523

Notre Dame Journal of Formal Logic
Volume 35, Number 4, Fall 1994

Some Results on Numerical Systems
in A-Calculus

BENEDETTO INTRIGILA

Abstract  Inthis paper we study numeral systemsin the 1 8n-calculus. With
one exception, we assumethat all numerals have normal form. We study thein-
dependence of the conditions of adequacy of numeral systems. We find that, to
agreat extent, they are mutually independent. We then consider particular ex-
amples of numeral systems, some of which display paradoxical properties. One
of these systems furnishes a counterexampl e to a conjecture of Bohm. Next, we
turn to the approach of Curry, Hindley, and Seldin. We dwell with the genera
problem of obtaining their results with the additional requirement of noncon-
vertibility of numerals. In particular we solve a problem that they left open.
Finally, we give the first example of an adequate unsolvable numeral system
without atest for zero in the usual sense, thus solving a problem of Barendregt
and Barendsen.

1 Introduction and summary In the A-calculus numeral systems are, informally
speaking, sets of terms suitable for playing the role of numeralsin the representation
of recursive functions by A-terms. Formally anumeral systemd =do, ...,dn, ... s
called adequate if al the recursive functions can be A-defined with respect to d (see
Definition 3.3).

In a classical approach, first proposed by Bohm and Gross [[3] and further de-
veloped in Barendregt [1], Curry, Hindley, and Seldin 6], and Wadsworth [[10], this
guestion is reduced to the existence of four terms satisfying afew natural equations
(which are exactly the functional counterpart of the first two Peano axioms of arith-
metic). More formally, it can proved that if the successor, the predecessor and a test
for zero can be A-defined then the system is adequate (see Proposition 6.4.3 of [[1]).
The simple character of thistest facilitated the understanding of the great complexity
of numeral systems and related ones, see [[10], and Rezus [[7].

To simplify matters it is natural to require that numerals are terms in normal
form. Inthis paper we adopt this requirement and we study (quasi)-numeral systems
with numeralsin normal form, (with the exception of Section 6).
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Nevertheless, it is also possible to study numeral systems with numerals with-
out normal form. This was first done by Bohm and Dezani, see [[7]. Although these
numerals do not have normal form it is generally possible to detect when the com-
putation of a numerical result is completed. However complications arise for there
exist adequate numeral systems without a test for zero in the usual sense, so that in
this case the above-mentioned conditions are not necessary. |mproving previous re-
sults of Barendregt and Barendsen, we are ableto give an example of suchasystemin
Section 6 (see Barendsen [|2] for adifferent exposition). We al so discuss how to refine
inthis context the Barendregt-Wadsworth thesisthat “ undefined means an unsolvable
term.”

In Section 3 of this paper we study the independence of the above mentioned
conditions of adequacy. This problem has been extensively treated in Chapter 13 of
[E]. In Section 3 we consider the independence questions in the genera setting of
(closed) quasi-numeral systems (in short QNS) see [, i.e., infinite sets of pairwise
non-convertible (closed) terms. We show that even in the restricted case of r.e. nor-
mal, closed QNS, the existence of successor, predecessor and test for zero are, with
only one exception, completely independent of each other.

In fact the following table holds:

sucessor predecessor test for zero  r.e, QNS

zZzzz<<<<
zz<<zz2<<
z<z<zZz=<z2<
<< <Z<=<=<=<

Table 1

where the first three columns describe the eight a priori possibilities (about the ex-
istence of successor, predecessor and test for zero) and the last oneissetto Y or N
according to whether there existsar.e., normal, closed example. We a so show that it
ispossible to find anormal, closed QNS of (N,Y,Y) “type” and that every such QNS
must be not r.e.

In Section 4, we consider particular examples of numeral systems, some of
which display paradoxical properties. One of these systems furnishes a counterex-
ample to the following conjecture of Bohm [K]}:

Claim 1.1 Letd bean adequate numeral systemwith numeralsin normal form. It
isalways possible to find a successor [s] 4, a predecessor [p] 4 and atest for zero [Z] ¢
such that:

1 [sl¢ dn>dpe1s

2. [pla dp4 1 >dn;

3. [4qgdo>T, [Zdqdne1>F;
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(where > means strong normalization, i.e., every sequence of reductionsisfinite, see
Section 2).

We exhibit asacounterexample asystem d with numeral s, successor, predecessor and
atest for zeroin normal form, such that for every choice of [s]q, [p]g @and [z]4 none of
(i) — (iii) holds. Independently, Statman [[9] found a different counterexample which,
in asense, furnishes a stronger negative result. Statman’s NS has numeralsin normal
form, but it cannot have atest for zero in normal form.

These systems are, in a sense, paradoxical. In the numerals some information
is coded which is completely useless from the computational point of view and has
the unique function of creating infinite reduction processes. We show that another
such system, consisting of Al-termsin normal form, is an adequate numeral system
in the LK -calculus but not in the A1-calculus. We also generalize some constructions
of [[Z], showing that some natural sequences of termsturn out to be adequate numeral
systems.

In Section 5 we come back to [[]. In this framework an abstract set of terms:

[0]. [SI[0], [SI([s][OD). - -

is considered, and abstract operations on this set satisfying some given equations are
studied.

