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¥1-Completeness of a Fragment

of the Theory of Trees
With Subtree Relation

P. CINTIOLI and S. TULIPANI

Abstract We consider the structure | Ts of all labeled trees, called aso infi-
nite terms, in the first order language £ with function symbols in a recursive
signature S of cardinality at least two and at least a symbol of arity two, with
equality and abinary relation symbol = whichisinterpreted to bethe subtreere-
lation. The existential theory over L of this structureis decidable (see Tulipani
[2]), but more complex fragments of the theory are undecidable. We prove that
the 3A theory of the structureisin X1, where 3A formulas are those in prenex
form consisting of a string of unbounded existential quantifiers followed by a
string of arbitrary quantifiers all bounded with respect to C. Since the fragment
of thetheory was already known to be £1-hard (see Marongiu and Tulipani ),
it is now established to be £1-complete.

1 Preliminariesand Introduction A signature Sis aset of operation symbols on
which isdefined afunctionar : S— IN into the set of natural numbers, called arity.
Symbols of arity zero are called constant symbols. Throughout this paper we assume
at least that Sisanonempty recursive set.

For every nonempty set A let A* denote the free monoid of finite sequences of
elements of A, including the empty sequence A. Let - be the operation of concatena-
tionon A*. A set D C A*iscaled prefix-closed if p-qe D impliespe D. Aset D
is called adomain-treeif:

(1) DS IN% and A € D, where IN, isthe set of positive integers,
(2) D isprefix closed.

When D is adomain-tree, the elements of D are called positions. Moreover, a map-
pingt: D — Siscalled atree (or infinite term) over the signature Sif

(3) Vpe D,ift(p)=gandar(g) =kthenVje N, p-jeD<«—1<j<k
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This also makes sense when g is a constant symbol. Insuchacasek =0and pis
maximal in D, i.e,, thereisno q € D such that p isa proper prefix of g.

The subtree t’ of atreet at position pisamappingt’' : D’ — Swhere D’ =
{q: p-ge D}andt’'(q) =t(p-Qq). A rational treeis atree with afinite number
of subtrees. A finite tree is a tree with a finite domain. We denote by | Ts the set of
treesin the signature S. This can be made into an algebra of signature S, which we
continue to denote | Ts, by defining, for every f € Sof arity kand every ty, ..., tx €
| Ts, thetreet, denoted f (14, ..., ty), astheuniquetreewheret(A) = f and, if k > 0,
t1, ..., tx are subtrees at positions 1, . . ., k, respectively. Moreover, arelation C is
definedon I Tsby t’ C tif and only if t" isasubtree of t at some position. Therelation
C isreflexive and transitive, i.e., apreorder, on | Ts. The set RTs of rational treesisa
substructure of | Ts and the set FTs of finite treesis asubstructure of RTs; moreover,
the preorder C is antisymmetric on FTs, i.e., apartia order.

Thefirst order theory Th(lTs), in thefirst order language for the signature S, is
decidable, moreover Th(lTs) = Th(RTs), (see Maher [2], and Marongiu and Tuli-
pani [3]). Thisisno longer true when the preorder relation C is added and the signa-
ture has at least two symbols and a symbol is of arity at least two. In fact, under this
hypothesis, every substructure of (1 Ts, =) has an undecidable theory (see McCarthy
[, Marongiu and Tulipani [H], and Treinen [8]). However, it was proved in Tulipani
ﬂ§] that the existential fragment of Th(I Ts, C) is decidable. Thisis the best result,
since fragments more complex are undecidable, (see [4], 8], and [IL0]).

In [5] the fragment 3A of existential quantification of A-formulas was investi-
gated. Let 7 bethe set of first order termsin signature S, then A-formulasare defined
recursively asthe smallest set of first order formulas satisfying:

e t; =tyandt; C t, are A-formulas, for ty, t, € 7;

o if ¢, Y are A-formulasthen ¢ A ¥, @ V ¢, =@, ¢ — ¢ are A-formulas;

e if pisa A-formulathen (3X C t)p and (VX C t)¢ are A-formulas, for every
t € 7 and every variable x not in t.

It was observed in [4], and it is not difficult to prove, that the fragment
Th3a (RTs, ©) of 3A-formulas, which are true in the structure of rational trees with
subterm relation, is recursively enumerable. Moreover, this fragment is no longer
equal to the fragment Tha, (1 Ts, £) asin the case when C isnot present (see [3]). In
fact, in[|5] it was proved that, when Shas at least a constant symbol and a symbol of
arity at least two, the fragment Thaa (1T, E) is E}-hard. One may easily note that
the result continues to hold also in the more general case when the signature S con-
tains two function symbols and one of them is of arity at least two. Here, we prove
membership in =1 of the fragment Thsa (I Ts, ©) under the hypothesis that Sis re-
cursive. So, we may conclude that the fragment is E}-complete when Sisrecursive,
isof cardinality at least two, and has a symbol of arity at |east two (for terminology
see Odifreddi [[6]).

