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Elementary Functions and Loop Programs

ZLATAN DAMNJANOVIC

Abstract Westudy ahierarchy { L5} of Kalméar elementary functionsoninte-
gers based on a classification of LooP programs of limited complexity, namely
thosein which the depth of nestings of LooP commands does not exceed two. It
isproved that n-place functionsin L'§ can be enumerated by asinglefunctionin
L‘;* 2, and that the resulting hierarchy of elementary predicates (i.e., functions
with 0,1-values) is proper in that there are £X™2 predicates that are not in L.
Along the way the rudimentary predicates of Smullyan are classified as £3.

1 Wefocushereonarelatively small class of computable functions, the class of el-
ementary functions, first introduced by Csillag and Kalmar in the 1940s. (By afunc-
tion is always meant a possibly partial function of nonnegative integers, mapping n-
tuples of members of N into N.) Thisisthe smallest class of functions that includes
the successor x + 1, the projection functions U (1 <i <n),x - y,x+yand x-y,
and is closed under composition and bounded sums and products.! Essentially, the
elementary functions are obtained by composition and bounded iteration of the usual
arithmetical operations of + and -.

Elementary functions are of particular interest if we are seeking to character-
ize a “natural” example of a concept of computability narrower than the standard
Church-Turing notion. The standard notion allows arbitrarily complex computations
and places no bounds on the amount of time or storage space required to completethe
computation. For this reason many authors, most notably computer scientists, have
taken the view that the Church-Turing model islargely irrelevant from the standpoint
of actual computing practice and that the limits on the amount of time and space avail-
able must be an essential part of arealistic concept of computation. In attempting to
define a theoretically interesting concept that would meet these concerns, it is natu-
ral to follow what could best be described as afoundational “predicative’ procedure:
we may think of the class of functions computable in such a preferred sense as con-
structed in stages, so that the complexity of computations of the functions at the later
stagesisin someway bounded by functions obtained at the earlier stages. Ritchie[[16]
thus inductively defines the class of “predictably computable” functions as follows:
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the functions computable by finite automata form the initial stage, and at successor
stages we introduce the functions computable by Turing machines that use in their
computations an amount of tape bounded by some function obtained at the previous
stage. (Finite automata are also described in Davis and Weyuker [[8], chapter 8.)

Ritchie's “predictably computable” functions turn out to be precisely the ele-
mentary functions.? In fact, the class of elementary functions has the property that
the total functions belonging to the class are exactly those computable by some pro-
gram, formulated in any one of the standard programming formalisms, in time and
space bounded by afunction that belongsto that very class. (Seg, e.g., Theorem4.1.1
in Cutland [[6].) All this suggeststhat the elementary functions embody an intuitively
significant conception of arithmetic that can serve asabasisfor aplausibly restricted
model of computation. Itiswidely held among computer scientists that such amodel
would be comprehensive enough to include all functions computable “in practice.”3

In §2]we introduce a programming language of Elementary LOOP Programs
(ELPs) that allows only computations of elementary functions, and in §3lstate some
basic properties of such programs and of elementary functions. There we also de-
scribe a particular hierarchy, {L'g}, of elementary functions, originally introduced in
Goetze and Nehrlich [[9], which is defined in terms of a syntactic classification of
ELPs. §4]describes awell known class of predicates—Smullyan’s rudimentary pre-
dicates—which shall serve as a basis for our own arithmetization of ELPsin §§516]
(Predicates are functions that take only 0 and 1 as values.) Our main results are in
897381 in §7]we classify the rudimentary predicates in the hierarchy { £} by show-
ing that they all belong tothe class £3. Then in 88lwe establish enumeration theorems
for the hierarchy {L'g} and also prove that the hierarchy of predicatesis aproper one
in aweak sense. (That the hierarchy of functions { L'g} is proper was established by
adifferent method by Goetze and Nehrlich in [@].) Although the project of carrying
out arithmetization by such extremely elementary meansis of evident interest, it also
makes it possible to set up strongly constructive semantics for arithmetic along the
lines of Kleene's recursive realizability that relies only on elementary functions (see
Damnjanovic [[7]).

2 A register machine or abacus consists of a finite number of registers, each of
which may contain afinite number (possibly zero) of counters. We consider several
programming languages interpreted by reference to such computing devices. A pro-
gram consists of a finite sequence of instructions, which we may assume are labeled
by numerals. The instructions refer to registers by means of variables, distinct reg-
isters being associated with distinct variables out of an infinite list of variables. The
contents of theregistersare then referred to asthe val ues of those variables. One such
language—which we call RM, for register machines—has instructions of the follow-
ing kind:

1. “add1to X”;

2. “subtract 1 from X if X; isnot empty; otherwise, go to m,” where mis alabel
of some instruction;

3. “GOTOm”

The interpretation of such instructionsis obvious, given that X;, X, ... isthelist of
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variables. RM programs are usually represented in the form of directed graphs, or
“flow graphs,” in which the nodes correspond to instructions of type 1 and 2 and the
arrows connecting the nodes express the “Go TO” commands; this is how we shall
describe RM programsin 87| Thelanguage of RM programsisuniversal inthat every
partial recursive function can be shown to be computable, in an appropriate sense, by
some RM program.*

Our primary focus, however, is on LOOP programs, originally introduced by
Meyer and Ritchiein [[L3]. We define these inductively. The instructions include:

1. Vi<~ Vi+1 meaning “add 1 to \;”;
2. V<0 meaning “set V; to 07;
3.V <V, meaning “assign the value of V; to V; leaving V; unchanged.”

(Welist thevariablesas Vy, V1, Vs, ... to distinguish them from the variablesin RM
programs. Welet V, betheinitial ssgment of thislist up to and including V;,.) These
instructions we call arithmetical, and any finite sequence of such instructions is a
LOOP program. In addition, given a Loop program P, the sequence of instructions,

LOOP V;
P
END

is aloop segment, and also constitutes a LOOP program, which isinterpreted as fol-
lows:

if the value of V; isk, perform P exactly k times and then continue with the
instruction following END, if thereis any.

Thevariable V; may occur in P and its value may changein the course of the process.
The number of iterations of P, however, is determined by the value of V; before the
computation begins. This completes the definition of LooP programs.®

What is noteworthy about LOOP programs is that they provide a direct way of
expressing primitive recursion, e.g., X+ y isdefined by primitive recursion from x 4
1. Consider the program,

(1) LOOP X
Y<Y+1
END

(Weuse X, Y, Z, U, ... as"metalinguistic” variablesfor V;.) If theinitial valuesof X
and Y are x and y, respectively, then at the end of the computation their valueswill be
x and x + vy, respectively. If we designate the registers X and Y asthe input registers,
in that order, writing IN X,Y, and Y as the output register, writing ouT Y, we may
regard the process as the computation of X + y. Then the Loop program,

2 Y <« 0
LOOP Z
1)
END

is easily seen to compute x - zif IN X, Z and oUT Y. The sameideais used to show
that x¥, which is defined by primitive recursion from x - y, is also computable by a
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Loop program. In fact, the functions computable by LOOP programs are precisely
the primitive recursive (p.r.) functions (cf. [[I3], and [B], chapter 13).

We also consider an expanded language of LooP,, programs, which differ from
LOOP programsin that complex instructions of the form,

WHILE X #0DO
P
END

arealso alowed, P being some previously given LOOP,, program, possibly containing
occurrences of the variable X. Thisisinterpreted as follows:

perform program P repeatedly until the value of X is0; if and when that hap-
pens, continue with the instruction following END, if thereis any.

