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A Note on Generic Projective Planes

Koichiro Ikeda

Abstract Hrushovski constructed an ω-categorical stable pseudoplane which
refuted Lachlan’s conjecture. In this note, we show that an ω-categorical projec-
tive plane cannot be constructed by “the Hrushovski method.”

1 Introduction

An infinite projective plane is a structure with two sorts, points and lines, together
with an incidence relation satisfying the following:

1. on any line there are infinitely many points, and through any point there are
infinitely many lines;

2. any two lines intersect in exactly one point, and through any two points there
is exactly one line.

A typical example is a projective plane over an algebraically closed field which is ℵ1-
categorical but not ω-categorical. Our concern is the following well-known problem
(for reference, see Baldwin [1]; Cameron [4], p. 133; Hodges [6], p. 344).

Problem 1.1 Is there an ω-categorical projective plane?

There is a Hrushovski class Kα for each α > 0 (see Section 3). In [7] Hrushovski
constructed the generic models for some subclass K of Kα that is an ω-categorical
pseudoplane, which refuted Lachlan’s conjecture. (A pseudoplane is a structure sat-
isfying condition (2) above with “exactly one” replaced by “finitely many” in both
places.) His pseudoplane is not a counterexample of the above problem because
it has two points that no line passes through. On the other hand, “the Hrushovski
method” is being applied to construct new ones.

For example, Baldwin constructed the generic model for some subclass K of K1
2

that is almost strongly minimal non-Desarguesian projective plane, contradicting a
conjecture of Zilber (Baldwin [2]). However no one can construct an ω-categorical
projective plane using a reasonably general interpretation of the Hrushovski method.
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Let K ∗ be the subclass of Kα consisting of all graphs which have no squares
(see Example 3.4). Baldwin and Shi showed that the generic model for the subclass
K ∗ cannot be an ω-categorical projective plane using Marker’s lemma (see Baldwin
and Shi [3], Section 6). We extend this to show the same result for any amalgama-
tion class K contained in Kα . That is, our goal is to show the following theorem:
There are no δ-generic ω-categorical projective planes. (The Hrushovski construc-
tion finds a theory from a pair (K , ≤). In all known examples of this construction
the strong submodel relation ≤ is derived from a predimension δ. We show in this
paper that natural predimension functions do not yield projective planes. Our final
question asks whether some strong submodel relation not imposed by a δ could yield
a projective plane.)

2 Generic Structures

Let L be a finite relational language and K a class of finite L-structures closed
under isomorphism and substructures. For any A, B ∈ K with A ⊂ B let A ≤ B
be a reflexive and transitive relation which is invariant under isomorphism. Consider
the following set of axioms:
(A1) A ⊂ B ⊂ C ∈ K and A ≤ C implies A ≤ B;
(A2) ∅ ≤ A for any A ∈ K ;
(A3) A ≤ B ∈ K and X ⊂ B implies A ∩ X ≤ X ;
(A4) There are no infinite chains A1 ⊂ A2 ⊂ · · · such that, for each i < ω,

Ai ∈ K , Ai 6≤ Ai+1 and any proper nonempty subset X of Ai+1 − Ai
satisfies Ai ≤ Ai X .

For an infinite L-structure M satisfying A ∈ K for any finite A ⊂ M , define A ≤ M
if A ≤ B for all finite B with A ⊂ B ⊂ M .

Remark 2.1 Let M satisfy A ∈ K for all finite A ⊂ M . By (A1) – (A4), for a finite
B ⊂ M there is a unique smallest superset B∗ of B with B∗ ≤ M . Such a B∗ is
called the closure of B in M (in symbol, clM (B)).

Definition 2.2 Let (K , ≤) satisfy (A1) – (A4). A structure M is said to be (K , ≤)-
generic

1. if A is a finite substructure of M then A ∈ K ,
2. if A ≤ M and A ≤ B ∈ K then there is an A-embedding f : B → M with

f (B) ≤ M . (An A-embedding is an embedding fixing A pointwise.)

Whenever we consider a (K , ≤)-generic structure, (K , ≤) is supposed to satisfy the
above conditions (A1) – (A4). However, even if (K , ≤) satisfies (A1) – (A4), then a
(K , ≤)-generic structure does not necessarily exist.

Definition 2.3 (K , ≤) is said to have the amalgamation property if for any
A ≤ B ∈ K and A ≤ C ∈ K there is D ∈ K such that f (B) ≤ D and g(C) ≤ D
for some A-embeddings f : B → D and g : C → D.

