/ Φ* g? The prob-
lem is still the same. It is easy to show the relations between Φ*9 <, and v, but
the link with <* is still to come. The only way to do that is to compare directly
the "positive" contribution of a partial function with the contribution of a stan-
dard function. The following tool is quite simple and will be very useful.

Proposition 1.6 For any a E T, and any f E PMa there is a (possibly
empty) sequence <«!, . . . ,an}, with α, E T such that for any (possibly empty)
sequence </i , . . . ,/„>, with /• E PMaι

/(/i) (fn) E PMe o r / ( / i ) . . . (/„) E PMt.

This very simple and natural property is a surprisingly powerful instrument
which can be used to materialize at the lowest levels the difference between two
functions of any level. For any/, let us call a sequence </i, . . . ,/„>, such that
fi E PMaιi and/ί/O . . . (/„) E PMe or f(fλ)... (/„) E PMt a projector for/
a n d / ( / i ) . . . (/j) the corresponding projection off.

Proposition 1.7 For any a E T, and any fg E PMa9 f Φ g iff there is a
(possibly empty) projector < / l f . . . ,/„> such that f(fx)... (fn) Φ g(fx)...

(fn)

Proposition 1.7 provides us with the interesting extensional property that a
partial function is entirely determined by its projections. This expected property
rests on the fact that all our functions are extensional in the set-theoretical sense.
The next proposition will also be useful.

Proposition 1.8 For any a E Γ, and any fgE PMa, f Φ* g iff there is a
(possibly empty) projector </i,... ,/„> such that f(fλ)... (/„) Φ* g(fx)...

These two propositions give us the possibility of discriminating between any
two different and any two incompatible functions. But the main reason this re-
sult is of interest is that I can now characterize a function in terms of its con-
tribution at the lowest level. I will use this property to define a special hierarchy
of partial functions —I will call them the total functions—that behave, when their
arguments are themselves total, exactly as standard functions behave. But first,
we might note that Propositions 1.6 and 1.7 hold if PMa is replaced with Da.
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I will use the twin notions of a projector and a projection both for standard func-
tions and for partial functions.

Definition 1.9 For any α G ί , the set PTa c PMa (of partial total functions)
is the smallest set such that

(i) for a = e, and x E PMe, x E PTe iff x Φ φ;
(ii) for a = t, and x E PMU x E PTt iff x =£ φ;

(iii) for a = /5γ, and/E PMaβ9fe PTaβ iff for any x G PTa, f(x) E PΓ^.

Also of use is the following property, which intuitively expresses the fact that
these functions are total:

Proposition 1.10 For anyfe PTa, / E PTa iff for any (possibly empty) pro-
jector </i,... ,/„> such thatfi E PTa. for some ai9 we havef(fγ)... (/„) Φ φ.

Partial total functions behave like standard functions. But as I will now
show, the correspondence is not one to one. In fact, in some cases, partial to-
tal functions behave like standard ones for total arguments but give different val-
ues for nontotal arguments. Before showing this, however, I must express that
these functions are equivalent.

Definition 1.11 Let "<>" be the following relation on PMa:
(i) for any x E PMe, xox;

(ii) for any x E PMt, xox;
(iii) for any fg E PM^, fog iff for any x E PTa9f(x) og(x).

The following proposition shows that if fog then/ and g take the same value
for total projectors.

Proposition 1.12 Iffg E PMaβ, then fog iff for any (possibly empty)
projector </i,... ,/„> such thatfi E PTa.forsome α, :

/ ( / i ) . . . ( Λ ) = * ( / i ) . . . ( Λ ) .

One of the obvious consequences of Proposition 1.12 is that "<>" is an
equivalence relation, namely the equivalence relation of having exactly the same
projections for the same total projectors. The equivalence class of/ will be de-
noted "</>". The following properties are quite obvious:

Proposition 1.13 For any projector </i,... ,/„> offg E PTa,

(/Λg)(/i)... (/„) = / ( / i ) . . . (/„) ΛgiΛ)... (/„).

Proposition 1.14 For any α E TandfePTa, (Λ(f))GPTa, and(A{f))of

Proof: Λ</> exists in PMa because the meet of any set exists; on the other
hand, it is clear from Definition 1.11 that for any projector < / l 5 . . . ,/„> such
that/ E PTai for some ahf(f{)... (/„) = g(fx)... (/„) for any g E </>. So,
by Proposition 1.13, *<f)(fx)... (/„) =f(A)... (/„).

We can now explicitly describe a partial function that behaves exactly like
a standard one. I will further show that this function is the meet of its equiva-
lence class: it behaves like a standard function for total arguments, but is totally
undefined for other arguments.
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Definition 1.15 For any α, let 3 : Da -> PMa be the following function:
(i) for any x E De, $(*) = x;

(ii) for any x E Dί9 $(x) = x;
(iii) for any/E Daβ9 3(/) is that function such that for any xGDa and for any

JΈ<3(*)>,

3(/>(;v)=3(/(*))
and for any other j>

3(/)(^)=Φ/5

There is clearly at least one such function. The following proposition will
show that there is only one because if there were two, they would have both the
same projections.