No hypothesis is made on previous terms, so they may turn out to be mutually
convertible. Wetry to link this approach with the previous one (in term of QNS) and
we also dwell with the general problem of obtaining the results of [[E] with the ad-
ditional requirement of the none convertibility of numerals. Asfar as successor and
predecessor functions and test for zero are concerned we show that the corresponding
resultshold, but in 6] many other operations and functionalswere considered: there-
cursion operator, the -operator, etc. We do not consider these operations here, with
the exception of the -operator, and we show that it cannot be defined from successor
and predecessor only, thus solving a problem left openin [ig].

2 Preliminary remarks Wework in the 187 calculus. We follow [1] for notation
and terminology. However, especially with respect to Bohmtrees, we often useinfor-
mal arguments based on the well known informal picture ([[1], 19.1.3) of the Béhm
tree BT(N) of aterm N with head normal form Ax; ... Xp.XiM1... M¢:

AX1. .. XneXi
BT(N) = /\
BT(Mq)... BT (M)

Inthis case we say that x; isthe head variableand x; . . . X, the head abstraction vari-
ables of the node. If N is as above, then the grade of N ist.

We shall often use, without explicitly mentioning them, the basic results on
terms with head normal form (see Paragraph 8.3 of [[1]). We use capital letters M, N,
L,... for arbitrary terms. The lowercase letters x, y, z, and &, (possibly with indexes)
denotevariables. Other lowercaseletterssuch ask, n,m, p, r, t. . . denote natural num-
bers. We denote with A( the set of natural numbers. The symbol “=" between terms
denotesidentity modulo a-convertibility, whereas“=" denotes -n-convertibility and
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“#£ " denotesnon-8-n-convertibility. Weread X > Y asmeaning that X reduces (mul-
tistep) to Y. A term X isinnormal formif it cannot be reduced. Sometimeswe shorten
“normal form” to “nf.” When'Y isin normal form, we write X > Y to mean that X
strongly reducesto Y, i.e., X reducesto Y and every chain of reduction steps starting
from X isfinite. Asusual, by combinator we mean aclosed term. We shall often use
the following combinators:

| = AX1.X1; K = AX1%0.X1; O = AX1X0.X%o.

In particular, we use K to represent the Boolean value* True” (also denoted by T) and
O torepresent thevalue“ False” (alsodenoted by F). If M and N areterms, (M, N ) is
AX.XMN and, more generaly, if My ...M, areterms ( My.. . Mp) iSAX.XM7...My.
Given aterm M, M" denotes the composition of M with itself n times.

3 Quasi-numeral systems

3.1 Definitionsand notation  We recall some definitions from Paragraph 6 of [1],
and from [[7].

Definition 3.1 A quasi-numeral system (QNS) d is an infinite sequence of terms:
d=do,...dn...

such that for i # j, di #d;. A QNSisnormal if each dy isin normal form. A QONSis

closed if each dj, is closed.

In the remainder of this paper (with the exception of Section 6) we only consider nor-
mal closed QNSs so that, par abus de langage, QNS always means normal closed
QNS. We denote QNSs with letters ¢, d, g.

Definition 3.2 A QNSd:

o hasasuccessor if there exists aterm [s]q such that [S]qdn = dni1;
e has apredecessor if there exists aterm [p]q such that [p]gdn.1 = dn;
e hasatest for zero if there exists aterm [z]4 such that [Z]qdo = T and [Z]qdn1
=F.
If the QNS d isclear from the context, we drop the subscript and simply write[g], etc.
Definition 3.3 A QNSd:
e isanumeral systemin the strong sense (NS) if it has a successor, a predecessor,
and atest for zero;

e is an adequate numeral system if for every partia recursive function f with
vaue f(ny, ..., ny) thereisaterm F such that:

Fdn,...dn, = dfn,..ny, if fisdefinedforng...nm;
= an unsolvable term otherwise.
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Remark 3.4 Itiswell known that every NS is an adequate numeral system (see
Proposition 6.4.3 of [I]). Conversely an adequate numera system with numerasin
normal form isaNS. However this holds true only for normal QNSs, see Section 6.

Remark 3.5 Anexampleof aclassical NSisthe Church NS: n = Ayx.y"x.

In the following, we shall denote with n the nth element of Church system, and
with [s], [ p] and [Z] respectively a(standard) successor, predecessor and test for zero
of the Church NS (see Chapter 13A of [E]).

3.2 Independence of adequacy conditions A natural question to ask is whether
the three requirementsin the definition of NS (the existence of successor, predecessor
and test for zero) are mutually independent. To answer thisquestion we observethat a
well known result of Barendregt and Wadsworth (see[[L0] or 6.8.21 of [1]) establishes
that the QNS d defined as follows:

=K"
n
has successor and predecessor but not test for zero. Looking for a QNS without suc-
cessor, we have first to make another distinction between different QNS.
Definition 3.6 A QNSd isrecursively enumerable (r.e.) if {dn},cq isar.e. set of
terms.
Lemma3.7 A QNSwith successor isr.e.

Proof: We use Church thesis. Let [s] be a successor for the QNS d. To have an
effective enumeration of the elements d,, of d, we start with dg and observe that for
each n, [5]"dg reduces to the unique normal form dp,.

Theorem 3.8 There exists a QNS without successor but with predecessor and test
for zero.

Proof: Let Q beanonr.e. set of Church numerals such that 0 € Q. We set:

On = the nth element of Q in the increasing order,
do = (00)
dhyr = (Ong1,0n).

Obvioudly, d is a QNS with predecessor [p]dn,1 = dny 10, and test for zero [2]dy, =
[Z](dnK). By Lemma 3.7 d does not have a successor.