If P contains X, the repeated applications of P may result in changes of the value of
X; if X never assumes value O in the process, the computation will never terminate.
Instructions of this type allow us to directly express the (unbounded) least number
operator i, asin,

(ny) A(%n, Y) (3)

aslong asthe characteristic function of the predicate 4 (X, y) iscomputable by some
Loor, program Q in the sense that Q terminates with value 0 in the output regis-
ter Z whenever 4(Xn, y) holds, and with value 1 in Z if =4 (X,, y), the registers
X1, ..., Xn, Y being theinput registerswith initial values x4, ..., Xn, Y, respectively,
and all other registersin Q initially being empty. (Thevariablesfor the other registers
are called local, to be distinguished from the input and output variables.) Then the
LOOP,, program,

Y« 0
WHILE Z #£0DO
QIIN Xq,..., Xn, Y; OUT Z]

Y<«~Y+1
END
computes (3) if IN Xy, ..., X, and ouT Y. The language of LOOP,, programsis uni-

versal and thus equivalent to the language of RM programs. (See [[8], pp. 311-312.)

Hence thelanguage of LOOP programsisstrictly weaker than that of Loop,, pro-
grams, since there exist recursive functions that are not p.r. Still weaker languages
arethe fragments of the LooP language in which abound is placed on the number of
nested applications of LOOP-END commands. Program (2), for instance, has depth of
nesting two, whereas the LooP program for x¥ obtained from (2) in this same fashion
would have depth of nesting three. We shall study the LOOP programs in which the
maximum depth of nesting is <2. It turns out that the functions computable by such
programs are precisely the elementary functions, and so we call such LOOP programs
elementary, or ELP for short.®

We follow [9] in adopting a classification of LOOP programs according to the
number of their subprograms of maximal depth of nesting. In general, given two
classes, 4 and B, of programs, we let 4B stand for the class of programs of the form
g whereP e A andQ € B, i.e., of programsthat result from composition of programs
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from A and B, respectively. (Program P isapplied first.) And given aclass 4, welet
(A4) bethe classthat includesthe programsin A4 aswell asall programs of the form,

LOOP X
P
END

where P € 4. We let L be the class of LooP programs with no LoOoP commands.
Then set
LY=Ly and LA = LX(Lo)Lo).

Let Ly := UyenLX and define
LY=L, and LA = LX(LLy).
Thenlet £K(k > 0, n = 1, 2) denote the class of functions computable by ELPsin LK.

3 Following [13], we define a series of functions fy asfollows:

fo(0) = 1
fo) = 2
fo(xX) = x+2forx>2
fari(X) = fri((l) where fr):(Y) = fa(fa(... (fa(y)) .. ).

X times

(Thus f2(y) = y.) Inparticular, f1(x) =2xand fa(x) = 2*if x > 1. We summarize
some useful properties of these functions.”

Lemma3.1

1 Foranym,n, m<n= fyho fr(X) < fro fp(x).
Foranym,n, m< n=> forany j, k, f4o fk(x) < fko f(j(x).
For any n, fX(y) < fopi(X+y).
Foranyk > 1, fX(x) -y < fXo fi(x+y).
Foranyk > L[ f¥T1(0]Y < f5™o fi(x+y).
6. For anyk > 1, fXt(x) - f5(x) < £5H1o fo(x).
Proof: (1) and (3) areprovedin [|§.] Lemma4 (a) and (b), and (2) follows from (1).
For (4), we have that

akrowbd

B0y < B(f500)- 20 = 287® .2y = pfT 00y
= f(f5T0+y) < fa0 £ o £571(%)
< foo f57 o f(x) < ffo fi(x+y).

For (5),

[ 00) = 21700y — 2700y
fo(f5(X) - y) < f20 f5o0 f1(x+y)
Xt o fr(x+ y).
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Finally, for (6),

fé‘“(x) ) fé‘“(x) — 2f5(0  of¥ (0 _ 92 f5(0) _ ofiof5(x) < o frofo(x) < f215+1 o fo(X).

We shall often use these results without explicitly referring to Lemmal[3.1]

Let P be an ELP. The running time of P, Tp(Xn), is the total number of times
arithmetical instructions are executed during the computation of P started on agiven
input X,. Thus, e.g., if P € Lo then Tp(X,) = Ith(P), and all variablesin P, including
the output variable, have values < max(%,) + Ith(P) < f,"®) (max(%»)). (Here the
length of P, Ith(P), issimply the number of instructionsin P.) If P has LooP instruc-
tions, then some arithmetical instructions may be executed more than once: e.g., if P
is of theform

LOOP X

Q
END

for someELPQ € Lg. Then
Te(%n) < Ith(Q) - x < Ith(Q) - max (%) < 2@ . max(%n) = ;"™ ~?(max(%n))

where xistheinitial value of the variable X. On the other hand, if Vp(Xy) isthe max-

imum of the values any variable in P assumes during the computation started with

input X,, then Vp(Xn) can increase at most by 1 at each step of the computation.
Hence, in generd,

Ve (%n) < max(Xn) + Tp(Xn)
and in the above example, where P € (L), we have that,

f1P)-2 201, (max(%)))

£, (max (%))

Vp(Xn) < max(Xn) + (max(Xn))

A

A

Thistype of argument can be extended to establish upper bounds on the running time
and the maximum value of the variables for any ELP. In particular, we have the fol-
lowing theorem.

Theorem 3.2  Supposek > 1and P € L&, Then both Tp(X,) and V(%) have an
upper boundin 5o £, o £2") (max (%))

We omit the proof, which may be obtained by filling in the details of the argument
givenin [E], p. 259, Lemma5. (See also [[8], pp. 301-302, proof of Theorem 2.2.)
The bound on Vp(Xy,) is also an upper bound on the rate of growth of the functions
computed by the programsin LE.

Theorem 3.3 For eachk > 1, for any p,q > 0, (fé‘ o flp o fg') € L'g.

This easily follows from the definition of the classes L of ELPs and the fact that
f¥ e L& for each k.
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4 We now consider the language BA of Bounded Arithmetic. The nonlogical sym-
bols of BA include the constant “0” denoting 0, a single 1-place function symbol for
the successor function, and two 3-place predi cates which express the graphs of the ad-
dition and multiplication functions on N, respectively. The logical apparatus of BA
differsfrom that of the language of First Order Arithmetic only in that the unbounded
guantifiers Ix and Vx are replaced by the bounded quantifiers (Ix < y) and (VX < y).
Aside from that, terms and formulas are built up and interpreted in the usua way. (If
y =0, (3x < y)A(X, X,) isfaseand (Vx < y)A(X, X,) istruefor any X,.) Follow-
ing Smullyan m pp. 30-31, we call the sets and relations of integers definable in
the language BA constructive arithmetical, or CA for short. The CA predicates are
closed under explicit transfor mation, namely the operations of permutation and iden-
tification of variables, substitution of a constant for a variable, and introduction of
“dummy” variables.

Smullyan found it convenient to represent positive integers in dyadic notation
for the purposes of devel oping the fundamental s of recursion theory onN. Thedyadic
representation is a slight variant of the binary notation: there are two digits, “1” and
“2,” and astring ap, . .., a, of these digitsis the dyadic numera for a, - 2"+ --- +
ag - 2°. Thisdeterminesa1-1 correspondence v between the set D of such strings and
the positive integers, the nth string in the lexicographic ordering of the dyadic strings
being the numeral for n. Wethink of the concatenation operation onthese numeralsas
determining arelation C(Xx, Y, 2) onintegers. C(X, Y, z) holdsiff the dyadic numeral
zfor zisthe result of successively writing the digits of the dyadic numeral y for y to
theright of thelast digit of the dyadic numeral X for x. We sometimeswrite X« y =z
if thisis the case. The dyadic numerals for x and y are then said to be parts of the
numeral for z. It turns out that x = y = (x- 2¥1) 4y, where |y|, sometimes written
£(y), isthe length of the dyadic numeral y for y.8

Smullyan introduced the class of rudimentary relations (RUD) as the smallest
class of relations on N that contains C(x, vy, z) and is closed under the logical oper-
ations —, &, v and —, the bounded quantifiers (VX < y) and (3x < y), and explicit
transformation. He showed that C(x, y, Z) is CA. (See [18], pp. 77-81.) Formally,
the variables range over dyadic strings, but the bounded quantifiers are interpreted
with respect to the natural ordering < onN: e.g., (VX < y)A(X, Yn) holdsjustin case
y=0orelse 4A(x, V) istruefor al strings x such that v(x) < v(y); analogously for
(Ax < y).