Proposition 1.16 $ is that function such that for any (possibly empty) pro-
jector </ i , . . . Jn) offf E Da. and for any (gu... ,£„> such that g, E <$(/)>,

3 ( / ) ( £ i ) . . . ( £ « ) = / ( / i ) . . . ( Λ )

and such that, for any <g 1 ?... ,gn) such that g; E PMaι and for some gz,g; ^

<3(//)>,
3 ( / ) U i ) . . Uι.)=Φ-

For any standard function/, $(/) is a total function but is completely un-
defined if its argument is not itself total. This indicates that each 3K/) is the low-
est function of set of total equivalent functions.

Proposition 1.17 Let g E PMa. Then g= Λ<g> E PTa iff there is anfe Da,
such that 3K/) = g.

Proof:
(i) For any x E De, %{x) =xG PTe, and Λ<X> = x.

(ii) For any xE A , %(*) =*€ PTt9 and Λ<X> = x.
(iii) =>. Let g E PM^. If g = Λ<g> E P7^7, then for any projector <gi,... ,gΛ>

such that gi E PΓα/, for some ai9g(gι)... (gn) Φ φ. This implies that g(^{gx))
- - - ( Λ (gn » Φ φ. By the induction hypothesis, for any such <gi,..., gπ > there is
a projector </i,... ,/„>, such that/ E £>α/ for some ah 3(/) = Λ<g/>. The func-
tion/E £>/37, such that

/ (/ l ) . . . (Λ)=5(Λ<g 1 » . . . (Λ<g π »

is such that 3(/) E <g>, 3(/) < h for any Λ E <g> (because, by Proposition 1.16,
3(/) behaves like Λ on total arguments and is undefined for any other argument)
andso3(/) = Λ<g>=#.

<=. Let/E Da be such that 3(/) = g for some g. By the induction hypoth-
esis and Proposition 1.16, for any projector < / l s . . . ,/„>, such that/ E £)α/,

/ ( / i ) . (Λ) = 3 ( / ) ( Λ < * ! » . . . (Λ(gn))

for some g/ E PTUι and

3(/)(Λi) . . (Λ Λ )=Φ

if Af £ PΓα/. Thus 3f(/) E PTa and 3(/) = Λ<3(/)>.
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These results show that for any standard function/ the function $(/) is not
only a partial total function, i.e., a function that behaves exactly like/ when its
argument is itself an image of a standard argument by 3, but it is the lowest par-
tial total function that behaves like this: when the argument of 3K/) is not to-
tal, the value is totally undefined. We will have more on that later.

The following very intuitive property will be useful.

Proposition 1.18 For anyfe PTa, there is no g £ PTa, such thatf< g.

The following proposition provides the means to compare partial and stan-
dard functions. According to this proposition: (1) if all the partial functions of
a given set agree with regard to total arguments, their join exists and (2) any par-
tial function is dominated by a total one. The first property will be used to make
a correspondence between a class of total equivalent partial functions and a stan-
dard function and the second to compare any partial function to a standard one
through this correspondence.

Proposition 1.19 For anyfG PMa9 v</> exists, and there is a g E PTa such
thatf<g.

Proof:
(i) For a = e, it is straightforward.
(ii) For a = t, it is straightforward.
(iii) For a = βy, let us consider/g E PMβy, such thai fog. Let us suppose

that / v g does not exist. By Proposition 1.5, / Φ* g. Therefore, there is an x
such that

f(χ) ±* g(χ)

By the induction hypothesis, there is a y E PTα, such that x < y. This implies,
by monotonicity, that/(j>) Φ* g(y), which contradicts thai fog. S o / v g
exists.

Let us now show that for any/E PMβy9 there is a g E PTβy such that/< g.
I f / E PTβy, let us take/= g. If not, let/(/I) . . . ( / „ ) = φ with/ E PTαr By
the induction hypothesis, each v</> exists. There are two cases:

Cαsel. / ( v < / ! » . . . (v</Λ» = φ . In this case, letg(gi).. . (gn) =x, withx^φ
is any value of the corresponding type if g, E </> and g(gx)... (gn) =f(g\)
. . . (gn) for all other projectors. Claim: g is monotonic. For, let gx < g2 E PMa.
One of only three possibilities is the case, that is,

(a) gιePMa,g2ePMa;
(b) g! E PMa, g2 E PTa, with g2 E </2>;
(c) gι E PTa9 g2 E PTa, with g ι E </i> and g2 E </2>;

(the fourth combination is impossible by Proposition 1.18).
If (a), then g(gι) =f(gι) </(g 2) = g(g2).
If (b), then for any <Λ2,... ,ΛΛ>, if one of the Λ, £ </>, then

*Ui)(Λ2) <ΛΛ) =/(gi)(Λ2) (ΛΛ) by definition of g

^f(g2)(h2) - -. (£*)/ is monotonic

= g(g2)(h2) (£*) by definition of g
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if all of the A, E </>, then

g(gι)(h2) . (AΛ) =f(gι)(h2) (hn) by definition of g

^f(gi){h2)... (Aπ)/is monotonic

^ g{gi)(h2) (AΛ) by definition of g.