In the following section, we show that isimpossible to find ar.e. QNS with the
properties of Theorem 3.8. In order to establish the independence of adequacy re-
guirements, it remainsto prove that there exist QNSs with successor and test for zero
but without predecessor.

Theorem 3.9 There existsa QNSwith successor and test for zero, but without pre-
decessor.

Proof: Letdg= (I,T), thend,,1 = (K™?I,F). Obviously d has a successor and
atest for zero. Assume [p] to be a predecessor for d. Let X be of the form K"l then
we have:
[p(KX,F)O = T if X=1, and
F if X#I.
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But then Ax.[p]{ Kx,F)O would be atest for zero for the QNS g with g, =K"I, which
isimpossible.

3.3 Further resultson independence  We show that even in the restricted case of
r.e. QNSsthe existence of successor, predecessor and test for zero are, with only one
exception, completely independent of each other. In fact Table 1 holds.

Now the line (Y,Y,Y) of this table corresponds to NS. The lines (Y,Y,N) and
(Y,N,Y) were treated above, and we shall consider line (N,Y,Y) in the following sec-
tion. We consider the other linesin Table 1 below.

Theorem 3.10 There exists a r.e. QNS without any successor, predecessor or test
for zero. (Case (N, N, N)).

Proof: Letd,=K"1n+ 1. Weclaimthat d isthe required example. Our method
of proof isalmost the same asthat of [[1Q]. For brevity we consider only the successor,
the other cases being similar.

Assume that [s] = AX1...X.EM1... My isasuccessor for d. If & # xq, then
[s]dm cannot have, when reduced to nf, more than k — 1 head abstractions for every
m, which isimpossible. If & = x4, then for m > p we have:

Sldm = AXp ... X K™ Pm4 1 = K™kPmy 1,
El
On the other hand:

dme1 = K™2m4 2,

and hence we have a contradiction.

Theorem 3.11 Thereexistsar.e. QNSwith only a test for zero. (Case (N, N, Y)).
Proof: Let d, be defined asin the proof of Theorem 3.10. We set:

Jo = ( d01T ) qu-l = ( dl’H—l’F )
Obviously, g = qg,. . ., On,. . . iIsar.e. QNS with test for zero. On the other hand, g
cannot have a successor [s]q for otherwise we could find a successor [s]¢ for c = d—
{ do}, setting:

[slc = Ax.[s]q(x. F)K.

However ¢ cannot have a successor (see the proof of Theorem 3.10). To prove that
a predecessor cannot exist, we invoke Corollary 4.7 of the next section. In fact, q
beingr.e., atest for zero together with the existence of a predecessor would imply the
existence of a successor.

Theorem 3.12 Thereexistsar.e. QNSwith only a successor. (Case (Y, N, N)).

Proof: We set:
do =K
dnt1 =dpo dp,

where o represents infixed composition. Obviously d =dg, ...,dn, ... isar.e. QNS
with a successor. By a simple induction, we find that:
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dn = AyXg... Xon.V.

Now suppose [p] is apredecessor for d. Wecanassume([p] =Az;...%.zM1...Mp.
We note that i must be 1, for otherwise [p] dn;1 = dn could not have unbounded
many head abstractions. Itfollows, for 2™ > m, [p]dni1 =AZ... Z X1 ... Xs.(M1)x;
where (M1)* = M[dp,1/2] and s = (21 — m+ 1). Now observe that the variables
Z1 ... Zs do not appear, after renaming, in (M1)*, so they cannot be eliminated by »-
reduction.

It followsthat [p] dy,..;—when reduced to nf—hasno lessthan sirreducible head
abstractions, but s > 2" + 1 (beginning from asuitable np) and thisisimpossible. For
atest for zero, the proof is similar.

Theorem 3.13 Thereexistsar.e. QNSwith only the predecessor. (Case (N, Y, N)).
Proof: We set:
dn= (KZ'1,..., K?1,...KI).

where 0 < i < n. Obviously d =dy, ...,dn, ... isar.e. QNS with a predecessor
[p] = Ax.xoK. Now, suppose that [s] is a successor for d. We can assume [s] =
AX1...%.XiM71...M¢. We note that i must be 1, for otherwise [] dn, = d,,1 could
not have an arbitrary large grade (recall that the grade is the number of arguments of
the head variable). Now we consider the leftmost branch B of the Bohm tree of [g].
Suppose that B is an infinite chain of occurrences of the variable x; as head variable
at every node. Then we havein [g] d an infinite leftmost sequence of the form:

o)

so that [s] dn, cannot reduce to nf because it has an infinite leftmost reduction se-
quence.