The classes CA and RUD were shown to coincide by Bennett [1].° Furthermore,
the same class of relations can be equivaently characterized as the smallest class of
relations on N containing the polynomial relationsthat is closed under bounded quan-
tification. (A relation R(Xp) is polynomial iff R(X,) < P(X,) = 0 for some polyno-
mia P(X,) with integral coefficients.) Thislatter class has also been called the class
of bounded arithmetical relations. (SeeHarrow for moredetails.) It followsfrom
these results that the CA relations are closed under bounded minimization—so that
(ny < 2)A(Y, %n) isCA if A(y, Xn) is—aswell as under quantification bounded by
apolynomial.

Smullyan showed that all of the forma machinery necessary for establishing
the basic results of recursion theory, having to do in particular with Godel number-
ingsand codings of computations, can be devel oped using only rudimentary relations,
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and thus within CA. This fact was employed by Ritchie [[16] in arithmetizing Turing
machine computations as part of hisanalysis of elementary functions as* predictably
computable.” For our purposes, however, it is convenient to use what appearsto be a
more elementary formal apparatus than the one presented by Smullyan [[L8]. We fo-
cus on asubclass of RUD, called the positive rudimentary relations, PRUD for short.
This class was originally introduced by Bennett [[1], who proved that the graphs of
X+ Yy, x-yand x¥ are PRUD. The advantage of working with PRUD is that it can
be shown (see Theorem [4.2]below) that a wide class of rapidly growing functions
defined by primitive recursion from functions with PRUD graphs themselves have
PRUD graphs.1® Thiswill allow usto describe the process of computation of aLooP
program for agiven input in a direct way.

To describe PRUD, we introduce quantifiers over subwords: given a predicate
A(X, Yn), let (VX< 2)A(X, Yn), respectively (Ix < 2)4(X, Yn), hold if and only if
A(u, ¥n) holdsfor any (respectively, some) string uthat isapart (or asubstring) of the
string z. Thus, e.g., (Vx<22)4(X, y,) holdsiff both 4 (2, y,) and A (22, y,) aretrue.
(Notethat 22 = 5 and 2 = 1.) On the other hand, we interpret (Ixxj<z)A(X, ¥n) to
hold iff A(u, y,) istruefor some string u such that |u| < |z|. In general, thisrestricts
the values of the variable X in (3xx<|z) to aset of strings that includes the dyadic
numerals for all integers < v(z), and possibly some more.

The smallest class of relations on D (and thus on N) that includes C(X, V, 2)
and is closed under &, Vv, (VX< 2) and (3x < 2), are called strictly rudimentary. The
PRUD relations are in addition closed under (3Xxj<|z). (It is easily shown that
(Ix < 2) can be defined in terms of (3Xx<|z) and the remaining operations.) Those
PRUD relations R that have complements — R that are also PRUD we call total posi-
tiverudimentary (ToTAL). (In[[] they arecalled strongly rudimentary.) Then strictly
rudimentary relations are PRUD, and PRUD C RUD. Moreover, the following clo-
sure properties obtain:;

Lemmad4.l

1. If RisTOTAL and SisPRUD, then R — SisPRUD.
2. Leta,be N, and let R(X, y,) bea PRUD relation. Then

(IX|xj<a|zps--5zm+b) R(X, Yn)

isalso PRUD.

3. If Risstrictly rudimentary, then sois—R.

4. If Risstrictly rudimentary, then Ris TOTAL.
(1) is obvious, (4) follows from (3), and (2) and (3) were proved in [[I]). From this
point on we use the abbreviated notation (3x « z) in place of the more cumbersome
(EIX|X|§|Z|)- Then (3x « a- z+ b) will be short for (Elx|x|§a-|z|+b)-

The important property of PRUD relations mentioned earlier is summarized in

the following.

Theorem 4.2 (Proskurin)  Suppose
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and furthermore that
z< f(Ym 2 and (f(Ym 2)? < f(Im 2+ D).

If therelations g(Ym) = x and h(x, ¥m, z) = y areboth PRUD, then sois f (Y, 2) =
y.
The proof isfound in [[14].

5 We proceed to sketch how ELP computations can be arithmetized using PRUD
relations. (The detailed treatment isin Appendix 2.) Thefirst step isto code ELPsas
finite sequences of instructions, each of the instructions being one of the five afore-
mentioned types and involving one or two program variables. Thus, e.g., theinstruc-
tions V; < 0 and V; < Vi + 1 will be represented by the ordered pairs (1,1) and
(2,1), respectively, and Vj < V; by the ordered triple (3,1, j). The description of
LooP instructionsincludes one extraelement: aninstruction LoOoP V, that isapart of
aloop segment of length misrepresented by the ordered triple (4, m, i), and the end
instruction END of that segment is represented by the ordered pair (5, m). Thenif an
Loor (Lo)Lo program P of length p consists of theinstructions 14, ..., Iy, (p> 1),
we can numerically represent it by means of the indexed series,

(*) (1, #ly), (2,#12), ..., (p, #lp),

where#l;, for 1 < j < p, codes the ordered pair or triple representing I;. Smullyan
showed that indexed series of finite length, aswell as pairs and triples, can be coded
using only rudimentary relations. We let the Godel number #P of the program P be
the code of ().

To code L 1 and L » programs we employ a somewhat more complex device. An
LY, k > 1, program P has the form

Lo({Lo)Lo)...({Lo)Lo)

k times

We represent it by an indexed series
(k) (0, #Pg), (1, #P1), ..., (k, #Py),

where#Pg isthe Godel number of anL o programand each #P;, 1 < i <k, isthe Godel
number of an (L)L program. (We call the latter the components of P.) Assuming
that the Godel numbering of L1 programsis determined in this way, we may use the
sameideato code LX, k > 1, programs by indexed series such as (xx) in which #P
and #P;, 1 < i < k, are Godel numbers of the component L1 and (L 1)L programs,
respectively. Thus, we may think of L‘§ programs as represented by trees of height
2: the top node is the code of an indexed series of the sort just described, its imme-
diate descendants are the Godel number of an L 1 program and the Godel numbers of
k many (L)L 1 programs, respectively, and the immediate descendants of the |atter
and the endpoints of thetreearetheir Lo and (L o)L o components. (Thisiscarried out
in Appendix 1.)
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The next step is numerically to represent the course of a computation that pro-
ceeds according to agiven L'g program P. Here we need first to be able to represent a
state of the register machinethat executes P. Such amachine stateis characterized by
aparticular assignment of numerical valuesto the variables of P, which we represent
by the indexed series,

(%xx) (0, vg), ..., (S vg),

assuming that all the variables in P come from V : v (0 < i < 's) is the numerical
value of the variable V;, i.e., the contents of the register i at some given timet. (We
shall assume that V, is aways the output variable of P, that the input variables of
P are always even-numbered, i.e., of the form V5,0 < i < j for some j, and that
the local variables of P are always odd-numbered.) To represent a particular stage
of computation according to an L'§ program P we indicate what the state of the ma-
chine that executes the program is at that point and which one of the instructionsin
P is about to be performed. This we do with an ordered pair (i, o), where o codes
some machine state characterized by an indexed series such as (x*x), and i codes an
ordered triple (j, g, m) of integers (j, g > 0and m > 1). Thetriple indicatesthat the
instruction about to be executed is part of the jth (0 < j < k)(L,)L1—Lqif j =0—
component P; of P, namely that it is the mth instruction in the qth (Lo)Lo—Lg if
g = O—component P; 4 of P;.