If (c), then for any <A2,... hn)\ if one of the Λ, £ </>, then

£(£i)(Λ2) (*„) = /(gi)(Λ2) (ΛΛ) by definition of g

^f(g2)(h2) (hn)f is monotonic

= g{gi){h2)... (AJ by definition of g;

if all of the A, E </}>, then

g(gi)(A 2)... (hn) = g(g2)(h2)... (AΛ) by definition of g.

Owe 2. /(v</ 1 » . . . (v</π» = x * φ. In this case, let g(gx)... (gn) = x, if
gi E </> and ^(^0 . . . (gn) =f(gχ)... (gn) for all other projectors. Claim:
g is also monotonic. For, let gx < g2 E PMα. One of the three following possi-
bilities is the case:

(a) gιePMa9g2ePMa

(b) g l E PMa, g2 E PΓα (with g2 E </2»
(c) g! E P7; , g2 E PΓα (with g! E </i> and g2 G </2».

If (a), theng(ft) =f(gχ) </(g 2) = g(g2).
If (b), then for any </z2,... ,hn), if one of the A, ̂  </}>, then

g(gi)(Λ2) (Λπ) =/(«i)(Λ 2 ) . . . (AΛ) by definition of g

^ g{gi){h2)... (g Λ )/ is monotonic

= £(£2)(Λ2) (gn) by definition of g;

if all of the A, E <Λ>, then

S(Si)(A2) (A*) =f(gι)(h2)... (AΛ) by definition of g

^/(#2)(Λ 2 ) . . . (hn)fis monotonic

^ g(gi)(h2)... (hn) by definition of g.

If (c), then for any <A2,... hn), if one of the A, ̂  </>, then

g(gi)(A 2)... (hn) =f(gι)(h2)... (hn) by definition of g

^/(#2)(A 2 ) . . . (hn)f is monotonic

= g(gi)(h2)... (ΛJ by definition of g;

if all of the A, E <>}>, then

g(£i)(A2) (Art) = g(gi)(h2)... (ΛJ by definition of g.

Therefore for any projector <gi,... ,g«> such that g/ E PΓα/ and such that
/(g i ) , . . . (g/i) = φ, there is a g w i t h / < g such that g(gi), . . . (gΛ) Φ φ. If g is



502 FRANCOIS LEPAGE

not total, the process can be repeated and will give g1 such that g < gι, gι < g2,
and so on. Clearly, v{gn] exists, is total, a n d / < v{gn}.4

Proposition 1.20 For any fgG PTa,/vg exists ifffog.

Proposition 1.21 For any / E PMa, </> is a complete lattice.

We can now explicitly describe a function that maps classes of equivalence
of total function on the corresponding standard function.

Proposition 1.22 There is an epimorphism Ϋ: PTa -• Da such that for any
f^PTa9

</> = Ψ"1(Ψ(/))

Proof: Let Ψ: PTa -• Da be such that

(i) For a = e, Ψ (Λ:) = x. Clearly, Ψ is an isomorphism and thus an epimor-
phism.

(ii) For a = t, Φ(x) = x, same argument.
(iii) For a = βy9 let/E PΓα. Ϋ(/) E £)α be the following function: For any

projector (gί9... ,gΛ>, such that g, E -Dα/, there is, by the induction hypothesis,
a </i,... ,Λ>, such that./} E PΓβ, and Ϋ(/,) = gh For any such < f t > . . . ,&,>,
let Ϋ(/) E £)α be the following function:

*(/)( f t ) . . ( f o ) = * ( / ( / i ) ••(/»)).

Clearly,

•(/(/i) (Λ» = *(/)( f t ) Ui.) = * ( / ) ( * ( / i ) ) (•(/»))

and, thus, ^ is a morphism.
Furthermore, if /<> A, then Ψ(/) = Ψ(A). In order to see this, let us sup-

pose that Ϋ(/) ^ ^(A) and that there is therefore, by Proposition 1.7, a pro-
jector <gi,... ,gn), such that gt E A*, and such that

*(/) (g i ) . . . (gπ)**(A)(g i ) . . . (g n ) .

