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Deissler Rank Complexity of Powers
of Indecomposable Injective Modules

R. CHARTRAND and T. KUCERA

Abstract  Minimality ranks in the style of Deissler are one way of measur-
ing the structural complexity of minimal extensions of first-order structures. In
particular, positive Deissler rank measures the complexity of the injective en-
velope of a module as an extension of that module. In this paper we solve a
problem of the second author by showing that certain injective envelopes have
the maximum possible positive Deissler rank complexity. The proof showsthat
thiscomplexity naturally reflectstheinternal structure of theinjective extension
in the form of the levels of the Matlis hierarchy.

In this paper we present ageneral and positive solution to aproblem raised in Kucera
[4]. The problem concernsthe structural complexity of injective modules over acom-
mutative Noetherian ring A. An injective module is essentially one wherein every
formally consistent system of linear equations has a solution. Theinjective envelope
of amodule (minimal injective extension) can be constructed by adding solutions to
linear systems, in a manner analogous to the construction of the algebraic closure of
afield (see, for instance, Kucera [[5] for details). Thus it makes sense to analyze the
structural complexity of injective envelopesin terms of patterns of solutions of linear
systems. There is further support for this idea from the viewpoint of mathematical
logic. A positive primitive formula (in the first-order language of A-modules) is a
formula ¢(X) of the form

n
3\ ei(X 9
i=1

where each ¢; isalinear equation with coefficientsfrom A. Asiswell known, every
first-order formulain the language of A-modulesis equivalent to a Boolean combi-
nation of positive primitive formulas (see for example Section 2.4 of Prest [[8]). The
situation is even better for injective modules over Noetherian rings, for in the first-
order theory of such a module, every positive primitive formula is equivalent to a
finite system of linear equations (see Theorem 3.12 of [2]l and see also [4]). Thusin
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such amodule, every definable set is a Boolean combination of solution sets of finite
systems of linear equations.

Oneway of carrying out an analysis of the kind desired is by means of the defin-
ability rank of Deissler introduced in his[[1] for completefirst-order theories, and gen-
eralized in Kucera [[3]. Deissler’s rank was studied further in Woodrow and Knight
[@). We use the positive rank of [[3]. In the context of this paper we say that a subset
Sof aninjective module M isdefinable over A C M if Sisthe set of all solutionsin
M of some finite system of linear equations in one free variable and with constants
from A; and we say that an element m of M is definable over A if it is the unique
solution of such a system. (Note that such alinear equation might be of aform like
rv=sa+t.b, forsomer,s tin Aandaandbin A, sothat we arerealy dealing
with finite systems of linear equations over the submodule of M generated by A))

The formal definition of positive Deissler rank follows.

Definition 1  Let M beaninjective module,be M, Ac M.

(i) rk™(b, A, M) = 0iff bisdefinable over Ain M.

(i) For any ordinal £ > 0, rk* (b, A, M) = £ iff £ istheleast ordinal « such that
for somefinite system of linear equations ¢ (v) with constantsfrom A, ¢ iscon-
sistent and for every solution c of g in M, rk*™ (b, AU {c}, M) < a.

(iii) If rkT (b, A, M) # & for all ordinals &, then rk™ (b, A, M) = oo.

(iv) rkt(M/A) =sup{rk™ (b, A, M) +1:be M).

If A isacommutative Noetherian ring and M is an indecomposable injective
A-module, then M has the form M = E(A/P) where P isaprimeideal of A and
E(—) denotes the injective envelope. In [3] it was shown that if M = E(A/P) and
A= A/Pthenrk™(M/A)is1or 2, and that rk™ (M* /AX)Y) < o for any infinite
cardinal «.