Thepair (i, o) isaninstantaneous description (i.d.) of aregister machinewith at
most s+ 1 registers computing an L'§ program. We can then completely describe the
sequence of stepsin acomputation according to P as a sequence of i.d.swith the fol-
lowing property: ineach noninitial term ((j p+1, Up+1, Mp+1), 0p+1) Of thesequence,
o p+1 codesthe machine state that resultsfrom o, after the mp-thinstructioninPj | ¢
isexecuted once, themp1-th (= (Mp + 1)-st) instructioninPj ., q.,, if it exists, be-
ing the next one to be performed, if any. (Then j,11 = jpand gpi1 = qp. Incase
Pj,.q, hasonly myinstructions, thendp, 1 = gp + 1and mp, 1 = 1; if thereareonly qp,
many (L o)L o componentsof P; , then jp.1 = jp+1andqpy; =0and mp; =1)
Since LOOP program computations always terminate, the sequence will always be fi-
niteand itslast term of theform ((k+ 1, 0, 1), o*). Then o* codesthe state theregis-
ter machinefinally assumes; we say that such ani.d. isafinal i.d. for aprogram coded
by an indexed series of length k + 1.

What remains now is to express the value of the function computed by a given
program P for arguments X, as the output of the computation started on X, as inpt.
The output will simply be the value of the output variable Vg in the resulting final i.d.
But to express this value as a function of X,, we have to show how the Godel num-
ber for the final i.d. can be determined in terms of X, and the Godel number of the
program P. This we do by precisely describing how, starting with an i.d. that char-
acterizes the initial state of the machine—in which the input variables Vs, ..., Vo,
havevalues x4, ..., Xn, respectively, and al other program variablesin P have value
0: each nonfina i.d. yields a subsequent one in accordance with the program P.

Such adescription is given by the sequence

ZO,Z]_,...,Zj
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where z isthei.d. corresponding to theinitial state of the machine withinput X, each
zj(0 < j < i) the (uniquely determined) i.d. at the jth step of the computation of P
with input X, and z thefinal i.d. (Theni isthe number of stepsin the computation
of P for input X,.) Instead, we consider the sequence,

(M I, 20), (20, 71), ..., I (Z-1, Z).

wherethefunction J*(x, y) := (x+ y)? + x determinesacoding of N x N by asubset
of N. We need to be able to express (t) as the sequence of successive values of a
function H with aRUD graph, and it is for this that we use Theorem[4.2] In terms of
the graph of the function H we define the RUD predicate,

Tn(k, €, Xn, i, u) & OUTPUT (v, y),

which holds just in casei is the number of stepsin the computation represented in
a sequence such as (1) that ends with u, y is the value of the output variable in the
resulting final i.d. v, and €* isthe Godel number of theL'§ program P. Then the value
of the function computed by P for input X, can be expressed in the form

wy[JiFu(Th(k, €, Xy, i, u) & OUTPUT(L*(u), y))] 4

(K* and L* are projection functions associated with J*, sothat J*(K*(x), L*(X)) = x
for any integer x in the range of J*.)

6 For our purposes, it isimportant to find an upper bound for py and 3iduin (4) in
termsof € and X. If Tn(k, €, Xn, i, U), thenu = z, where z isasin (}). Thevalues
of zn, 0 < m< i, arethe Godel numbers of i.d.s of the form

((j, g, m), (vo, - .., vs)™)

where (v, ..., vs)” isthe sequence number, i.e., the code, of the sequence (v, . . .,
vs). (Wearereferring to the coding scheme for sequencesused in [[18], p. 82, whichis
dueto Quine.) Furthermore, if P € L, then vy < fXo £/ o £2"P) (max(%y)) = v
for 0 < u < s, by TheoremB.2] We first look for an appropriate upper bound for
(vo, ..., vs)™.

Lemma6.l1 Supposethatn > 2.

1. Ifa = afor eachi, 1 <i < n, then
ark...%a, = a(z(n—l)l(a) +2(n—2)|(a) _|_‘”+2|(a) +1).
2. Ify>0anda < yforeachi,1<i <n,then
(@, ..., an)" < (22 yynentDHL

The proof isin Appendix 3.

We have been assuming so far that a Godel numbering of EL Ps has been set up.
(Thisisdonein Appendix 1.) It is convenient, however, to introduce an indexing of
L‘g programs that makes explicit the number of instructions, Ith(P), in a program P,
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and the number n of variablesin P. Let J*(e*, Ith(P), n) beanindex of P with Godel
number e*. (Thus, n= L*L*(e), where eistheindex of P.) From Lemmal6.1{2) we

have that

(vo’ o vs)# < (26 X v)L*L*(E)-(ZL*L*(e)+1)+1

Sincein genera
FH(K*(x), L*(0) = (K*(0) + L* ()% + K*(x),
it follows that
L*L*(e)- (2L*L*(e)+1)+1=2(L* L*(e))2 +L*L*(e)+1<2L*(e)+ L*(e)+1.
Hence (v, . .., vs)* < (28 v)3L" @1 andif k> 2,

(vo, ..., v)* < [25(ffo £;"P o £2P) (max(y) )] @+ =
— [ffo fzko fllth(P) o fglth(P)(max()—(»n))]SL*(eHl <
[fé‘ o féi o f]!th(P) o f02Ith(P)(max()—(vn))]SL*(e)Jrl <
[ 50 " (max(%n) + 41th(P) + 12)]3- @+ <
f5o f1(1,"®) (max (%) + 41th(P) + 12) + 3L*(e) + 1) <
fXo fro £25@ ()" (max(%n) + 41th(P) + 12)) <
t5o f1o0 1" (max (%) + 41th(P) + 12+ 4L*(e)) =
fXo £/"PH (max (%) + 41th(P) 4 4L*(e) + 12) <
fXo £/"PF (max(%n) + 41th(P) + e+ 12),

I IA A TN TA A

IA

giventhat K*(e) > 2and L*(e) > 1.

To obtain an upper bound for the values of zy,, note that assuming k > 2 we have
that, for someinteger p < ethat codes an ordered triple (j, g, m),
J(e, f¥o £, (max (%) + 4lth(P) + e+ 12)) <
[28(f% o 1" (max(%n) + 41th(P) + e+ 12))]* =
[f80 5o " (max(%,) + 41th(P) + e+ 12)]1 <
[f5o f§ o £, (max(%,) + 41th(P) + e+ 12)] <
[fXo £/ (max (%) + 41th(P) + e+ 24)]™ <
fXo f1(f, P (max (%) + 41th(P) + e+ 24) + 11) <
fXo fro f8o )P (max(%n) + 41th(P) + e+ 24) <
f5 o £,"P*2(max(%y) + 41th(P) + e+ 36).

J(p, (vo, - .., vs)™)

IANIA IA A I DA A

IA

Thus each term of the sequence (7) has an upper bound:
I* (150 £]"P2(max(%n) + 41th(P) + e+ 36),

fXo £]"PF2 (max(%n) + 41th(P) + e+ 36)) <
< 5 5o ;" P2 (max(%n) + 41th(P) + e+ 36)]° <
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5[ 40 foo £, (max(%y) + 4Ith(P) + e+ 36)] <

< 5[ 5o ;"2 (max(%n) + 41th(P) + e+ 38)] <
< 2o 5o ]2 (max(%n) + 41th(P) + e+ 38) <
< 150 f8o £/"PF2(max(%,) + 4lth(P) + e+ 38) <
< 5o 1" 2(max(%,) + 41th(P) + e+ 44) <

< fé‘ o fllth(P)-i-Z o fOZIth(P)+22(maX()—(»n) te) <

< fkof 1|th(P)+2O fglth(P)+22(Zir1:1Xi te).