But since Ψ is a morphism, we know by the induction hypothesis that for any
such <*!,... ,gn> there is a </ 1 ? . . . ,/„>, such that/; E PΓα/ and * ( / ) = ft.
Therefore,

Ϋ(/)(*(/i» (Ϋ(Λ» ^ *(A)(*(/i)) (•(/„))

and

Ϋ ( / ( / i ) . . . ( Λ ) ) * * ( A ( / i ) . . . ( Λ » .

Ϋ is a function, therefore,

/ ( / i ) . . . ( Λ ) ^ A ( / i ) . . . ( / π )

and by the definition of <>, it is not the case that/oΛ.
All that remains is to prove that Ψ is surjective. Let g€Da, and by Prop-

osition 1.17, let/ be such that $(g) = / = Λ</>. Therefore, Ϋ(3(g)) = Ϋ(/).
I will now show that ΨQ(g)) = g, that is, 3 is an inverse of Ϋ.
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Let <gi,... ,gn) be a projector with gf E Dar By the induction hypothesis,

*(3(s))(*i) (ft,) = •(3U))(*(3(ft)» (*(3(ft,»)

with 3(g, ) = // = Λ</}>, for/} E PΓα. for some α, . Thus, Ϋ being a morphism,

*(3(*))Ui) (ft,) = •OteMSUi)) (3(ft,)))

Now, by Proposition 1.16, we have

3(s)(3(Si)) ..(3(ft,))=S(Si) .(ft,)

and then

•(3(S))(Sl) (ft,) = *(g(8l) (ft,)).

But for PΓe and P77,, Ϋ is identity. So,

*(3(*)) (* i ) . . . ( f t , )=*(Si ) . . (ft,)

and

•(3(*))=ft

3 is thus a right inverse ofΨ which proves that Ψ is surjective.

Definition 1.23 Let/E PTa. I f /= v</>, we will say that/ is maximal. If
/ = Λ</> we will say that/ is minimal.

For any class of equivalence of total function, there is exactly one member
that is maximal and one member that is minimal. The next result is then not sur-
prising.

Proposition 1.24 The set of the total maximal (resp. minimal) functions
is isomorphic to the set of standard functions, i.e., if TMa c PTa is such that
for any fe TMaίf= v</> (resp. ifTBa c PTa is such that for any fE TBa9

f — Λ < / » , there is an isomorphism

Φ:TMa-+Da (resp. θ:TBa-+Da)

such that for any projector </i,... ,/Λ>, such that/) E TMa. (resp. /} E 7Bαι)

Φ(/(/i) (Λ)) = Φ(/)(Φ(/i» (Φ(Λ)) =/(/i) (Λ)

(resp. θ ί/ ί/O . . . (/„)) = θ ( / ) ( θ ( / ! ) ) . . . (θ(/π)) = / ( / ! ) . . . (/„)).

Proof: We simply take as Φ (resp. θ) the restriction of Ψ to TMa (resp. TBa).
One easily proves that Φ (resp. θ) is an injection and a surjection.

With these isomorphisms, we have a rigorous characterization of partial
functions that behave exactly like standard functions and, via these isomor-
phisms, we can directly compare partial and standard functions. In fact, I can
now prove the following proposition:

P r o p o s i t i o n 1.25 For any g E D a , Φ~ι(g) = v { / E P M a \ f <* g ) .

Proof: Let us first show that/<* g iff/< Φ-1(g).
=>. If/<* g, then for any projectors </i,... ,/„>, <g l s... ,gπ> such that

Λ^*ft,/(/i). . .(/ι,)^ gUi) ..(fo)
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(i) For a = e, it is straightforward.
(ii) For a = t, it is straightforward.
(iii) For a = βy, by Definition 1.3,/<* g and/i <* gi imply that/(/i) <*

g(#i). By applying the same argumentation n times, we have/(/i) . . . (fn) <*
S(gi) .. (£«).

But <* and < are the same on e and t, so for / <* gh

f(fl)...(fn)^*g(gl) .(gn)

iff for/, ̂  ftf

/ ( / i ) . . . ( Λ ) ^ ^ U i ) . . . ( ^ ) .

By the induction hypothesis, we have for/} <* g/.

/(/i)...(Λ)^ g(ft)...(fo)

ifffory ^φ- 1 ^/),

/(/i). . .(Λ)^^Ui).. .(^)

By Proposition 1.24, we have for/) <* g/,

/(/i) . . . (/ π )^ g(ft)...(fo)

iff for/, ^ Φ " 1 <&),

/(/0 . . . (/π) < φ-^gXΦ-^gi)) (Φ-Hft,))-

Φ-1(g) being total maximal and/ being monotonic, this implies that

<=. Let us suppose that/< Φ"^^).
(i) For a = e, it is straightforward.
(ii) For a = t, it is straightforward.
(iii) For a = βy.
In that case, for any projectors </ l 5 . . . ,/„>,

/ ( / i ) . . . ( Λ ) ^ Φ ~ 1 ω ( / i ) . . . ( Λ ) .

