
426

Notre Dame Journal of Formal Logic
Volume 35, Number 3, Summer 1994

�1
1-Completeness of a Fragment

of the Theory of Trees
With Subtree Relation

P. CINTIOLI and S. TULIPANI

Abstract We consider the structure ITS of all labeled trees, called also infi-
nite terms, in the first order language L with function symbols in a recursive
signature S of cardinality at least two and at least a symbol of arity two, with
equality and a binary relation symbol � which is interpreted to be the subtree re-
lation. The existential theory over L of this structure is decidable (see Tulipani
[9]), but more complex fragments of the theory are undecidable. We prove that
the ∃� theory of the structure is in �1

1, where ∃� formulas are those in prenex
form consisting of a string of unbounded existential quantifiers followed by a
string of arbitrary quantifiers all bounded with respect to �. Since the fragment
of the theory was already known to be �1

1-hard (see Marongiu and Tulipani [5]),
it is now established to be �1

1-complete.

1 Preliminaries and Introduction A signature S is a set of operation symbols on
which is defined a function ar : S → IN into the set of natural numbers, called arity.
Symbols of arity zero are called constant symbols. Throughout this paper we assume
at least that S is a nonempty recursive set.

For every nonempty set A let A∗ denote the free monoid of finite sequences of
elements of A, including the empty sequence �. Let · be the operation of concatena-
tion on A∗. A set D ⊆ A∗ is called prefix-closed if p · q ∈ D implies p ∈ D. A set D
is called a domain-tree if:

(1) D ⊆ IN∗+ and � ∈ D, where IN+ is the set of positive integers;

(2) D is prefix closed.

When D is a domain-tree, the elements of D are called positions. Moreover, a map-
ping t : D → S is called a tree (or infinite term) over the signature S if

(3) ∀p ∈ D, if t(p) = g and ar(g) = k then ∀ j ∈ IN+, p · j ∈ D ←→ 1 ≤ j ≤ k.
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This also makes sense when g is a constant symbol. In such a case k = 0 and p is
maximal in D, i.e., there is no q ∈ D such that p is a proper prefix of q.

The subtree t′ of a tree t at position p is a mapping t′ : D′ → S where D′ =
{q : p · q ∈ D} and t′(q) = t(p · q). A rational tree is a tree with a finite number
of subtrees. A finite tree is a tree with a finite domain. We denote by ITS the set of
trees in the signature S. This can be made into an algebra of signature S, which we
continue to denote ITS, by defining, for every f ∈ S of arity k and every t1, . . . , tk ∈
ITS, the tree t, denoted f (t1, . . . , tk), as the unique tree where t(�) = f and, if k > 0,
t1, . . . , tk are subtrees at positions 1, . . . , k, respectively. Moreover, a relation � is
defined on ITS by t′ � t if and only if t′ is a subtree of t at some position. The relation
� is reflexive and transitive, i.e., a preorder, on ITS. The set RTS of rational trees is a
substructure of ITS and the set FTS of finite trees is a substructure of RTS; moreover,
the preorder � is antisymmetric on FTS, i.e., a partial order.

The first order theory Th(ITS), in the first order language for the signature S, is
decidable, moreover Th(ITS) = Th (RTS), (see Maher [2], and Marongiu and Tuli-
pani [3]). This is no longer true when the preorder relation � is added and the signa-
ture has at least two symbols and a symbol is of arity at least two. In fact, under this
hypothesis, every substructure of (ITS,�) has an undecidable theory (see McCarthy
[1], Marongiu and Tulipani [4], and Treinen [8]). However, it was proved in Tulipani
[9] that the existential fragment of Th(ITS,�) is decidable. This is the best result,
since fragments more complex are undecidable, (see [4], [8], and [10]).

In [5] the fragment ∃� of existential quantification of �-formulas was investi-
gated. Let T be the set of first order terms in signature S, then �-formulas are defined
recursively as the smallest set of first order formulas satisfying:

• t1 = t2 and t1 � t2 are �-formulas, for t1, t2 ∈ T ;
• if ϕ, ψ are �-formulas then ϕ ∧ ψ, ϕ ∨ ψ, ¬ϕ, ϕ → ψ are �-formulas;
• if ϕ is a �-formula then (∃x � t)ϕ and (∀x � t)ϕ are �-formulas, for every

t ∈ T and every variable x not in t.

It was observed in [4], and it is not difficult to prove, that the fragment
Th∃�(RTS, �) of ∃�-formulas, which are true in the structure of rational trees with
subterm relation, is recursively enumerable. Moreover, this fragment is no longer
equal to the fragment Th∃�(ITS,�) as in the case when � is not present (see [3]). In
fact, in [5] it was proved that, when S has at least a constant symbol and a symbol of
arity at least two, the fragment Th∃�(ITS,�) is �1

1-hard. One may easily note that
the result continues to hold also in the more general case when the signature S con-
tains two function symbols and one of them is of arity at least two. Here, we prove
membership in �1

1 of the fragment Th∃�(ITS,�) under the hypothesis that S is re-
cursive. So, we may conclude that the fragment is �1

1-complete when S is recursive,
is of cardinality at least two, and has a symbol of arity at least two (for terminology
see Odifreddi [6]).