(Herewe notethat J*(x, X) = (2x)2 + x < 5x2.) An upper bound for the values of H
suffices as an upper bound for i aswell, since

i < 5o £, o 2P (max(%n)) < 50 £"F) (max(%n) + 41th(P))

by TheoremB.2]

The value of the output variable of P at the end of the computation that started
with input %, is < fX o £,"® o £21"")(max(%,)), as noted earlier. Hence the upper
bound for i and uin (4) just obtained also serves as an upper bound for py. Let

Ki o, 42 c2j422
nI(U, %) = f5o )20 £5722(2 % + u)

For each k, j,n > 1, Y1) e £X. (Cf. TheoremB3land [E], pp. 307-308.) And we
have the following result.

Theorem 6.2 Supposen > 1 and k > 2. For any n-place function f € £X,
f(Xn) =

(12y < ¥ (& %)), u < YY) (€ %) (Ta(K, € %o, i, U) & OUTPUT(L*(u), y))]
for someintegerseand j.

7 For agivenregister machine (RM) program P with registers Xq, ..., Xy, Z1, ...,
Zm, weletIn(X) and In(Zj), for1 <i <nand1 < j <m, betheinitial contents of
X and Zj, i.e., before the computation begins. We let Out(X;) and Out(Z;) be the
contents of the registers X; and Z; at the end of the computation if the computation
terminates. We say that P computes a predicate 4 (X ) in the standard format just in
case for any integersmy, ..., my, if In(Xj)) =m and In(Zj) =0forali, j(1<i <
nand 1 < j < m) and the computation eventually terminates, then Out(X;) = In(X),

Out(Z;) =0 <« A(m,) istrue
Out(Z;) =1 < A(m,) isfase

and Out(Zj) =0foral j,1< j<m.

Let Tp(Xn) be the number of steps in the computation of P that begins with
In(Xj) = xand In(Zj) = O0forali, j(1<i<nand1l< j<m). Thefunction Tp
ispossibly partial. Let M, be the sequence of integers that results when the ith term,
m;, of My is replaced by m¥. Suppose that in general if my < m*, then Tp(¥) | if
Tp(My) | and furthermore Tp(My) < Tp(M). In that case we say that the program P
isregular.
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Lemma7.1 Thereareregular RM programsID(X;, Xj) and LE(X;, X;) that com-
pute x; = Xj and x; < Xj, respectively, in the standard format, and for any x;, X2,
Tip(X1, X2) | and T e(Xq, X2) | and

Tip(X1, X2) <6X1 +8x+9 and TLe(X1, Xo) < 7X1 + 6Xo + 6.

Such programs are easily constructed.

Theorem 7.2 Let 4(X,) be a CA predicate. Then thereisaregular RM program
P that computes 4 (X,) in the standard format and there areintegers p, q, depending
on the logical complexity of 4 (Xy), such that for any X,, Tp(Xn) | and

Tp(Xn) < (fo0 fPo fh)(max(Xn)).

Proof: The argument is by induction on the complexity of the predicate 4 (Xy).

If A(Xn) isaomic, it is of the form xj + xx = X or X; - Xc = X;, or elseis ob-
tained by explicit transformation from such a formula. Now, there are regular RM
programs ID* and ID* that compute xj + X = X and x; - X = X; in the standard
format, respectively, and for any X1, Xz, X3, Tip+ (X1, X2, X3) | and Tipx (X1, X2, X3) |
and Typ+ (X1, X, X3) < f2o f8(max (X)) and

Tipx (X1, X, X3) < (f20 ffo f3)(Max(xq, X2, X3)).

(We leave the construction of such programs to the reader.)

Assume how, as the induction hypothesis, that the Theorem holds for CA pred-
icates B(Xn) and C(Xm) and that regular RM programs P and Q compute B(X,) and
C (Xm), respectively, as stated in the Theorem. Let yi(k < m) be the free variables
of C(Xm) that are not among X,. Then the following is aregular RM program P& Q
that computes (B& C) (%n, k) inthe standard format such that Tpgq (Xn, Yi) { for any
Xn, Yk, and Tpg.q (Xn, Vi) < Tp(Xn) + To (%n, Yi) + 3.

_J P @eQ

@_.

By the induction hypothesis, Tp(Xn) { and To (Xn, Vi) | for any X, k. In addi-
tion

Tp(%n) < (fzo0 £ o f) (max(Xn))

and
To(%n, Vi) < (f20 f1p2 o f(§‘2>(max<>?n, Yi))

for some py, g1, P2, Gz. Then,
Tpeq(Xn, Yi) < (f20 £ o f) (Max(Xn))+
+ (f0 120 £52)(Max(%n, Yi)) +3 <
< 2(fpo f)THPLPR) o f TR (max (%0, Ti)) + 3 <
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(fg o fll o f21 o flmax(pl,Pz) o fomaX(Q1,Q2))(maX()‘('n’ Vi) <
(fgo leo f& o flmaX(pl,pz) o fomaX(ql,Qz))(maX(;(n’ Vi) <
(le o fg o flmaX(plq P2) fomax(ql’qZ))(maX()_('n, Vi) <

(fo0 flmax(pl’pZ) o fomax(ql’q2)+3)(maX()?n, yk))

IATA

IA

A similar but simpler argument showsthat if aregular RM program P computesa CA
predicate B(X,) as described in the Theorem, then aregular RM program —P can be
found that computes —B(Xy) in the standard format such that, for al Xn, T-p(Xn) | if
Tp(Xn) |, and T_p(Xn) < Tp(Xn) + 2. Then there areintegers p, g such that

Te(%n) < (f20 fPo fI)(Max(%1) = Top(%a) < (f20 £ o fFH) (Max(%n)).

Suppose now that aregular RM program P computes B(X,) in the standard for-
mat, and assume that thelocal variablesin P areall among Z4, ..., Zk. Let P* bethe
RM program that results when the input variable X; in P isreplaced by Z, ;. Then
the following RM program, Yz < xP, computes (Yz < X;)B(Xn) in the standard for-
mat:

\zl+

LE(X, Zs1)
SRR GO X

Then, for al Xn, Tyzexp(Xn) { if Tp(Xn) |. Furthermore, we have that,

Tozaxp(Xn) < 2432 (Tp(Z X2, ... Xn) + 24+ TLE(X1, 2 + D + (X + 1) =
= X1 +3+ T2 (Tp(Z X2, ..., Xn) + (TX1 + 62+ 6) + 3) =

(X1 +3) + X1+ D (Tx1 4+ 9) + L (Tp(Z, X2, . .., Xn) + 62) =

24+ (X1 + D (Tx1+10) +6- T 2+ 20 (Tp(Z Xo, ..., Xn) =

2+ (X +1) (TX14+10)+3x (X + 1)+ 2L Te(Z X, - . ., Xn) =

2+10(% + 1%+ =2 Te(Z, X, ., Xn) <

2+10(2M + 1) + 2 Te(Z X, ..., Xn) <

24+ 2975 L B To(z, %o, ..., Xn) <

2at6 4 T2 oTe(Z X, .o, Xn).

IAIA I

IA

By the induction hypothesis, Tp(Xn) < (o0 flp o fg)(max(?(n)) for some p, g, and
the program P is regular. Hence for each z < xq, Tp(z, X2, ..., Xn) < Tp(Xn), and sO

S Te(Z X, -y Xn) < Xq - Tp(%n) < 24 - Tp(%q) = 20790,
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where g(Xn) = £ o fg(max(Xn)).
Then Tyzexp(Xn) < 2416 4 2xa+0(h) < 29(n)+24+6 Now we have that,

g% +2x+6 = fPo fl(max(Xn)) +2x + 6=
2(£P7 o fAmax(%n)) + x4+ 3) <
2017 o f(max(%n)) + f50)) <
2(1P o £ (max (%)) =

P o 2 (max (%))

IAN Al

But then Ty —xp(%n) < f2 0 £ o f" 4P (max(%,)). The program vz < xP is
easily seen to beregular.