By monotonicity, for any g, such that/ < Φ" 1^/), we have/(/i)... (/„) <
Φ~ι(g)(Φ~ι (gι))... ( Φ " 1 ^ ) ) - Using the induction hypothesis for any projec-
tors </i,... ,/„> such that/ <* g, ,

f(fx)... (/Λ) < Φ-I(g)(*-Hgi)) ( Φ " 1 ^ ) ) .

But, by Proposition 1.24,

φ - ' ω ί Φ " 1 ^ ! ) ) ( Φ " 1 ^ ) ) = g(gi) (gn)

So, by Definition 1.3, / <* g. From this we can conclude that

v{/GPM α | /<*g} = v { / E P M α | / < φ - 1 ( g ) } = φ - 1 ω .
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All this brings a precise answer to the question: "What is a partial function?"
but raises many other questions. One of the surprises was that Ψ is not an iso-
morphism. What is the difference between maximal and minimal functions and
all the in-between functions belonging to the same equivalence class? What do
the lattices of equivalent functions look like? Our next task is to answer some
of these questions.

2 Some properties of the meet semi-lattice of partial functions Let us be-
gin with some examples. I will restrict my attention to the hierarchy of Boolean
functions, called propositional types (cf. Henkin [6]). Since all these spaces are
finite, we can have direct representations of the function spaces. For example,
we saw that PMt can be represented by the following schema:

1 0

φ

Furthermore, any element of PMtt can be represented using the following con-
vention5:

/(I) /(0)

/(φ)

Thus PMtt can itself be represented as

1 1 0 0
1 0

1 1 1 0 0 1 0 0
φ φ φ φ

I φ φ 1 φ 0 0 φ
φ φ φ φ

φ φ

φ

The total functions are

II 0 0
1 0

1 1 1 0 0 1 0 0
φ φ φ φ
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Now, if I represent the element of g E Dtt with [g(l) g(0)], we have

' 1 Γ
1

^ ( [ l 1]) =
1 1

Φ

Ϋ«i([l 0 ] ) = [ 1 °1,

L φ J
* - ' ( [ ( ) 1 ] ) = Γ° M , and

L φ J
" o o"

o
•-'αo o]) =

0 0
. φ .

We now have examples of total maximal and minimal functions. These exam-
ples suggest the following interpretation of the distinction between minimal and
maximal functions: a minimal total function is a function which is undefined
whenever its argument is not totally defined, whereas a maximal function is a
function which is defined whenever possible, without breaking monotonicity,
even if its argument is undefined. How could this be? Let us consider ι

 x

 ι. This
function is such that/(φ) = 1 but nevertheless monotonic because/(φ) is not
dominated by incompatible values. But is this naive interpretation exportable
toward the higher levels of the hierarchy? Surely. The following are some exam-
ples taken from PM{tt)t. Any element of PM{tt)t (which contains 397 func-
tions6) can be represented by this schema:

'([V]) '([YD

'([7]) '([YD '([YD '([YD

'([YD '([YD '([YD '([YD

'([YD
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Correspondingly, any g G D(tt)t can be represented with

[g(\ l)g(l 0)g(0 l)g(0 0)].

Let us take a look at Ϋ~1([l 1 1 1]):

1 1

1 1 1 1
1 1 1 1

1

1 1
1 1 1 1
1 1 1 1

φ

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
φ l l l l φ l l 1 1 φ 1 l l l φ

φ φ φ φ

1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
φ φ l l φ l φ l l φ φ l φ l l φ l φ l φ l l φ φ

φ φ φ φ φ φ

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
φ φ φ l φ l φ φ φ φ l φ l φ φ φ

φ φ φ φ

1 1
1 1 1 1

φ φ φ φ
φ
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Another interesting set is Dm, the set of binary Boolean connectors. Any g can
be represented by [g(l) g(0)], where g(l),g(0)GD//. Therefore, g can be rep-
resented by

te(l)(l)«(l)(0) g(0)(l)g(0)(0)],

which is the truth table of g. For example, we will use [1111] to represent the con-
stant function/ such that for any truth value x, f(x) is the constant function such
that for any truth value y9 f(x)(y) = 1.

Accordingly, any / E Dttt can be represented by

/(I) /(0)

\y
/(φ)

In turn, f(x) = h can be represented by

A(D A(0)

A(φ)

Let us now take a look at disjunction. Its diagram is

([Π 10])

and

Ϋ^ίfl l 10])

will be

11 10
I φ

lφ

φ

11 10 11 10
1 φ φ φ

φφ lφ
φ Φ

II 10
Φ Φ

ΦΦ

Φ



PARTIAL FUNCTIONS IN TYPE THEORY 509

The top value is Kleene's three-valued disjunction. On the bottom the function
is a disjunction when both arguments are defined and is undefined otherwise.
The middle ones are a bit odd: the symmetry between arguments has been lost.
For the left one, if the first argument is defined, the behavior of this connector
is that of Kleene's and if the first argument is not defined, the second one is not
even considered, i.e., the resulting function is always undefined. The right one
has exactly the converse behavior. These are the only four possible monotonic
partial disjunctions.