2 Main Result We assume that the signature S is a recursive set. Our goal is to
prove that the fragment Th∃�(ITS,�) is in �1

1. We observe that we may also assume
that S has cardinality greater than one and has a symbol of arity at least two. Other-
wise the statement follows since the first order theory of ITS is decidable. In fact,
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when S has cardinality one, the first order theory of ITS is clearly decidable since
ITS is trivial with only one element, whereas, when no element in S has arity greater
than one, the first order theory of ITS is decidable by the celebrated Rabin’s Theorem
on two successors (see Rabin [7]).

Now, we are going to transform effectively every first order ∃�-sentence ϕ, in
the signature S possibly with the predicate symbol �, into a second order �1

1-sentence
� in the language of arithmetic such that

(4) (ITS,�) |= ϕ if and only if AR2 |= �

where AR2 is the second order arithmetic.

Theorem 2.1 Without loss of generality we can restrict ourselves to the case of sen-
tences of the following kind:

(5) ∃x0 Q1x1 Q2x2 . . . Qnxn α where;
(6) Qi ∈ {∀,∃} and the quantifiers Qixi, for i = 1, . . . , n, are all bounded with

respect to � to variables x j with 0 ≤ j < i;
(7) α is quantifier-free with only atomic subformulas of the following two types

x = t, x � y

where x, y are variables and t is a first order term.

Proof: Start with any ϕ in ∃�. It is straightforward to transform ϕ, by adding ex-
istential quantifiers, if necessary, into a logically equivalent prenex formula Q′

1x1 . . .

Q′
nxnβ where the atomic subformulas are as in (7) and, for i = 1, . . . , n, the quantifier

Q′
ixi can be ∃xi, ∃xi � x j or ∀xi � x j, for some j < i.

Now, if the sentence does not have the desired form, then take a term t which
contains all the variables xi in {x1, . . . , xn} which are quantified by nonbounded
quantifier ∃xi. Such a t exists since the signature has a symbol of arity at least two.
Hence, the following sentence

(8) ∃x0 Q1x1 . . . Qnxn (x0 = t ∧ β)

satisfies properties (6) – (7), where Qixi is Q′
ixi if Qixi was bounded and Qixi is ∃xi �

x0 otherwise.

Our aim is to code trees of ITS as functions F : IN → IN. This can be achieved
easily, in a standard way, by fixing an encoding 〈 〉k : INk → IN of k-tuples of natural
numbers. Then, a finite sequence s1 · s2 · · · sl ∈ IN∗+ will be coded by the integer
a = 〈l, 〈s1, . . . , sl〉〉. As usual, we denote the number l by length(a). It is assumed
that 〈n〉 = n, for every n, that 〈0〉 = 0 codes the empty sequence and length(0) = 0.
So, every domain-tree D can be thought of, by coding, as a subset of IN. Moreover,
we can assume, for convenience, that S ⊆ IN+. Hence every tree t : D → S can be
determined by a function F : IN → IN where the following hold

(9) Im F ⊆ S ∪ {0};
(10) {a : F(a) ∈ S} encodes a domain-tree;
(11) the analogous property of (3) obtained by encoding.

Now, we write a second order formula Tree(F) for defining in AR2 functions
which code elements of ITS. We need the following primitive recursive relations on
IN:
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• conc(a, b, c), the concatenation, which holds iff a = 〈l, 〈a1, . . . , al〉〉,
b = 〈k, 〈b1, . . . , bk〉〉, c = 〈l + k, 〈a1, . . . , al, b1, . . . , bk〉〉;

• prec(a, b), which holds iff ∃z conc(a, z, b);

• notseq(a), which holds iff a does not code any sequence in IN∗+.

Then, we consider the language L∗
2 of second order arithmetic with symbols for

all primitive functions. Then, the formula Tree(F) will be the universal quantifica-
tion, over all first order variables x, y, p, j, g, k, of the conjunction of the following
formulas, which clearly can be written in L∗

2 . Remember that S and the arity function
ar : S → IN are both recursive.

(12) F(x) ∈ S ∪ {0}
(13) F(0) �= 0 ∧ ∀x(notseq(x) → F(x) = 0)

(14) F(x) �= 0 ∧ prec(y, x) −→ F(y) �= 0

(15) ar(g)=k ∧ F(p)=g −→ (∃q(conc(p, 〈1, j〉, q) ∧ F(q) �=0) ↔ (1 ≤ j ∧ j ≤
k)).

Note that (12) takes care of (9); (13) and (14) take care of (10) (see (1) and (2) and
remember that 0 codes the empty sequence). Moreover, (15) takes care of (11), (see
(3)). Note also that ar(c) = 0, for every constant symbol c, hence (15) means that
F(p) = c implies F(q) = 0 for every immediate successor q of p and by (14), F(q)=
0 for every q such that prec(p, q) and q �= p.