It follows that for some m the mth node of B isavariable & # x;. Now wein-
troduce some definitions to describe the situation after substitution of dp, for x; in[g],
and after reductions of the form:

(*) dnX =X(K21)... (K21)... (K]).
Let My ; denote the jthterm, for 1< j < m, of the following sequence: let

M1 1=My;
for j < massumeinductively that M1 ; hasthe form:

)»le...Xjrj.ijjl...thj,
then we put

Ml,j+1 = Mjl'
Noticenow that & isx; if ] < manditis& otherwise(i.e., for j = m). We abbreviate
with X the sequence xj, ... xj, ; and with M, the sequence M, .. Mj,, after sub-
gtitution of d,, for x;. Moreover we abbreviate with Xy the sequence x,. . . X;, with
My the sequence M, . . .M, after substitution of dy, for x;, and with &, the sequence
(KZ'1)...(K21)...(KI). Then after reductions of the form (x) we obtain:

[S] d, = Mo (AX.(AXS . .. (A Xm—2. (1)
(AXin—1. A Xin EMin) K nMin-1) K nMm—2) . . . K nMa) K n M) Mo.
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Now we have different cases:

Casel: ¢isafreevariable. Thisisimpossible because [s] dn must reduce to a
closed term;

Case2: ¢isoneof thexj, forl<j<m,1<k<rj,thenaterm of theform K2'|
is substituted for £ so that for n sufficiently large [s] d, reducesto K'™| where:

t(n) > 2™ — $itj —t—n-(m-1) (2)

and mx = max;rj.
Now everything is fixed, with the exception of n, so that for n = oo the right
side of (2) isawell defined positive number, however

Kt(n)l # dn+17
and we obtain a contradiction.

Case 3. If & isoneof thevariables x,, .. ., X, then after substitution of d, for x;,
Mm, must reduce to K2 ; we can now repeat on My, the same reasoning we fol-
lowed for [s] in Cases 1 and 2. For brevity we give only a sketch, noticing that:

e Theleftmost branch B’ of the Bohm tree of My, cannot be an infinite chain of
occurrences of the variable xq;

o After reductions of the form (x) we obtain for M, [dn/X1] an expanded form
strictly analogous to equation (1), to be put inside (1)
(expanding Mm, [dn/X1]);

e Now consider the new head variable &x:

1. & cannot be afreevariable;

2. &x cannot be an abstracted variable different from xo, ..., x. (only con-
stants changeintheright side of formula(2) and we haveto add aconstant
number of abstractions, but this cannot give us K2 );

3. Assume now that £éx isone of thevariables xo, . . ., %, then for every nit
ispossibleto obtainin Mm, [dn/x1] only afixed number of head abstracted
variables, asis easily seen from formula (1). However thisisimpossible
since M, [dn/X1] must reduceto K21

This completes Case 3 and we have proved that a successor cannot exist. To prove
that atest for zero cannot exist we invoke Corollary 4.7 of the next section.

4 Atripintothezoology of numeral systems NSs, although they are the simplest
infinite sets of terms, can still be very complicated. In [[Z] the problem of a general
classification of NSswas posed and partially solved. However there seemsto beroom
for the* zoological” stadium of research (i.e., the description of “ strange specimens”).
In this section, after giving afew well known instrumental results, we give some ex-
amples of the complexity of this subject.
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4.1 CH-sets Werecall that QNS always means “normal, closed QNS.” As before,
we use the notation [. . .] to denote operations on QNSs.
Definition 4.1 A QNSd:
e Hasaniterator if there exists aterm [it] such that [it]d, = n;
e hasatest for equality if there exists aterm [eq] such that:
[eg]dndm = T if dn =dm;
F  otherwise.

Now we prove the characterization of NSs stated in the introduction.

Lemma4.2 LetQbear.e. setof termsinnormal form, thenthereisatermF such
that:

Q={Fn|ne A(}.
Remark on notation: equality modulo convertibility is extended for brevity to sets.
Proof: Thisfollows easily from the existence of an universal generator E (see para-
graph 8.1.6 of [[1J). We can also require that F is injective on Church numerals.
Theorem 4.3 A QNSd isaNSiffitisr.e. and has a test for equality.

Proof: One direction follows easily. For the other assume d to be ar.e. QNS and
let [eg] be atest for equality of d. Moreover let F be such that Fn=d,,. Obviously d
has a test for zero. We show that d has a successor as follows. Let G be defined by
the following fixed point equation:

Gxy = [eq]x(Fy)(F(sy))(GX(sy))-

It is easily seen that G d,0 = d,, 1. The existence of a predecessor is proved in a
similar way.
Definition 4.4 A QNSd isaCH-set if thereisaterm H such that:

(i) For every dn Hd,, isa Church numerdl;

(i1) For every dy, dm if dy # dp, then Hd, # Hdp,.
Remark 45 Itissometimeseasier totest whether aQNSisaCH-set thantofind an
iterator. However, asfar asr.e. QNSsare considered, these conditions are equivalent.
In a sense the CH-sets are those enumerable “from inside the A-calculus.” We have
the following “ Post-like” result:
Theorem 4.6 Ther.e. CH-sets are exactly the NSs.
Proof: Immediate by Theorem 4.3.

Corollary 4.7 Ar.e. QNSq with test for zero and predecessor isa NS,

Proof: By astandard fixed point construction q hasaniterator. SoitisaCH-set and
the result follows.

Remark 4.8 Noticethat it isnot too difficult to find a QNS not r.e. with aniterator.
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4.2 Bdhm-Wadsworth unusual NSs  In [[10] the problem of finding NSs such that
numerals have unbounded head abstractionsis posed and solved. NSswith this prop-
erty were found independently by Bohm. With the aid of previous results it easy to
find a plethora of such NSs, like the following one:

Example4.9 dp = AyXi... Xn.yN(KXg) .. .(KXp).

Proof: We have to show that d = dg, ...,dn, ... isaNS. Obvioudly d isr.e., and
moreover it is not difficult to find an iterator.

Remark 4.10 Examples like the previous one—but not those examples of Bohm
and Wadsworth—are clearly “redundant.” However the question arises asto how one
can formally discriminate between the two kinds of NS.