The equivalence has a special property. Let us consider

Ϋ - ^ I O 01]).

This set has only one member, namely

10 01
φ φ

φφ
φ

which is simultaneously minimal and maximal. The philosophical moral is that
there are no nontrivial ways to approach propositional identity.

These "empirical" examples strongly suggest the following interpretation. A
partial function is a function which is more or less defined. But a partial func-
tion is also a function which uses more or less the information of its arguments.
This suggests that if two functions differ, it is not necessarily the case that they
differ for total arguments. For example:

11 10 11 10
φ φ φ φ

/ = and g =
lφ φφ
φ φ

are such that/(I) =g( l ) = 1

φ

1 ,/(0) =g(0) = * / and/(φ) Φg(φ). But if two
functions are incompatible, we know by Proposition 1.8 that this incompatibil-
ity can always be shown for total arguments. Let us generalize.

Definition 2.1 A set A <Ξ PMaβ is separable iff for any / G A, there is a
g GA such that f Φ* g.

Definition 2.2 Let A c PMaβ be a separable set. A set B c PMa will be called
a riddle for A iff for any/, g G A, there is an x e B such that/(x) Φ* g(x).

Definition 2.3 A riddle is universal iff it is a riddle for any separable set.

Proposition 2.4 For any a,PTa is a universal riddle.

Proposition 2.5 LetAζ pτa be such that for any fG PTa, there is age A
such that fog. Then A is a universal riddle.

Proposition 2.6 For any a, the set TMa of all the total maximal functions
is a universal riddle.

Proposition 2.7 For any a, the set TBa of all the total minimal functions is
a universal riddle.
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Proposition 2.5 gives us a sufficient condition for a set to be a universal rid-
dle. This condition may seem to be too strong. This is not the case.

Proposition 2.8 Let A c PMa be a universal riddle. Then for any f G PTa,
there is a g GA such that fog.

Proof: Let us suppose that A is a universal riddle and that there is an / G PTa

such that for any g G A, f£ <£>. Let hΪ9h2E PTaβ be the following functions:
for any x £ <g>, hγ (x) = h2(x) = φ^, and for any x G <g>, hx (Λ:) G PTa and
h2(x) G PTa are such that hx (x) Φ* h2(x). Such functions clearly exist and A
is not a riddle for {huh2}.

Proposition 2.9 /// * * g, ίΛe/*/or anγhe<f)9hΦ* g.

Proof: f Φ* g implies that there is a projector </i,... ,Λ> such that/ G PΓα/

and/ί/O . . . (Λ) ^* g ί Λ ) . . . (/„). If there is an h G </> such that h vg ex-
ists, then

(hvg)(fι)...(fn) =

(Λ(/i)vg(/ 1 ))(/ 2 ) . . . (Λ) =

= Λ ( / i ) . . . ( Λ ) v g ( / 1 ) . . . ( Λ ) .

But, by Definition 1.10/(/0 . . . (/„) = Λ(/i). . . (fn). Therefore, f(fx)...
(fn) vg(fi) (/«) exists, which is impossible by Proposition 1.5.

These propositions express properties of total functions as arguments. Now,
here is a property of maximal total functions as functions.

One could expect that if one of two equivalent nontotal functions is domi-
nated by a total third one, the second must be as well. But this is not the case.
Here is a counterexample:

11 lφ
φ φ

φφ

Φ

is equivalent to

11 lφ

Φ Φ

lφ

Φ

and the first, but not the second, is dominated by

11 11

Φ Φ

ΦΦ

Φ
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Now, is it possible to prove that any nontotal function is dominated by two
incompatible ones? Again, this is not generally the case. To see this, let us con-
sider a function that behaves like a total function on TMa but not on TBa. For
example, the already noted/E PM{tt)t

1 1

Φ 0 0 1

Φ Ψ Φ Φ

Φ

is not total. It belongs to a lattice
1 1
1 0 0 1

Φ Φ Φ Φ
Φ

1 1 1 1

φ 0 0 1 1 0 0 φ
φ φ φ φ φ φ φ φ

φ φ

1 1

φ 0 0 φ
φ φ φ φ

Φ

which is dominated by a total maximal function.
In general, the lattice * " * ( / ) is a sublattice of a larger one. Now one might

suppose it were possible to prove that any maximal nontotal function is domi-
nated by two incompatible ones. Yet this is not so. A function can be maximal
but undefined for some total argument. We need a much stronger notion of max-
imality. But the problem is that to be maximal is to be the join of a class of func-
tions, all of which take the same value on the same total functions but not
necessarily on equivalent functions. For example,