We wish to transform every sentence as in (5) into a sentence of AR2 where there
exists a unique second order quantifier ∃F and F is constrained to satisfy Tree(F).
Moreover, we manage in such a way that all the quantifiers Q1x1, . . . , Qnxn range
over natural numbers which are constrained to represent positions in the tree F and,
on the other hand, positions determine subtrees of F; x0 represents the root of F. So,
we need to define formulas Ug(F, x, t) of L∗

2 for every first order variable x and every
term t in signature S. Such formulas will have {F, x} ∪ var(t) as free variables and
F is the only second order variable. The definition is by structural induction on t as
follows:

(16)

Ug(F, x, c) = F(x) = c

Ug(F, x, y) = ∀u∀v∀z(conc(x, u, v) ∧ conc(y, u, z)
→ F(v) = F(z))

Ug(F, x, g(t1, . . . , tk)) = F(x) = g ∧ ∃z1 . . .∃zk

∧

1≤i≤k

(conc(x, 〈1, i〉, zi) ∧ Ug(F, zi, ti)),

where c is a constant symbol, y is a first order variable, g is an operation symbol of
arity k > 0 and z1, . . . , zk are new first order variables not used elsewhere. Now, we
are ready to prove our theorem.

Theorem 2.2 Let S be a nonempty recursive signature. Then, the fragment
Th∃�(ITS,�) is �1

1-complete if and only if S is of cardinality greater than one and
with a symbol of arity at least two.

Proof: Going from left to right, suppose S is of cardinality one or all the symbols
in S have arity less than two. Then the first order theory of ITS is decidable, as we
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discussed before. Hence, under our hypothesis our fragment is decidable and it cannot
be �1

1-complete. Therefore, the left to right condition of the the theorem is necessary.
For the other direction, given the result of [5], we have to prove membership

in �1
1 of our fragment. Start with a formula as in (5). First, transform the matrix α

into a formula 	α of AR2 by replacing all its atomic subformulas according to the
following rules:

(17)
x = t replaced by Ug(F, x, t)
x � y replaced by ∃z( prec(y, z) ∧ Ug(F, z, x) ),

where z is a new first order variable not used elsewhere. Then, according to (7) and
to (16), 	α is a formula for AR2 where the free first order variables are the same as
in α. Now, let 
 be the formula

(18) Tree(F) ∧ 	α [x0 ← 0]

where [x0 ← 0] is the substitution of x0 for 0 which is the code for the empty position.
By (12) – (15) there exists a bijection δ : ITS −→ {F : IN → IN, AR2 |= Tree(F)}.
Fix T ∈ ITS and positions p1, . . . , pn in the domain of T . Denote by T/p the subtree
of T at position p and by FT the corresponding of T under δ. Then, we can prove

Claim 2.3
ITS |= α[x0 ← T, x1 ← T/p1, . . . , xn ← T/pn]

if and only if
AR2 |= 
[F ← FT , x1 ← p1, . . . , xn ← pn].

where p denotes the code of the position p.

Proof: The proof of Claim 2.3 follows simply from (17) and from the meaning of
the formula Ug(F, x, t) determined by (16).

Note that, if p, q are positions in T , then AR2 |= Ug(F, x, y)[FT , p, q], (where
x and y are distinct), means that T/p = T/q. Moreover, note that, if p is prefix of q,
then T/q � T/p.

Now, observe that a is the code of some position p in T if and only if FT (a) �= 0.
The truth of the sentence (5) is determined by the existence of a tree T ∈ ITS assigned
to x0 and by trees T1, . . . , Tn which interpret x1, . . . , xn. Since every quantifier Qixi,
for i = 1, . . . , n, is bounded to x j for some 0 ≤ j < i, the trees T1, . . . , Tn must be all
subtrees of T . Then, to get our result, we have to put before the formula 
 the same
list of quantifiers Q1x1 . . . Qnxn which are before α in (5) and the variables have to be
constrained to range on codes of positions in T . So, the �1

1-sentence � which works
in (4) is

(19) ∃F Q̃1x1 . . . Q̃nxn 


where Q̃ixi, for i = 1, . . . , n denote the quantifiers Qixi of sentence in (5) relativized
to the predicate F(xi) �= 0. In fact, the following claim holds for all k = 0, . . . , n, for
every T in ITS and all positions p1, . . . , pk in T :

Claim 2.4

ITS |= Qk+1xk+1 . . . Qnxn α [x0 ← T, x1 ← T/p1, . . . , xk ← T/pk]
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if and only if

AR2 |= Q̃k+1xk+1 . . . Q̃nxn 
 [F ← FT , x1 ← p1, . . . , xk ← pk].

Proof: The proof is an easy induction on the number of quantifiers; the case of no
quantifiers corresponds to k = n and it is Claim 2.3.
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