2 Main Result  We assume that the signature Sis a recursive set. Our goal isto
provethat thefragment Thy, (1 Ts, E) isin E%. We observe that we may a so assume
that Shas cardinality greater than one and has a symbol of arity at least two. Other-
wise the statement follows since the first order theory of | Ts is decidable. In fact,
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when S has cardinality one, the first order theory of | Ts is clearly decidable since
| Tsistrivia with only one element, whereas, when no element in Shas arity greater
than one, thefirst order theory of | Ts is decidable by the celebrated Rabin’s Theorem
on two successors (see Rabin [[7]).

Now, we are going to transform effectively every first order 3A-sentence ¢, in
the signature Spossibly with the predicate symbol C, into asecond order Zi—sentence
W in the language of arithmetic such that

(4 (ITs,C) =g ifandonlyif AR2E W
where AR2 is the second order arithmetic.

Theorem 2.1 Without lossof generality we can restrict our sel vesto the case of sen-
tences of the following kind:

(5) 3xg Q1x1 Q2X3 ... QnXna Where;
(6) Qi € {V, 3} and the quantifiers Qjx;, for i = 1, ..., n, are all bounded with
respect to C to variables x; with0 < j < i;
(7) « is quantifier-free with only atomic subformulas of the following two types
X=t, XCy

where x, y arevariablesand t isa first order term.

Proof:  Start with any ¢ in JA. It is straightforward to transform ¢, by adding ex-
istential quantifiers, if necessary, into alogically equivalent prenex formula Q}xy . ..
Q/,xnB Wherethe atomic subformulasareasin (7) and, fori =1, ..., n, the quantifier
Qixi can be 3x;, I C X; or Vx; C xj, for some j < i.

Now, if the sentence does not have the desired form, then take a term t which
contains all the variables x; in {Xq, ..., Xs} which are quantified by nonbounded
guantifier 3x;. Such at exists since the signature has a symbol of arity at least two.
Hence, the following sentence

(8) IxQ1X1... QnXn (X0 =t A B)
setisfies properties (6) — (7), where Q;x; is Q;x; if Q;x; wasbounded and Q;x; is3x; E
Xg otherwise.

Our amisto codetreesof | Tsasfunctions F : IN — IN. This can be achieved
easily, in astandard way, by fixing an encoding ( )i : INK — IN of k-tuples of natural
numbers. Then, afinite sequence s; - s,---5 € IN% will be coded by the integer
a={l,{(s,...,9)). Asusua, we denote the number | by length(a). It is assumed
that (n) = n, for every n, that (0) = 0 codes the empty sequence and length(0) = 0.
So, every domain-tree D can be thought of, by coding, as a subset of IN. Moreover,
we can assume, for convenience, that SC IN,. Hence every treet : D — Scan be
determined by afunction F : IN — IN where the following hold

(9 ImF C SU{0};
(10) {a: F(a) € S} encodes adomain-tree;
(11) the analogous property of (3) obtained by encoding.
Now, we write a second order formula Tree(F) for defining in AR2 functions

which code elements of | Ts. We need the following primitive recursive relations on
IN:
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e conc(a, b, ¢), the concatenation, which holds iff a
b=(k (by,....b)),c={U+Kk (as,...,a,bq, ..., b))

e prec(a, b), which holdsiff 3zconc(a, z, b);

e notseq(a), which holdsiff a does not code any sequencein IN..

= <|7(a17""al)>7

Then, we consider thelanguage L of second order arithmetic with symbolsfor
all primitive functions. Then, the formula Tree(F) will be the universal quantifica-
tion, over al first order variables x, y, p, j, g, k, of the conjunction of the following
formulas, which clearly can bewrittenin £5 . Remember that Sand thearity function
ar : S— IN areboth recursive.

(12) F(x) € SU{0}

(13) F(0) # 0 A Vx(notseq(x) — F(x) =0)

(14) F(X) #0Aprec(y,x) — F(y) #0

(15) I'o(ur(g)zkA F(p)=9g— (Fq(conc(p, (1, ), DAF(@#0) < (L<jAj=<
))-

Note that (12) takes care of (9); (13) and (14) take care of (10) (see (1) and (2) and
remember that O codes the empty sequence). Moreover, (15) takes care of (11), (see
(3)). Note also that ar(c) = 0, for every constant symbol ¢, hence (15) means that
F(p) = cimplies F(q) = Ofor every immediate successor q of pandby (14), F(q)=
0 for every q such that prec(p, q) and g # p.