1 1
φ 1 1 1
φ φ 1 1

Φ

is maximal according to our definition (it is not dominated by a function which
takes the same values on total arguments). It is also nontotal (it is undefined
for ι

 φ

 1), but not dominated by incompatible functions.
From an algebraic point of view, the consequence of the fact that some par-

tial functions are equivalent is that the meet semi-lattice is not distributive and
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not even modular; that is, it is not the case, in general, that (g v h) Λ / = (g Λ
/) v (h Λ / ) even if both sides are defined. Let k be any function which is such
that Λ<£> Φ v(k). In that case, we will have:

f Λ /= v<£> \

• k \ \

U Λ / ) V ( A Λ / ) V g=Λ<A:> /

Another consequence of this is that the subset of maximal (resp. minimal)
functions is not a sub meet semi-lattice. The join of two maximal functions is
generally not a maximal function. The question is now whether we can define
a subset of PMa such that (a) this subset is a sub meet semi-lattice and (b) its el-
ements have the same behavior for equivalent functions. The answer is that we
can.

Let us consider the following definition.

Definition 2.10 A function / G PMa is uniform iff for any projectors
< / l 5 . . . ,/„> and <gu... ,gny off such that//<>&,/(./i)... (/„) = / ( g i ) . . .
(gn). I will call this set Ua.

Proposition 2.11 A function f E PMaβ is uniform iff for any x,y E PMa9

with xoy,f(x) =f(y) andf(x) is uniform.

Proof:
=>. Let f EL PMaβ be uniform and x,y E PMa, be such that x<> y. Let us

further suppose that/(x) Φf(y). There is thus a projector </i,... ,/„> such
that f(x)(f2)... (fn) Φf(y)(fi) . (/„). But xoy and/ <>/} for any i,
which means that/ is not uniform, which is absurd.

Let us now suppose that f(x) is not uniform. In that case there are two
projectors </2,... ,/„> and (g2,... ,gn) such that/• Oft, f(x)(f2) . (/„) Φ
f(x)(gi) (gn) But xox, thus/ is not uniform, which is absurd.

«=. Let/ be such that for any x and y, if xoy then/(x) =f(y) and/(x)
is not uniform. So there are two projectors </, . . . ,/„> and <gi,... 9gn) such
that/Oft, and/ί/O ... (/„) Φf(gι)... (gΛ). But/iogi impUes that/ί/O =
/(gi). This implies that/(/i)... (/„) Φf(fι)... (gn) which contradicts the hy-
pothesis that/ί/) is uniform.
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I will need the following property:

Proposition 2.12 For any x,y E PMaβ9 if x < y, then v<x> < v<>>>.

The following proposition shows that uniform functions are not "scarce":
every function is either uniform or dominated by a uniform function.

Proposition 2.13 LetfG PMa. There isgG PMa, g uniform, such thatf< g.

Proof:
(i) For a = e, any x E PMe is uniform.
(ii) For a = t, any x E PMt is uniform.
(iii) For a = βy, for x E PMβ, let g be such that g(x) =/( v<x». I have to

show that such a g exists, i.e., that g is monotonic. Let x,y be such that x < y.
In that case, by Proposition 2.13, v<x> < v<j>> and/ being monotonic,
/(v<x» < / ( v < j » and finally g(x) < g(y).

Proposition 2.14 All maximal total functions are uniform.

Proposition 2.15 For any a,φa is uniform.

Proposition 2.16 The set Uaβ is a sub meet semi-lattice ofPMa.

Proof:
(i) For a = e, Ua = PMa.
(ii)For a = t, Ua = PMa.
(iii) For a = βy, let fg E Uβy and let us suppose that/v g exists. Let y E

Uβ9 andxE <j>.

(/v«)W = / W v « M =/(7) vg(Λ = (/vg)( j) .

Thus, /v g is uniform. The argument is the same for the meet.

The following proposition is very strong: it means that maximal uniform
nontotal partial functions draw the maximum of information from their argu-
ments without breaking monotonicity.

Proposition 2.18 LetfG PMa be a maximal uniform nontotal partial func-
tion. IfE contains at least two elements, then there are g,hG PMa, g Φ* h, such
that / < g and/< h.

Proof:
(i) For a = e, the only such function is φ, which is dominated by all the el-

ements of E.
(ii) For a = t, the only such function is φ, which is dominated by 0 and 1.
(iii) For a = βy, f being nontotal, there is an projector </i,... ,/„>, with

fi E PTa. such that/(/O . . . (/„) = φ. / being uniform, for any projector <gj,
. . . ,gn) of / such that f <> gi9 f(gγ)... (gn) = φ. Let g,h be such that
g(g\) - (gn) = x and h(gι)... (gn) =y,x and y being such that x Φ* y. One
can easily verify that g and h exist and are monotonic.