A dlightly different construction yieldsaregular program 3z < xP that computes
(3z < xX1)B(z, Xo, . .., Xn) in the standard format with the same estimate of running
time. This completes the induction on the complexity of 4(X,). Then the Theorem
iseasily seen to extend to the predicates obtained by explicit transformation from CA
predicates considered in the induction. This completes the proof of Theorem[Z.2]

The estimate of the running time given in Theorem[7.21will help us placethe CA
predicatesin the hierarchy L'g. It turns out that computations of RM programs can be
“simulated” using a sufficient number of computations of appropriate loop programs
of very low complexity, with depth of nesting not exceeding 1. Thisisacorollary of
the following result of Meyer and Ritchie [13].

Theorem 7.3 For any RM-program P there is an L, program P* such that the
LOOP,, program,

H<«1

WHILE H £ 0DO
P*

END

isequivalent to P.

(Here H isaloca variable occurring in P*.)
The corollary that interests usis the following.

Theorem 7.4  Let P be an RM program such that Tp(X,) < f(Xn). Then thereis
an L1 program P* such that, for any k > 2, given any L'g program B¢ computing f
(if thereisone) an L'§+1 program L(P) of the form

Bt

S« F

H<«1

LOOP S
P*

END

can be obtained that is equivalent to P.
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(Here, F isthe output variable of B+ and H isalocal variable appearing in P*.) For a
detailed proof of both results, see[[5], 84.2. Notethat if B¢ isan L'g program (k > 1),
then L(P) belongsto

LALo(L1) = L5 2((Lo)La)lo(ly) S LE L)L (L) S LE(Ly) c LA

Theprogram L (P) repeats P* sufficiently many timesensuring at the sametimethat a
larger-than-necessary number of repetitions does not damage the simulation. (Cf. [E],
pp. 546-547.) From Theorems[7.2][7.4]and[3.3lwe therefore have the fol lowing.

Theorem 7.5  For any CA predicate f, f € £3.

8 We now use theideas behind Theorem[Z.4ltogether with other results established
so far to prove the following enumeration theorem for the functions in the hierarchy
{LK1k=>2}). Let L';J be the class of functions in £ computable by some Loop
program of length < j.

Theorem8.1 Letk>2andn> 1. For any j > 1thereisafunction d)ﬁ" € L'§+1,
uniformly depending on k and j, such that for any n-place function g € e

g(%n) = d)lé’j(e, Xn)

for someinteger e, an index of g.
Proof: Let

Wn(k, b, Xn, v) == (ny < v)[3i, u < v(Th(k, b, X, i, U) & OUTPUT (L*(u), y))]
for any n > 1. Then, by TheoremB.2] for any k > 2, n > 1,
g(%n) = Wn(K, & %, Y1 (€, %))

for some e and j, where yf! e LK is as described in §6] (Recall from the proof of
Theorem [.2]that the constant | is given as > Ith(P) for some L program P with
index e that computes g.) The function ¥, hasa RUD graph; moreover,

9(%n) =y & W, (k, € %, ¥EI (€ %), y) =0

where W, is the RUD predicate expressing the characteristic function of the RUD
graph of Wy, By the results of §7]and Theorem[3.3] W,, is computable by an L3(L 1)
program L(P) of theform,

B¢

S« F

H<«1

LOOP S
P*

END
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where P* € L1, and By computes f o £ o fi*(max(X,)) for some py, qz, and
ouT F for B¢. From the construction of L(P) it follows that replacing B ¢+ by an L'§
program B'?’J’”, also with ouT F, that computes

fXo flTPH2 f2itat2(5n X 1),

whichin turn z_wﬁ’j(e, Xn), resultsin an L'§(L1) program equivalent to L(P). Then
Wn(k, € %, Y1y (€ %n)) is computed by an L(L1) < LK** program of the form,

Bl )"

S« F

T<F

H<«1

V<0

LOOP S

P* [IN: K,U, Xq,..., Xy, T, V]
Y «—V

V<V+1

END

where ouT Y, and assuming that the value of the input variable V in P*—which cor-
respondsto theargument yin ¥, (k, €, Xn, z, y)—isrestored at the end of the compu-
tation of P* for a given set of inputs. Hence we may et

@1 (b, %n) = Wn(k, b, %n, Y] (b, %n)).
This completes the proof of Theorem[81]

Remark 8.2  Oneway to further “uniformize” Theorem BLlis to eliminate the de-
pendence of the enumerating functions CDﬁ” on j. This comes at the price of “push-
ing” the enumerating functions for £X “up” to £5*2. Note that, for j = Ith(P),

ki %) < fXo fitPt2o g2tat2isn w4 g <
< o fo((j+ pr+2)+ fIITET2(EN % +e)) <
< 5o (fo(j+ po) + 2]+ 01+ 22+ (ZL;% + ©) <
< QRIS+ (P1+ ) + 224 e+ 2))) <
< 190 f2(E X+ (py+Qy) + 22+ 26) <
< 5o f20 fPFUH(E X + 20) == £K(e, %n)

since Ith(P) < eif eistheindex of P. Then g(X,) = Wn(K, €, %1, £X(e, X)) where
£k € LK and BK(b, %n) := Wn(k, b, %n, £K(b, X)) is computed by an LE™(L4) <
L&™2 program of the same form as above. Hence EK isthe desired £5+2 enumeration
of LX.

We may now invoke standard diagonalization arguments to derive some more
information about how the classification {LX} of ELPs determines the hierarchy of
functions {£X}. Theorem Blstates that & enumerates n-place functions in L';’j
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for k > 2. Weclaim that &%/ ¢ £%1 and so £57 ¢ L&t for k > 2. Note that since
CD‘fj € LK™, then ©%) e L& where @k ) 1= 1~ ®'§’j(x, X),as1 - yiseasily seen
tobein £,. If Ok ¢ Lg’j then ©ki(x) = d)';’j(e, x) for some e, and CI>'§’j(e, e) =
Ekle) =1 = d)'fj(e, e), a contradiction. On the other hand, a similar argument
involving E'{ instead of d)';’j shows that for any k > 2, there are predicates, i.e., 0,1-
functions, in LX+2 that are not contained in £X. (Note that the function,

x) = 0 ifx=0
SIO=11 ifx=0

isin £1.)

Appendix Appendix 1 We make use of the work of Smullyan [[18], pp. 77-87. It
is easily seen from the proofs given there that the following predicates are strictly
rudimentary and hence TOTAL:

1. J(X, Y, 2), the graph of the pairing operation (X, y)#, and K(z, x) and L(z vy),
the graphs of the associated projection operations; we sometimes refer to these
functions directly by J(x, y), K(x) and L(x), respectively;

2. <, <, =, the ordering relations between integers;

3. Seq(x), the set of sequence numbers; x € y, which holds iff y is a sequence
number and x is aterm of the sequenceit codes; and x <, y, which holds just
in case w is a sequence number, x and y are terms of the sequence coded, and
X precedes y in that sequence.