Fact 2.4 ([3], [8]) If (K , ≤) has the amalgamation property, then there exists a
unique (K , ≤)-generic structure.

3 δ-Generic Graphs

Let L consist of three relations P, Q, R, where P, Q are unary relations and R is a
nonreflexive and symmetric binary relation. Let α be a real number. Then
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1. for a finite L-structure A, δα(A) = |A| − α|R A|, where
RA = {{a, b} | R(a, b), a, b ∈ A};

2. Kα = {A : A is a finite L-structure, ∀B ⊂ A[δα(B) ≥ 0]};
3. for A ⊂ B ∈ Kα , A ≤ B is defined by δα(X A) ≥ δα(A) for any X ⊂ B − A.

Remark 3.1 It is easily checked that (Kα, ≤) satisfies (A1) – (A3), and moreover
that if α is rational then (Kα, ≤) satisfies (A4).

Fact 3.2 ([3], [8]) Let α be a positive rational number. Let K ⊂ Kα. If a (K , ≤)-
generic structure M is saturated, then Th(M) is ω-stable.

Definition 3.3 We say that an L-structure M is δ-generic if M is (K , ≤)-generic
for some α and K ⊂ Kα.

For any elements e, a, b of a graph we say a pair (e, ab) is special if R(e, a)∧R(e, b)

holds.

Example 3.4 It is not difficult to construct a δ-generic projective plane: Let
K ⊂ K1

2
be the subclass of all graphs in K1

2
which have no squares, that is, there

are no distinct a, b, c, d ∈ A with R(a, b), R(b, c), R(c, d), and R(d, a) for any
A ∈ K . We claim that (K , ≤) has the amalgamation property.

Proof Let A ≤ B ∈ K and A ≤ C ∈ K . Take maximal B0 ≤ B and C0 ≤ C
with B0 ∼=A C0. We can assume that B0 = C0(= A0 say) and also that there are no
relations between B − A0 and C − A0. Let D = B ∪C . Then it is easily checked that
B, C ≤ D ∈ K . By maximality of A0, D has no squares, and so D ∈ K1

2
. Hence

(K , ≤) has the amalgamation property. �

By Fact 2.4, there exists the (K , ≤)-generic structure M . To see that M is a projective
plane, it is enough to show that

1. for any a ∈ M there are infinitely many b ∈ M with R(a, b);
2. for any distinct a, b ∈ M with the same sort there is a unique e ∈ M with

(e, ab) special.
Since M has no squares, it satisfies condition (2). We show that M satisfies condition
(1). Take any a ∈ M and let A = clM(a). For any n < ω let Bn = {b1, . . . , bn, a}

be a bipartite graph such that for any i ≤ n, bi is related to a but there is no relation
between bi and any element of A. It is easily checked that A ≤ ABn ∈ K . By
genericity of M , Bn is embedded into M over A. Hence M satisfies (1).

4 Proof of Theorem

In this section, we assume, for the sake of contradiction, the following.

Assumption 4.1 K is a subclass of Kα which has the amalgamation property, and
M is a (K , ≤)-generic projective plane.

A bipartite graph B is said to be connected if for any distinct a, b ∈ B there exist
b1, b2, . . . , bn(= b) ∈ B with R(a, b1), R(b1, b2), . . . , R(bn−1, bn).

Remark 4.2 Let A(∈ Kα) be a finite bipartite graph with no loops, that is, for each
n > 2 there do not exist distinct a1, a2, . . . , an ∈ A with R(a1, a2), R(a2, a3),. . . ,
R(an−1, an), and R(an, a1). Then we have A ∈ K .
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Proof Take any a0 ∈ A. Let C0 be a connected component of a0 in A. As A has
no loops, C0 can be regarded as a tree with height(a0) = 0. Since M is a projective
plane, we can inductively construct C∗

0 ⊂ M with C∗
0

∼= C0. Take any a1 ∈ A − C0.
Let C1 be a connected component of a1. In the same way, we have C∗

1 ⊂ M with
C∗

0 C∗
1

∼= C0C1. Iterating this process, we have A∗ ⊂ M with A∗ ∼= A. Hence
A ∈ K . �

To simplify our notation, we denote δα by δ, and δ(AB) − δ(B) by δ(A/B).

Lemma 4.3 1
3 < α ≤ 1

2 .

Proof Suppose by way of contradiction that α ≤ 1
3 or 1

2 < α.