4.3 Paradoxical NSs  In [[4] the following problem is posed (recall that we are as-
suming that numerals arein nf):

Problem LetdbeaNS. Isitaways possibleto find a successor [s], a predecessor
[p] and atest for zero [z] such that:

1. [9] dn > dny;
2. [p] dng1 > dn;
3. [Z] do>T,[z] dpy1 > F?

Recall that > means strong normalization, i.e., every sequence of reductionsisfinite.

We exhibit a counterexample below. Independently Statman [[9] found a differ-
ent counterexample which, in a sense, furnishes a stronger negative result. In fact
Statman’s NS cannot have atest for zero in nf.

Theorem 4.11 There exists a NSd such that:

1. d hasasuccessor [ 5], a predecessor [p] and atest for zero [Z] in normal form;
2. For everychoiceof [g], [p] and [Z] none of the strong normalizability relations
(1) — (3) above hold.

Informal sketch of the proof: We start informally explaining the ideas involved in
the proof. We want to disprove Bohm’s conjecture, so we look for aNS d such that,
though numerals are in nf, for every choice of a successor [9], [S] d, reducesto d 1
but not strongly. This means that the reduction process of [g] d, creates subterms
without nf, which are subsequently erased. To make surethat thiswill be the case for
every choice of [g], observe that we can obviously assumethat [s] isalready in nf. So
to get the counterexampl e we encode in the numerals of d larger and larger sequences
Zy, of terms suitable to generate Q (i.e., (AX.xx)(AX.XX)) when substituted in termsin
nf of a given complexity. So for every nf N there will be a numeral large enough to
create an 2 subterm when substituted inside N.

Proof:  For every n, we abbreviate with Z,, the following sequence:

Zn = (K“"I)...(K“”I)LI_.:.I l ww
vp-times wp-times

where up, v, and wp, are to be defined, and w = AX.xX.
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Now we set:
dn = AX.XN(XZy) . . . XZn) 3
e
Zn-times
and we put:

n = 22n, Un = 22n, Up = 2Y and Wn = 2vn,

We claim that the QN'Sd determined by (3) istherequired NS. We subdividethe proof
into two different parts:

1. disaNSwith successor, predecessor and test for zero in nf.

2. For every successor [9] for d there exist numerals d,, such that [s] dpy > dny1
does not hold.

Proof: Part (1): Obvioudy d isr.e. and has an iterator [it] in normal form. In fact
we can put:

[it]= Ay.y(ry1.y12 2K y1)

using the well known fact that n™ is represented, inside Church numerals, by appli-
cation of mto n. It follows from Theorem 4.6 that d is a numeral system. Observe
that the d, terms are uniformly solvable by the sequence

AY1.Y12 2Ky, 1, 1.

With the aid of this sequenceit is possible, by a standard construction (or by the ant-
lion paradigm of Bdhm and Intrigila [5]) to “make anormal” successor, predecessor
and test for zero.

Proof: Part (2): Suppose that [5] is a successor for d. We can assume:
[Sl= AX1... % Xi M1 ... My.

We note that i must be 1 for otherwise [s] d,, = d,,1 could not have an arbitrary large
grade. As in the proof of Theorem 3.13 we consider the leftmost branch B of the
Bohm tree of [5]. We assume that [s] >> nf (otherwise we would be done); so that we
can directly assume that [s] isin normal form. Hence B isfinite and we let k be the
length of B. Two cases can occur:

Casel: for somem < k, the mth element of B isavariable & £ x;.

To prove Case 1 weshall introduce some new definitions: let My j denotethe jth
term, for 1 < j < mof the following sequence: let M1, = M;. For j < massume
inductively that M has the form Axj, ... xj, .§jMj, .. .Mj . Thenweput My j;1 =
Mj,. Observethat &; isthe(j + 1)thelement of B, anditisthevariablexl ifj+1<m
and & # xq if j +1 = m. We abbreviate with X; the sequence xj, ... x;, and with
M, the sequence Mj, .. .M jr; ater substitution of dy for x;. Moreover we abbreviate
with X the sequence Xs . . . X;, and with Mg the sequence M5, . . .M after substitution
of dy, for x;. We consider the situation in [s] d, after reductions of following form:

(*) dnY =YN(Y Zn) .. .(Y Zn).
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Starting from M and considering reduction of type (x) we obtain the following
sequence:

No = A Xm.EMm
Nit1 = AXmn—i+1)- Nin(Ni Zn) - . . (N Zn) Mn—(i1)
Nm =2 X0 Nm-1Dn(Nm-12n) . .. (Nm—l%)%'

Observe that [s] d = A m. Now &, cannot be free, so that we have:
Subcase 1: & = x; for x; in Alp. By induction on construction of the sequence A/
we have the following upper bound for the grade g(&) of £in[g] dy:
g < (22 +1) - m+ Ijtj +r. (4)

But thisimpliesg(§) < 22" whichis impossible.

Subcase2: £ =X, forl<j<mand1<h<r;. Thenweconsider thesubtermL
= Nm—jZn intheterm A (m_j)11. Clearly L can be g-reduced, so that aterm of the
form K| will be eventually substituted for £. But u, = 2% and the upper bound (4)
holds a fortiori for g'(£), the grade of & in Al m—j. It follows that:

L>@K")....(K"D)I1l...llww
%—1
a-times wn-times

wherea > 2Yn — 2. un. By the choice of u, and wp, L reducesto 2, where @ = w w.
This completes the proof of Case 1.