Wefirst define several predicatesthat codethe Godel numbersof arithmetical in-
structions that may occur in LOOP programs, at the same time showing that the pred-
icates are strictly rudimentary and hence TOTAL:

Z(x) & Ay<ax)Id,y.x)
LX) & Ay<ax)I2,y.x)
AX) & YL Y2, Y39 (I(Y1 Y2, ¥3) & I3, y3, X)),
Next, we state the condition under which an integer x codes an indexed series of
length y:
SRS(X, ¥) < Seq(x) & (Fva, v<ax)(J(L, v, v) & v EX) &
& (Y, v2, v<aX)(J(vg, v2, V) & vEX& VI <Y —
(Juy, Uy, u< X)(Plus(vy, 1, u1) & J(Ug, Uz, U) & UE X)) &
& (Vz<ax)(ze Xx— (Av1<2)@Fvo<2)(I(v1, v2, 20 & y>v1 > 1) &
& (Y, va, v < X)(YUp, U< X)(J(v1, v2, v) & J(v1, Uz, U) &
veEX&UeXx—v=U)&
& (Yvy, v2, v < X)(YUq, Uz, U< X)(J(v1, v2, ) & J(U1, Up, U) &
veEX&UeX& v < U — v <yU).

(Throughout Appendices 1 and 2, Plus(xy, X2, X3) and Times(X, X2, X3) are strictly
rudimentary predicates that define the graphs of the addition and the multiplication
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function, respectively. That such predicates exist was proved in [[1].) We define the
predicate“ SRSy (X, y)” the sameway except that in the second conjunct “ J(1, va, v)”
isreplaced by “ J(0, v,, v),” and in the fourth conjunct “v, > 1" isreplaced by “ vy >
0”. Again, these relations are strictly rudimentary and hence TOTAL.

We are now ready to define the predicate “x is the Godel number of an L pro-
gram P of length mand all variablesin P arefrom V,":

LPy(X, m, n) :< SRS(X, m) &
& (Vy,v<aX)[ye x& L(y,v) — (Z(v) v SC(v) Vv A(v)) &
& ((Z(w) v L)) & (Fvp<v)(L(v,v2) & v2 <N))V
V(AW) & (Jvy <v)(Jug, v3<vy)(L(v, v1) &
& J(vo, v3,v1) & 12 <h& v3 < n)).

To describe loops, we define the predicates

LOOP(X, M) &  (3y1, Y2<X)(I(M, Y1, ¥2) & J(4, ¥z, X))
END(X,m) :< J(5,m,X)

meaning “x is the Godel number of a Loop instruction of length m” and “x is the
Godel number of the end of aLoor instruction of length m.” (All of these predicates
are TOTAL, for the samereason asabove.) Then the Godel numbersof (L o) programs
of length mwith variables from V,, are defined by,

LP (X, m, n) 1 LPo(x,m,n) v Ay < x)(@m; < m)(Fk < N)[SRS(x, m) &
& SRS(y, ) & LPg (Y, mq, K) & k < né& (3z<X)(LOOP(Z, m) &
&LL(2) <n& J(1,2) e X) & (Vz<y)(ze y— Qu<z)(Plus(K(2),1,u) &
& J(u,L(2) € x) & I(m, I(5,m)) € X].

The complement relation —LPg) (X, m, n) isalso PRUD:

=LPig (X, m, n) :& =LPy(X, m, n) & (=SRS(x, m) v (SRS(x, m) &
& ((Vz<Xx)(J(1,2) € x— =LOOP(z, M) V LL(2) > n) v
vJ(m, J(5,m)) & x Vv (3z <« x)(3Ik <« m)(Plus(k, 2, m) & SRS(z, k) &
& (Yv1, v2 aX)(Yu<X)(J(vg, v2) € X& 2 < v1 < m& Plus(u, 1, v1) —
— J(u,vp) € 2) & =LPy(z k, n))))).

We proceed to define the Godel numbers of composite LOOP programs. First
we need the predicate CONC(X, X1, X2, M) meaning “indexed series with the Godel
number x of length m is the concatenation of the two indexed series with the Godel
numbers x; and X,, respectively, in that order”:

CONC(X, X1, X2, M) i< (Fuyg < X1) (FUz < X2)[SRS(X1, U1) & SRS(X5, Up) &
& Plus(ug, Uz, m) & SRS(X, M) & (Yy<xp)(Yye X1 —> YeX) &
& (Vy<aXo)(y € X2 — (3y1, Y2<Y) P < X)(J(Y1, Y2, Y) &
& Plus(ug, y1,v1) & Uy < N& Up < n& J(vy, ¥2) € X)].
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Thisisastrictly rudimentary predicate and hence TOTAL. We then set

LPigo(X, M, n) 1< (IXg, X2 K X)(AMg, mp < M) (Juyg, Up K N)
(SRS(x1, M) & SRS(Xp, Mp) & LPg) (X1, My, Up) &
& LPp(x2, mp, U2) & CONC(X, X1, X2, m) & Plus(my, mp, m)),

which defines the set of Godel numbers of (L)L o programs of length m with vari-
ablesfrom V,,. To define the complement of this set, it is convenient to introduce the
following abbreviation. Given some 3-place predicate ¢ (X, Y, 2), let U(x, m, k, n, ¢)
stand for

(Qu « xX)(3Fp <« m)(Plus(k, p, m) & SRS(u, p) &
& (Vug, vp<aX)(Fg <K M)(J(vy, v2) € X& K< vy <m—
— Plus(q, k, v1) & J(0, v2) € U& —@(u, p, N)].

Then

—LPgo(X, M, N) 1< =SRS(x, M) v (SRS(x, M) &
& (VZ,k<aX)(SRS(z, k) & k < m— (=LPyg (z k, n) v (LPg (2 k, n) &
& U(x,mk,n,LPy)))).

We let

LP;(K, X, N) :< SRSy(X, k) & (3z<X)(3M<2)(J(0, 2) € Xx& LPy(z, m, n)) &
& (Vi<X)(0O<i<k— Quax)@m<u)(J(i,u) € x& LPgo(u, m, n))),

and

=LPi(K, X, n) 1< =SRS(X, K) v (SRSp(X, k) & (Fz<x)((J(0, 2) € X&
& (Ym<2)=LPy(z m,n)) v Fi<2)(0<i<k& J(i,2) € x&
& (Ym<2)=LPigo(z, m n)))).

Then LPyi(k, X, n) holds just in case x is the Godel number of an L‘é program all
of whose variables are in V,,. To obtain a PRUD definition of LP;,(x, m, n) and
—LPyy (x, m, n), wereplace the predicate L Py in the definitions of LP,g,, and —=LP,q),
by (3k < )LP;. Anaogous remarks apply to the definitions of LPy)1(x, m, n) and
—LPy1(X, m, n). ThusLP,y,; definesthe set of Godel numbersof (L 1)L 1 programs.
PRUD definitions of LP,(k, x, n) and =LP,(k, X, n) are obtained in the same way as
the definitions of LPy (K, x, n) and =LPy (K, x, n), the sole difference being that L Py
and LP g0 are replaced by LP; and LP;q)1.

Appendix Appendix 2 We now proceed to arithmetize computations on LOOP pro-
grams. We first set

ID(x,m,n) & 3 < M(3j, k, g<x)(Jvg, vz, v3<X) (Plus(, 1, q) &
& J(j, k,v1) & J(Q, v1, v2) & J(v2, v3, X) & SRSH(v3, N)),
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meaning “x is the Godel number of an instantaneous description (i.d.) for a program
coded by an indexed series of length m and with variables from V,.” Then ID is
strictly rudimentary and so TOTAL. Also, let

Fin(x, m) :< (An, u, v < X)(ID(X, m, n) & KK(x) = u& Plus(m, 1, u))

define“xisafina i.d. for aprogram coded by an indexed series of length m.”
We define several auxiliary predicates that will help us describe the process of
computation step-by-step. Let

Y1(X1, X2, N, Y) i (Vj,vax))[j <n& I(j,v) € L(X) —
— ((j# L(y) = J(j,v) € L(x2) & (j = L(y) = I(}.0) € L(x2)))]:
Ya(X1, X2, N, Y) & (Vj,vax)[j <n& J(j,v) € L(X) —
= ((J#LWY) — J(J,v) e L(x)) & (j = L(Y) —
— (Gu<xz)(Plus(v, 1, u) & J(j, u) € L(x2)))];
Ya(X1, X2, N, Y) 1< (Vj,v<axp[j <n& I(j,v) € L(x1) = ((J #KL(Y) —
— J(j,v) € L(x2)) & (j = KL(Y) = (Yw < x1) (J(KK(Y), w) € L(X1) —
— J(j,w) € LO))))];
Ya(Xq, X2, N, 0, K, y) i (Vo< X)[JI(LL(Y), v) € X1 —
— ((v=0— (Fvq, v2 < X)(Plus(i, k, v1) & Plus(v, 1, vo) &
& KK(X2) =12)) & (v #0— (Fvg aXp) (Plus(i, 1, v1) & KK(Xp) = v1))] &
& (Yj,v<axy)[j =n& J(j,v) € L(x1) — J(j,v) € L(X)];
Ys5(X1, X2, 2, K) 1 (Vw < 2)(Vq, v< X)) (J(k, w) € z& J(Q, v) € L(Xy) —
— (@# LL(w) — J(Q,v) € L(X2)) & (= LL(w) —
— (Fv1 < v)[Plus(vy, 1, v) & J(LL(w), v1) € L(x2))))].