Case 1 (α ≤ 1
3 ) Let abcd be an L-structure with the relations R(d, a), R(d, b),

R(d, c). By Remark 4.2, we have abcd ∈ K . By α ≤ 1
3 , we have δ(d/abc) ≥ 0,

and so abc ≤ abcd. By genericity we can assume that abc ≤ abcd ≤ M . Take e
with R(e, a), R(e, b), ¬R(e, c). Again, by (4.2), abce ∈ K . By genericity, there is
abc-embedding f with abcf (e) ≤ M . Since e 6∼=abc d, we have f (e) 6= d. This
contradicts axioms of a projective plane.

Case 2 ( 1
2 < α) By genericity there are distinct a, b ∈ M (with the same sort)

such that ab ≤ M . Then (e, ab) is not special for any e ∈ M . (In fact, if there is
e ∈ M with (e, ab) special, then δ(e/ab) = 1 − 2α < 0: a contradiction.) But this
contradicts axioms of a projective plane. �

Definition 4.4 A special pair (e, ab) is called small if
1. ab ≤ eab;
2. for any disjoint A, B ∈ K , if ab ∈ A, e ∈ B, A ≤ AB ∈ K , δ(e/A)= δ(e/ab),

then δ(e/A) ≤ δ(B/A).

Remark 4.5 By Definition 4.4(1), it is clear that if a special pair is small then
α ≤ 1

2 , and moreover that if α = 1
2 then a special pair is small.

Lemma 4.6 For each n ≥ 2, if n−1
2n−1 < α ≤ n

2n+1 then there is a special pair that
is not small.

Proof Let a1b1a2b2, . . . , anbncd be a finite L-structure with the relations R(a1, c),
R(an, d), {R(ai , bi)}i=1,...,n, and {R(ai , ai+1)}i=1,...,n−1. Let A = {ai}i=1,...,n and
B = {bi}i=1,...,n. By Remark 4.2, we have ABcd ∈ K .

Claim 4.7 Bcd ≤ ABcd.

Proof Take any X ⊂ A. It is easily seen that if X 6= A then δ(X/Bcd)≥|X |−2|X |α.
So, by α ≤ n

2n+1 ≤ 1
2 we have δ(X/Bcd) ≥ 0. If X = A then δ(X/Bcd) =

n − (2n + 1)α ≥ n − (2n + 1) n
2n+1 = 0. Hence Bcd ≤ ABcd. �

Claim 4.8 δ(a1/Bcd) > δ(A/Bcd).

Proof δ(A/Bcd)−δ(a1/Bcd) = (n−1)−(2n−1)α < (n−1)−(2n−1) n−1
2n−1 = 0.

�

By Claims 4.7 and 4.8, special pair (a1, b1c) is not small. This completes the proof
of Lemma 4.6. �
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Lemma 4.9 Every special pair is small.

Proof Assume the contrary. Let (e, ab) be a nonsmall special pair. Then there are
disjoint A, B such that ab ∈ A, e ∈ B, A ≤ AB ∈ K , Ae 6≤ AB, δ(e/ab) = δ(e/A).
By genericity of M , we can assume that AB ≤ M . In particular, Ae 6≤ M . On
the other hand, take e∗ such that (e∗, ab) is special and e∗ ∼=A e. By genericity we
can assume that e∗ A ≤ M . Since eA 6≤ M and e∗ A ≤ M , we have e∗ 6= e. This
contradicts axioms of a projective plane. �

Lemma 4.10 α = 1
2 .

Proof By Lemma 4.9, a special pair is small. So, by Lemma 4.6, we have

α 6∈

∞
⋃

n=2

(

n − 1
2n − 1

,
n

2n + 1

]

=

(

1
3
,

1
2

)

.

On the other hand, by Lemma 4.3, α ∈
(

1
3 , 1

2

]

. Hence we have α = 1
2 . �

Theorem 4.11 There are no δ-generic ω-categorical projective planes.

Proof Assume there is a δ-generic ω-categorical projective plane M . Thus M is
(K , ≤)-generic for some α and K ⊂ Kα . Since M is ω-categorical, it is saturated.
On the other hand, by Lemma 4.10, we have α = 1

2 . By Fact 3.2, Th(M) is ω-
stable. This contradicts the well-known fact that there are no ω-categorical ω-stable
pseudoplanes (Cherlin et al. [5]). �

Question 4.12 Are there no (K , ≤)-generic ω-categorical projective planes ?
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