In this paper we calculate exact values for positive rank in the case of infinite
powers. Inorder to understand the meaning of these results, we need the hierarchy of
submodules in indecomposable injectives introduced by Matlis [[6]. For M an inde-
composableasabove, A; (M) =Aj ={aec M : P.a=0}. (Aj)ic, iSanincreasing se-
quence of submodulesof M, M = | J;,, Ai, A1 isisomorphic asan M -moduleto the
quotient field K of A /P, and each A, /A isafinitedimensional vector space over
K. The positive Deissler rank of an indecomposable does not “see” the levels of the
hierarchy; thefact that rk™ (M / A) < 2 reflects the indecomposability of M = E(A):
elements of M are only one step away from being definable from A. The elements
of A, are exactly the elementsdefinable from A, and sork™ (M / A) = 1iff M = A;.
(Itisnot known if there are any similar kinds of resultsin the non-commutative case.)
In M (x infinite), positive Deisder rank reflects the levels of the Matlis hierarchy
precisely, as we shall see below.

The definition of rank as given above is often awkward to work with in practice.
It is sometimes more convenient to work with a description of the entire body of the
recursive computation of rank all at once. We repeat the definition of an analysis of
rank from [3], specialized for the purposes of this paper.

Definition 2  Ananalysisof rk* (b, A, M) isalabeledrootedtree (T, <, 1) of the
following sort:
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(i) Foreachnodet € T, thelabel A(t) isapair (p(v), C) whereCCc Mand ¢ is
aconsistent finite system of linear equationsin the one variable v over C, and
in particular if t istheroot of T, then A (t) = (¢, A) for some such ¢.

(i) Foreacht e T, if tisaleaf (termina node) of T and A(t) = (¢, C) thenbis
defined by ¢ over Cin M.

(iii) Foreacht e T,if tisnot aleaf of T and A(t) = (¢, C) then the successors of
t are in one-to-one correspondence with the solutions of ¢ in M, the second
component of the labels of these successors ranging over al sets of the form
CU {m}, masolution of ¢ in M.

(iv) (T, <) isawell-founded tree, that is, the branches of T arefinite.

The usua foundation rank of (T, <) is denoted “rank(T)”. It is clear that
if (T, <, A) is an analysis of rk™ (b, A, M), then rk™ (b, A, M) < rank(T). If
these two ranks are actually equal, then (T, <, A) is called an accurate analysis of
rk* (b, A, M) (and such always exists) [3].

For the purposes of stating and proving our theorem, we fix the same notation
asin [4]

Let A be a commutative Noetherian ring, P a prime idea of A, « an infinite
cardinal, E = E(A/P)®, B = (A/P)® (sothat E = E(B)). Foreachi € w let
Bi = {me E: Pm=0}. Notethat if A, ¢ E(A/P) isthei-th level of the Matlis
hierarchy in E(A/P) then B; = A*. For the basic facts of ideal theory used below,
we refer the reader to any standard reference, in particular to Northcott [[Z].

Theorem 3
(i) Ifae Byt \ Bothenrk®(a, B, E) =n.
(ii) rk™(E/B) =sup{n+1: Byy1\ B # 9).

In Theorem 2.5 of [(] these were inequalities rather than equalities. Thus our
result provides a positive and general solution to the conjecture of Section 2.9 of [H].

Proof: Part (ii) followsimmediately from (i) and the definitions. From Theorem 2.5
of [4] it follows that every element of B, hasrank 0, and by the same argument asin
the proof of Theorem 2.4 of [LZ] it followsthat any element of E not in B, hasrank at
least 1. Thus B, consists precisdly of the elements of rank 0. Again from Theorem
2.5 of [[4] the elementsof B, \ B; haverank lessthan or equal to 1, so they must have
rank exactly 1. Thus the theorem holdswhenn=0o0rn=1.
So assumethat n > 2 and that for every c € By \ Bn_1, k" (c, B, E) =n— 1.
Letb € Bny1\ By, Sinceb ¢ By there must be pg, ..., pno1 € P suchthat p,_1 -
.- Pob#0 butforany gn, ..., 1€ P, gn- ... - 01po.b = 0. Thus pg.b €
Bn \ Bn_1 and so rk™ (pg.b, B, E) = n— 1. Supposethat rk* (b, B, E) = m < n.
Fix an accurate analysis (T, <, A) of rkt (b, B, E), hence of (tree) rank m. By The-
orem 2.1 part (iii) of [B] we can assume without loss of generality that the only for-
mulas appearing in (T, <, A) that define a singleton are the formulas at the leaves.
(Note that thereis unique divisionin E by elements of A \ P: the formulas defining
asingleton are exactly those equivalent to asingle equationr.v = awithr ¢ P.) We
show how to construct from this tree an analysis of rk™ (po.b, B, E) of rank m— 1,
acontradiction.
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Consider first any leaf t of T which isnot at the maximum level mof T. The
formula part of A(t) is some formula (system of equations) ¢(v, Cq, ..., Ck) defin-
ing b; replace it by the formula ¢ (v, po.C1, ..., Po.Ck) Which clearly defines pg.b.
Now consider those leaves at the maximum level m of T; we eliminate them from
T asfollows. Let t be the predecessor of such aleaf (so all the successors of t are
leaves). There are consistent ¢g(v) over B and for eachi € {1, ..., m— 1}, aso-
lution g_1 of ;_1(v) in E and consistent ¢j (v) over BU {g; : | < i}, with A(t) =
(pm-1, BU{gj : j < m—1}). Since pm_1 isafinite system of linear equations over
BU{ep, ..., em—2}, that is, over the submodule of E generated by this set, it can be
written in the form