3 Conclusion It was claimed in the introduction that our construction is very
general. But what about partial relations? It is well known that for standard ob-
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jects any relation can be identified with one and only one function. This is based
on SchόnfinkeFs theorem

{O,l}^x x ^ s ( . . . α θ f l ) ^ 4 " ) . . ) ' 4 "

through the natural identification of a relation with its characteristic function

(P(A1 x...xAn) = {0,l}A*x' xA».

It has been argued (in [13]) that this isomorphism is broken when dealing with
partial objects. The argument is the following:

Let/: {0,1} x {0,1} -• {0,1} be such that/(x,.y) = y if x = 0 and undefined
otherwise. / is clearly the characteristic function of a relation. Now, consider the
following two functions:

fx: {0,1} -* {0,l}{(UI such that/^0) is the identity function and/^1) is unde-
fined and

/ 2 : {0,1} -• {0,l}t(U) such that/2(0) is the identity function and/ 2 (l) is such
that/2(l)(0) is undefined and/ 2 (l)(l) is also undefined.

Strictly speaking, f{ and/ 2 are not the same object: /i(l) is defined whereas
/2(1) is not.

This is a bad argument which rests on the inaccuracy of the notion of "un-
definition". Now we can easily see that if we think of the undefined function
from A -» B, as the function such that for any x G A,f(x) is the undefined ob-
ject, the isomorphism is restored!

Let us conclude with an overview of possible applications to the semantics
of intensional logic. It is well known from Henkin [6] and Montague [10] that
we need only three syncategorematic operators in type theory and in intensional
logic: one abstractor and its converse, and identity. Suppose that there is a model
M, in which each constant c has received as its value a standard function v(c)
and that to each variable x is assigned a value υ(x) of the corresponding type.
A partial model compatible with M will be a model M' such that c has received
a partial value v'(c) <* v(c) and x a partial value v'(x) <* v(x). We can now
have sequences of partial models in which each constant takes values that are
nearer and nearer to the given total value in M. It can easily be shown (see Lepage
[9]) that in any such partial model M', every complex expression constructed by
functional application or functional abstraction receives a value in M1 which is
a partial function y' such that y' <* y, where y is the value of the expression in
M. In other words, functional application and functional abstraction are mono-
tonic for < and for <*.

The problem is with identity. The classical standard value of identity is such
that:

υ(a = b) = v( = )(v(a)(v(b))) = 1 iff v(a) = v(b)

v(a = b) = v( = )(v(a)(v(b))) = 0 iff v(a) Φ v(b).

Going partial, there is no natural generalization of this "definition". We
clearly cannot adopt a definition like υ\a = b) = v'( = )(υ'(a)(υ'(b))) = 1 iff
v'(a) = v'(b), because such a definition is incompatible with our requirement
of monotonicity (we need only consider the case where υ'(a) = v'(b) = φ α ).
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Now, if we consider the following definition:

υ'(a s ft) = v'( = )(v'(a)(v(b))) = 1 iff v'{a) = υ'(b) and υ'(a) is total

v\a = 6) = υ'{ = )(vf(a){υ'(b))) = 0 iff υ'(a) Φ* υ'(b)

v'(a s i ) = v'( = )(v'(a)(v'(b))) = φ otherwise,

it can be shown (see Lapierre [8]) that, using this definition, the class of expres-
sions of intensional logic that are never false under an arbitrary partial interpre-
tation is exactly the class of valid expressions, i.e., the class of expressions which
are true under any standard interpretation.

Furthermore, according to this definition, there is a class of expressions
which are always true under arbitrary partial interpretations. For example,
(λxx = λxx) is always true (λxx is always a total function). The question now
is to provide a complete axiomatic system for this class. This will be the object
of another paper.
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NOTES

1. Coin brackets will be omitted when possible, using the convention of association on
the right: for example, (aβ) will be written aβ; <α<0γ» will be written αβγ; and
«α/3>γ> will be written <αβ>γ. For the sake of simplicity, we do not consider the
type of possible worlds. It should be clear that all the propositions will still hold if
we introduce such a type.

2. When a proof uses only elementary results of set theory, it will be skipped.

3. Strictly speaking, there are as many relations as there are types. Each relation should
be indexed: for example, for PMa the relation is "^a". Since no confusion should
arise, we will omit the index.

4. If E is denumerable, the range of n is not ω but a transfinite ordinal which depends
on the type of/. If E is finite, this proposition provides an explicit construction of
the total function.

5. These very useful diagrams were introduced by Serge Lapierre.

6. The entire meet semi-lattice PM<ίt>t has been drawn by Saint-Louis using Prolog. It
is too big to be shown here.
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