Case2: For every m < k, the mth element of Bis X

We can use the same setting of Case 1, and define a sequence M, j of terms, for
1< j<k—1 asfollows: letM1;=M;. For j < k—1assumeinductively that M1 ;
has the form 1x;j;, . .. Xje, Mjy .. M. Then we put M j;1 = Mj,. Observe that &;
isthe (j + 1)th element of B, and isx; for every j. Moreover M1 1 has the form:
)\X(k—l)l c. X(k—l)r(k,l) - X1.

Asin Case 1, we abbreviate with X the sequence X;; . . . Xje, and with 2/ the
sequence My, . . .Mj, after substitution of dn, for x;. Now we are in a situation sim-
ilar to Case 1, but much more simple. Substitution of dy, for x; in M1 x_» gives us:
AXk—2) - AXk-1) - dn)N(AXk—1) - AnZn) . . . (AX(k—1) - AnZn) Mk_>. Now we consider
one subterm L of the form: (AX(x_1) - dnZn. We have:

L > dp(K"I)...(K"D)IT...1l wow

a-times wn-times

wherea = v, —r_; > 0. Now consider thefollowing subterm L’ of L: L’ = d,(K ")
asisimmediately seen in the reduction of L’ the following subterm L occurs: L” =
Kt Z,. But then by the form of Z,, we obtain L” > 2. This completes the proof of
Case 2, and Part 2 follows.
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The cases of predecessor and test for zero are similar to the one just devel oped, and
will be omitted. This completes the proof of Theorem 4.11.

Now we show that we can find a NS similar to the one considered in the proof
of Theorem 4.11 which is such that its numerals are A-I-terms.

Theorem 4.12 Thereexistsa NSd’ such that d’ satisfies conditions (1) and (2) of
Theorem 4.12 and moreover every d’, isa A-l-term.

Proof:  For every n we abbreviate with $, the following sequence:

Sh=Vn... Vil I....I_I/
vn-times wp-times

where V, isthe following term:
Vin=2AX1... Xy, - Xiwo(Xow) ... (Xy,oo)

and up, vy and wp, are natural numbers to be defined. We define:

d'n = AXXN(XS5) ... (X5)
—
Zn-times

andwe put z, = 22" U, = 2%, yp = 2 and wy = 2. Now the proof follows strictly
the one of Theorem 4.11, observing that if in V|, some x; is substituted with | or V,,
then (sub)terms of the form Q arise.

Corollary 4.13  There exist QNSs of the A-I-calculus which are not NSin the A-1-
calculus but are NSin the A-K-calculus.

Proof: By Theorem 9.1.5 of [1], the NS d’ of Theorem 4.12 cannot have asuccessor
or a predecessor or atest for zero in the A-1-calculus.

Remark 4.14

1. If NSwith numerals without nf are admitted then it is easy to find examples of
NS with the properties of Corollary 4.13. However we stress that the example
we give does have numeralsin nf.

2. Asnoted above, Statman has found NSs without test for zero in nf. Let uscall
d a Statman NSif d isa NS (with numerals in normal form as we always as-
sume) which does not have a successor, a predecessor and atest for zero al in
nf. Questions now arise similar to those considered in Section 3, except that
where before we were concerned with existence we are now concerned with
having nf. We conjecture that these conditions are also highly independent of
each other. Finally we observethat it ispossible, with thetrick usedin the proof
of Theorem 4.12, to obtain a Statman NS such that its numerals are A-| -terms.
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4.4 Church-sequences We now generalize some results of [[Z]].

Definition 4.15 For agiven term N, the Church sequence uniformin N (in short
SU(N)) is asequence sy of terms such that:

SN,0 = N

Suner = (N,...,N)=AxxN"1L
—
n -+ 1-times

Theorem 4.16  For every closed normal term N, SU(N) isa NS.
To prove this Theorem we need the following lemma:
Lemma4.17 For every closed nf N thereisa nf U such that UN = U.

Proof: We use the “ant-lion paradigm” from [E]. Let S=M;...My be afinite se-
guence of termsin nf such that NS =1. Let V be such that Vx = (S, X, X). Then we
setU=VV.

Proof of Theorem4.16:  Clearly SN(N) isaQNSwith successor and predecessor. To
find atest for zero let t be anatural number such that for every nf X we have N(K'X)
> nf. That such at existsiseasily proved by induction on the complexity of N. More-
over, by Lemma4.17, let U be a closed nf such that UN = U. Notice now that:

N[K!'U/xy] ifn=0;
svn(KKU) = { KU ift>n;
U otherwise.

Notice moreover that by asuitable choice of U and t, we can always make N[K tU/x]
different from U. Now we can discriminate SN0 from sy,n for n > t and therefore,
by two applications of the (generalized) Bohm theorem, we are done.

Definition 4.18 For a given term N, the descending sequence from N (in short
SD(N)) is asequence S’y of terms such that:

q\l,o = N
Sunsr = (0 NDY)).
n 4+ 1-times

Theorem 4.19 For every closed normal term N, SD(N) isa NS.

Proof: Clearly SD(N) isa QNS with successor and predecessor. To find atest for
zero, let N = AX; ... Xg.XiM1 ... M. We have different cases:

Casel: m=0sothat N =AX;s...%.X. Thiscaseisknown, see[Z].