k m-2
Pm-1(v) = /\(ri-U = Zrij.ej +G)
i=1 =0

where each ¢ isin B. Sincet is not a leaf, g1 does not define a singleton and
thusr; € P for eachi. Let J be the ideal generated by {r4, ..., r¢}. Without loss
of generality, by Theorem 2.6 of [[4], we may assume that ¢m_1 (v) isacompletefor-
mula and so determines the annihilator | of its solutions. Note that | is necessarily
a P-primary ideal, in fact by Theorem 0.3 of [4], since « is infinite, an ideal is P-
primary iff it isthe annihilator of some element of E. Since J contains |, for somel,
P> J> P'. Thus P must beaminimal primeof J, so J hasa P-primary component
Ji,and Jy = Ja\p={se A:rse Jforsomer € A\ P} (sinceany other primeideal
belonging to J must meet A \ P). Let

Z=loeck.ga)=... =€n2(a)=Cy(a) = ... =c(a) =b, =0}.

Ziscofiniteand J; is P-primary, sothereisd € E withann(d) = J; and supp(d) C Z
(where supp(d) = {« € « : d(a) # 0}). Choose en_1 asolution of ¢yn_1 in E such
that en_1|Z = d|Z. Thisis clearly possible since J; > J. Since each successor of
tisaleaf, b isdefinable over BU {ej : j < m}, by some formula ¢m(v) of the form
“sv=Y1;sj.e+c withs¢ Pandce B.

Let o*(v) besv = ernz_ol PoS;.€j . Then po.bisthe unique solution of ¢* in E.
Now for every i € Z, pgSm—1.€m—1(i) = 0, SO poSm_1 € ann(d) = J;. Thusthere
isr e A\ Psuchthat rpgsm_1 € J. Let ¢**(v) berswv = Z’j“;olrposj.ej . Since
r € P, po.b is aso the unique solution of ¢** in E. Now rpgSm_1 € J, S0 there
arety, ..., tx € A such that rpgSm_1 = Z!‘thiri . Sinceforl<i <Kk ri.en1=
ZTz_ozrii'ei + G,

k
rPoSm-1.€m1 = (O_tifi).em1
i=1

= Zti.(Zrij.ej +Ci)

k m—2
1 j=0

k

m—2 k
= (Ztirij).ej+2ti.ci
=0 i=1

=0 i=1
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Thus ¢** can berewrittenintermsof ey, ..., en_» adone, as
m—2 k k
P12 (V) = “rsv =Y (rposj+ ) _tirp).ej+ > ti.g".
j=0 i=1 i=1

Replace the formula part of A(t) by ¢, (v), and delete all the successors of t.

Oncewe have carried out the above processfor al theleavesof T, theresult will
clearly be an analysis of rk™ (pg.b, B, E), necessarily of rank m — 1 since we have
truncated all the maximal leaves of T. Thisisthe promised contradiction.

The authors have considered the problem of the Deisser rank complexity of ar-
bitrary injective modules (over a commutative Noetherian ring), that is, the case of
arbitrary direct sums of indecomposables, but Conjecture 2.15 of [4] remains open.
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