Wewish to transform every sentence asin (5) into asentence of AR2 wherethere
exists a unique second order quantifier 3F and F is constrained to satisfy Tree(F).
Moreover, we manage in such away that al the quantifiers Qix4, ..., Qnx, range
over natural numbers which are constrained to represent positions in the tree F and,
on the other hand, positions determine subtrees of F; xq representstheroot of F. So,
weneedto defineformulasUg(F, x, t) of L for every first order variable x and every
termt in signature S. Such formulas will have {F, x} U var(t) as free variables and
F isthe only second order variable. The definition is by structural inductionont as
follows:

Ug(F, x,c) = F(X)=c

Ug(F, X, y) = VYuvwvvz(conc(x, u, v) A conc(y, u, z)
(16) — F(v) = F(2)

Ug(F, X, g(t1, ..., %)) = F(X)=gAadz...3z% /\

1<i<k
(conc(x, (1,1), z) AUQ(F, , 1)),
where c is a constant symbol, y is afirst order variable, g is an operation symbol of
arityk > 0and z, ..., z are new first order variables not used el sewhere. Now, we
are ready to prove our theorem.

Theorem 2.2 Let S be a nonempty recursive signature. Then, the fragment
Thaa (1 Ts, ©) is X}-complete if and only if Sis of cardinality greater than one and
with a symbol of arity at least two.

Proof:  Going from left to right, suppose Sis of cardinality one or al the symbols
in S have arity less than two. Then the first order theory of | Ts is decidable, as we
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discussed before. Hence, under our hypothesisour fragment isdecidableand it cannot
be Ei—compl ete. Therefore, theleft to right condition of the the theorem is necessary.

For the other direction, given the result of [E], we have to prove membership
in 2} of our fragment. Start with aformulaasin (5). First, transform the matrix o«
into aformula ®, of AR2 by replacing al its atomic subformulas according to the
following rules:

(17) x=1t replacedby UQg(F,x,1t)

XCy replacedby 3Fz(prec(y,z) AUg(F,z X)),

where zisanew first order variable not used elsewhere. Then, according to (7) and
to (16), ®, isaformulafor AR2 where the free first order variables are the same as
in . Now, let ® be the formula

(18) Tree(F) A B4 X% < Q]

where[xq < 0] isthe substitution of xg for 0 which isthe code for the empty position.
By (12) —(15) there exists ahijection § : I Ts— {F: IN — IN, AR2 &= Tree(F)}.
Fix T € | Tsand positions py, . . ., pn inthedomain of T. Denote by T/ p the subtree
of T at position p and by Fy the corresponding of T under §. Then, we can prove

Claim 2.3
ITsE=a[Xog < T, X1 < T/P1, ..., % < T/pn]

if and only if
AR2 |= ®[F < Fr, Xy < PL. ..., %n < Prnl-

where P denotes the code of the position p.

Proof: The proof of Claim 2.3 follows simply from (17) and from the meaning of
theformulaUg(F, x, t) determined by (16).

Notethat, if p, gqarepositionsin T, then AR2 = Ug(F, X, y)[Fr, P, T], (where
x and y are distinct), meansthat T/p = T/q. Moreover, note that, if pisprefix of q,
then T/qC T/p.

Now, observethat aisthe code of someposition pin T if and only if Fr(a) # 0.
Thetruth of the sentence (5) isdetermined by the existence of atree T € | Ts assigned
toXp and by trees Ty, .. ., T, which interpret x4, .. ., Xn. Since every quantifier Q;x;,
fori=1,...,n,isboundedto x; forsome0 < j <, thetrees Ty, ..., T, must beall
subtrees of T. Then, to get our result, we have to put before the formula ® the same
list of quantifiers Q1X; ... QnXy Whicharebeforew in (5) and thevariableshaveto be
constrained to range on codes of positionsin T. So, the Zi-sentence W which works
in(4)is

(19) aF Q]_X]_ . Qan o

where Q;x;, fori = 1, ..., ndenote the quantifiers Q;x; of sentencein (5) relativized
tothe predicate F (x;) # 0. Infact, thefollowing claim holdsforal k=0, ..., n, for
every T in | Tsand all positions py, ..., pkinT:

Claim 2.4

I Ts = QrtXkr1.-- QnXna[Xo < T, X1 <= T/p1, ..., Xk < T/p]
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if and only if
AR2'= Qk+1xk+l"'Qan<D[F <~ FT,Xl em9~"’xk (_W]

Proof: The proof is an easy induction on the number of quantifiers; the case of no
guantifiers correspondsto k = nand it is Claim 2.3.
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