Case2 m>O0andq# m. Lett > 1suchthat NV > nf; whereV = K!l. Now we
have S'n ne1V = K1 and NV#£K 1 for asuitable choice of t(t > q— 1); therefore
we can apply the Bohm Theorem.
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Case3: m=> 0andg= m. Wecan assumethat i = 1, otherwise we can simply use
the argument of Case 2. Now, let V' = Azy; ... y;.zwheret is great enough to have
N[V’/x1] > nf. Then we have:

, SN o1 if n> 0
SV LIV—L - { M[V'/x1] otherwise;

t-times
and we obtain anew sequence: M1[V'/X1], N, {N), ({( N))...If M1[V'/X4] hasthe
form: Mq[V'/x1] = Ax1... Xp.x1Q; ... Qp then we can iterate the process and after
afinite number of stepswe arrive at aterm M’ of theform: M’ = Ax;...Xp.XjQs ...
Qp such that either p # p’, or j # 1, 0r M" = AX;...Xp.Xj. Now we consider the
final sequence:

Py, Pa—1s - ., P1, N, (N), ((N)) ... (5)

where P, =M’. For asuitable choice of t, every term T in (5) is such that T(K'l) =
K11 with the exception of M’(KI) £ K11, but again in nf. Then we can apply the
Bohm Theorem. This completes the proof of Theorem 4.19.

5 The Curry-Hindley-Seldin abstract approach

5.1 Generalities For completeness of exposition, we recall some definitions and
results from Chapter 13A of [[].

Definition 5.1 We say that c is a set of combinatory numerals (SCN) if there exist
closed terms F, G such that:

c={F"'G|n e A}.

Notation Following [[6] we introduce the metavariables [s] and [0] for terms F and
G respectively. We let [n] stand for F"G; that is, the nth numeral of c. But we also
make use of the notation ¢, . Observe that this is coherent with the terminology of
Sections 2 and 3. We use ¢, d, g as metavariables for SCN. As before we append
subscripts to operations or numeras (as [s] 4, [0, €tc.) only when it is needed to
avoid confusion. To link this new approach to the previous one we assume that all
numerals[n] reduceto nf. Thusall the SCNsthat we shall consider in this section are
assumed to have numeralsin nf. Par abus de langage, they will be indicated simply
with SCN.

Theorem 5.2 A SCNcisafinite set or a QNSwith successor.

Proof: Assume that for some m, n, with m > n, [n] = [m]. Then for every g > m
we have FIG = F°G where s= n+re(q — n, m— n), and re(ny, ny) = the remainder
of the division of n; by ny. Therefore cisafinite set.

Now we define operations on SCNs. Definitions of successor [s], predecessor
[p], test for zero[z] and iterator [it] are doneinthe obviousway. If we consider QNSs
as a particular case of SCNs the old definitions agree with the new ones.

Definition 5.3 A SCNc:
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1. hasarecursor if there existsaterm [R] such that for al terms Ty, T»:

[RIT1T2[0] = Tiand
[RIT(T2([s][n]) = Ta[nl([RITT2[nN]);

2. hasa u-operator if there exists aterm [pe] such that for all terms T4, To:

[Pe]T1 T2 =T, if T;T,=[0]; and
[pe] T1 T2 = [pe] T1([s| T2) if T1T> = [n+ 1] for somen.

The following theorem is taken from [[6], see Chapter 13A Paragraph 3, Theorems 1
and 2.

Theorem 54 For SCNs:
(i) each of the terms[it] and [R] isinterdefinable with the pair [p], [Z];
(ii) none of theterms[p], [Z], [it], and [R] are definable only by [0] and [9].

Remark 5.5 The content of Theorem 5.4 (i) isincluded in that of Theorem 2.6.1,
which is dlightly stronger. In fact, by Lemma 3.7 SCN arer.e. sets of terms.

Remark 5.6 Theorem 5.4 (ii) follows from the results of Section 3. We observe
that to prove Theorem 5.4 (ii) in [[6] SCNs are given that turn out to be finite. Now
the general question arises as to whether one can obtain the results of [B] with the ad-
ditional requirement of the mutual nonconvertibility of numerals. We shall be con-
cerned with an example of this general question below.

5.2 Indefinability of the .« operator  We observethat [pe] isaweak form of test for
zero. In fact the existence of [z] implies the existence of [pe] by the following fixed
point construction: [pe]xy =[z](xy) y([pe]x([5]Y)).

On the other side we know from Section 3 that [z] cannot be defined by [0], [5]
and [p], eveninthe QNScase. In[E], Chapter 13A, Paragraph 3, Remark 1, it isasked
whether [pe] can be defined by [0Q], [s] and [p]. We answer this question negatively
below, proving that for the Barendregt-Wadsworth QNS, d, = K"l thereisnot aterm
satisfying the properties of [pe].

Theorem 5.7 The QNSd,=K"I does not have a [pe] term.
In order to prove the theorem we need the following lemma:

Lemmab5.8 Let M be such that Ml reducesto nf. Then there exists a ng such that,
for n > ng, M(K"I) reducesto nf.

Proof: We consider the Bohm tree of M. First of all M hasahead nf: M = Ax; ...
Xg-EM1 ... Mn. If £ = X1 the lemmafollows. If £ # x; then we can assume that x;
occursinsomeM; for1 < j<m.

For each M}, we observe that M j must have ahead nf and if for all M, x; isthe
head variable then the lemma follows. Repeating this argument at each level of the
Bohm tree of M, we have the following alternatives:

(a) for some level every subterm containing x; has x; as head variable;
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(b) for every level there exists aterm containing x;, such that x; is not the head
variable.

In (a) the lemma follows. In (b) we observe that by Konig's Lemma there exists an
infinite branch of the Bohm tree of M inwhich x; isnot the head variabl e of any node.
But in this case M[1/x;] cannot have nf, so that (b) isimpossible. Now we turn to the
proof of Theorem 5.7.

Proof of Theorem5.7:  Assume that a[pe] term exists. Then for each X, Y: [pe] XY
=Y if XY =1 and[pe] XY = [pe] X(KY) if XY = K"l forsomen > 0. Put X = C«l,
(where Cxxy = yx) and let M = [pe] X. Then MI =1, (infact Cxl | =1); and M(K1)
=KI, (infact Cl (K1) =1).

Now for m, n > 2 we have M(K™) = M(K"I). By the Lemma, M(K"l) must
reduce to nf for n > ng, for some ng. Therefore for n > 2, M(K"l) = U for some
normal form U. If U =1 then we can find atest for zero for d putting [Z]dy = Mdp 1.
If U=KI then M would directly be atest for zero. Finaly, if U = | and U # KI, then
by Bohm's Theorem, we could again find atest for zero for d. So all these cases lead
to a contradiction and Theorem 5.7 follows.

Now it isnatural to ask if [pe] isstrictly weaker than test for zero. If finite coun-
terexamplesare admitted, itiseasy to seethat if weput [s] =1 and [0] =1, theresulting
SCN ¢ = {l} has predecessor and a[pe] term (that in both casesis|) but obviously not
test for zero. We do not know if thisisthe case also for QNSs.

Open Problem 5.9 Doesthere exist a QNS d with successor, predecessor and [ pe]
operator, but without a test for zero?

6 Adequate, nonnormal, numeral systems without test for zero  Aswe stated in
Section 1, there exist adequate numeral systemswithout the usual test for zero. Since
ther.e. function f such that: f(0) =0and f(n+ 1) = 1 must be representable, it
follows from Bohm's Theorem that the numerals have no nf. We give an example of
thiskind of numeral system below. First however, we haveto agree about the meaning
of “undefined” in the representation of recursive functions. In fact the Barendregt-
Wadsworth thesis; “undefined means an unsolvableterm” must now berefined, since
numerals may also not have head normal form.

Definition 6.1 Let d be a QNS (normal or not). A partial recursive function f :
N™ — N isrepresented on d by aterm Fif:

(i) Fdp,...dn, =dtn,..ny if fisdefinedforng...ny,
= an unsolvable term different from each d,, otherwise;
(i) we can effectively recognize if a computation has terminated.
Definition 6.2 Let d be a QNS (normal or not), d is an adequate numeral system
if every recursive function is representable on d, in accordance with Definition 6.1.

The following lemma has interest in its own right and states that it is sufficient that
binary functions are representable.

Lemma6.3 Letdbea QNS (normal or not). Moreover let d be an adequate nu-
meral system for every unary and binary recursive function. Then d is adequate for
every recursive function.
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Proof: Let f(m, n, p) beatertiary recursive function (the general caseis similar).
As it is well known (see paragraph 5.3 of Rogers [[]) there exist a recursive pair-
ing function j and recursive projection functions |, r. By hypothesis they are repre-
sented by terms J, L, R. Let the recursive function g(m, n) be defined by g(m, n) =
f(1(m),r(m), n). Let G be aterm representing g. It is easily seen that the term F
defined by Fxyz = G(Jxy)z represents f.

Theorem 6.4 There exist adequate numeral systems without test for zero.
Proof: Let Ux= (xx) o (xx) and set P = UU so that:

(x*) Po P=P
Now we put d, = AX.P(xn). We have to show that:

(iYd=do,...,dn, ... isan adequate numera system;

(i) d cannot have atest for zero in the usual sense.

Proof of (i): By the LemmalG.3] let f be a recursive function of two arguments.
Then there exists aterm F such that F represents f on Church numerals. First sup-
posethat n, mare suchthat f(n, m) exists. Let H; = Aywz. y(wz), i.e., let H; bethe
combinator B. Then Hidp, = Awz.P(wzn). Let Hy = AX1XoX3. X1 (BXo(FX3)), then
Hodm = AxoX3.P(X2(FXsm)). Now we have: Hidn(H2dm) = Az.P(P(z(Fnm))) and
by (x*):

= AzZP(z(Fnm) = df(n m).

We have proved that f, when defined, is represented on d by:
Fx = AXy.H1X(Hay).

Now supposethat n, mare such that f (n, m) isnot defined. Then Fnmisan unsolv-
able term, so thatFxnm does not reduce to any numeral dyi. Furthermoreit is clear
that we can effectively recognize if a computation has terminated.

Proof of (ii): Now we show that d cannot have atest for zero [z]. By [[10], [z] must
have the form [Z] = AX; ... Xm.X{M1...Mq. Now, if g =0, i.e, [Z] = AX{... Xm.X1
then [z]d,, = AX2. .. Xmz.P(zn) which cannot reduce to nf. If g > O then:

[Z] dn = AX2. .. Xm.P(M1[dn/X1]nM)M2[dn/X1] . . . Mg[dn/X1]

which also cannot reduce to nf. This completes the proof of Theorem[64]
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