This enables us to define the PRUD relation,

Y*(Z, X1, X2, 1, Y, k1, ko) 1> ((Z(y) & Plus(ky, 1, kp) & Y1(X1, X, N, Y))V
V(SC(y) & Plus(ky, 1, kp) & Ya(X1, X2, N, ¥)) V
V(A(Y) & Plus(ky, 1, ko) & Y3(X1, X2, N, y)) V
V(VPp<2)[(LOOP(Y, p) = Ya(X1, X2, N, i, P, ) &
& (END(Y, p) — (Fks < x2) (Plus(ks, p, k1) &
& Plus(ks, 1, ko) — Ys(X1, X2, Z, k2)))).

Welet Yield(z, xq, Xo) abbreviate:

(Am<2)(@An<axy)(Jig, j1. Ky <ax1)Fiz, j2, ke 9 %) @M <« m+ D[SRSy(z, m) &
& ID(X1, M, n) & ID(X, M, N) & K(Xy) = J(i1, I(j1, k1)) &
& K(x2) = J(iz, I(j2, ko)) & Plus(m, 1, m) & 0<i; <m&0<i,<m &
& (Ay<2)@r<y)@u<y)(@q<u)((i1=0— LPy(r,y,n)) &
& A(Y, i1, jo,u,rg,mn & (1 <k <g— Y*(Y, X1, X2, N, U, kg, ko) &
& j1=J2&i1=i2)& (ji<r&ki=q— @Qv<ay)@q<v)(J(j2,v) € Y&
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& LPigyo(v, 01, N) & kp = 1& Plus(j1, 1, j) & i1 =02 &
&LX)=Lx))N& ({1 <mM& j1=r&

&ki=q— Fw<2)@s<w)@Ft<s)(Aq «t)(I(iz, w) € &
& Plus(i1,1,i2) & jo=0& ko =1& L(x1) = L(X2) &

& A(w, iz, j2,1,8,0o,MNM))) & (i1=mM& j1=r&
&kKi=Qg—ir=m&j=0&k =1& L(X1) = L(X2)))]

where

Ay, i, j,ur,g,mn) & O<i<m-— LPgi(r,y,n)& (j=0—
—  LPo(u,0,n) & (j > 0— LPgo(u, g, n)).

Then Yield(z, X1, o) holdsiff thei.d. with Godel number x; yieldsthei.d. with
Godel number x, according to the L‘§ program with Godel number z. Note that when-
ever z is the Godel number of some L‘2< program and x; is the Godel number of an
appropriatei.d., then an x, such that Yield(z, x;, X2) isuniquely determined.

For each n > 1, we let Init,(Xn, z, y) abbreviate:

Ay2 < y)(K(y) = 30,30, 1)) & L(y) = y» & SRSy(y2, 2) &

& (A «K22-n=<z7<2&N>1& (Vj,v<y2)(Vi<2)(I(j,v) € Yo —
— i <N— (3ig,i» < 2)(Plus(i, 1,i1) & Times(2, i1, i) &
&(j#£ir—»>v=0)&JI2, X)) eY& J4 X)€Y & ...

& J(2-n, %) € ¥2))).

Then Inity(Xn, z, y) holds just in case y is the Godel number of thei.d. that corre-
sponds to the initia state of the register machine in which the variables Vs, Vy, .. .,
Vo, areassignedthevaluesxy, . . ., Xy, respectively, and all theother variables V; (0 <
j < 2z) areassigned thevalue 0. Clearly, Init,(Xn, z, y) isaPRUD graph of afunction
Init! (Xn, 2).

We let

Rk, z y,u) ‘< (M n<2z)(LPy(k, z n) & k > 0& SRSy(z, m) &
& ID(y, m,n) & Yield(z, y,u)) v (k= 0V (Ym,n<2)—ID(y, m, n) v
v(Yn<2)=LPs(k, z, n)) & u=0).

Again, wenotethat for any k, z, and y, aninteger u such that R(k, z, y, u) isuniquely
determined and = pwu R(K, z, y, u). Hence the latter function has a PRUD graph. We
introduce the function H by the following recursion:

H(y, X, k,m 0) = J*(K+ 1, Inity (X, m))
H(yv )_{n» k? m9|+1) = J*(H(yy )_{n, ka mai)v /’Lu R(k7 Y» L*(H(y7 )_{n’ k’ m’l))’u)

If welet,

G(Y. Xn, K, M) := J* (U3 (Y, %n, K, M) + L, INit,(Xn, M)
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and
F(Y, %o, k. m,i, 2) 1= J*(UDT2(Y, %o, k. M0, 2), puR(K, y, L*(2), u)
then
H(y, Xn, k, m, 0) = G(y, Xn, k, m)
and

H(y’ )_{n, k’ m’ I + l) = F(y7 )—{ﬂ’ ka mv ia H(y’ )_{n, k7 m7 I))

It is easily seen that the function J* has a PRUD graph given that + and x do,
and the same applies to the associated projection functions K* and L*. Since J* is
increasing, it isclear that the compositions G and F have PRUD graphs. To conclude
that H hasa PRUD graph, it remains only to verify that H satisfies the conditions of
Theorem[2.2]

Note that 0 < G(Y, Xn, k, m) = H(y, X, k, m, 0). Furthermore, assuming that
i < H(y, X, k, m, i), we have that,

OSI<H(yv)_{n9kvmvl)=K*(H(ya)_()nakamal+1))<H(y7)_<n7k’m’|+1)a
andsoi+1 < H(y, Xn, k, m,i + 1). It followsthat,
i < H(y, Xn, k,m, i) 1)

for all i, y, Xn, k, m. On the other hand, from the definitions of F and J*, we imme-
diately have that,

(H(y7 )_{n’ k’ m’ I))z S F(y’ in, kv mv i7 H(y’ )?n, k’ m’ I)) = (2)
— H(y, )_(n, k, m, | + 1)

Let HT be aPRUD graph of the function H, and let

Ta(K, Y, Xn, i, U) & (3y1, Y2, Y3 < Y[I* (Y1, I* (Y2, ¥3)) = Y& LPo(K, y1, y3) &
& y3>2-n& HT(y, Xn, K, y3,i, U) & Fin(L*(u), y»)].

Then we let,

OUTPUT(z y) & (321 < 2)(L(z, z1) & J(0,y) € 7).

Appendix Appendix 3
Proof of Lemmal6.1] (a) is proved by induction on n. The case n = 2 is immedi-
ate by the definition of dyadic concatenation. From that definition and the induction
hypothesis we have that,

al**an*an+1:a(2(n—1)|(a)++2|(a)+1)2|(a)+a:
=a(2n~l(a)+2(n—1)l(a)+”.+2|(a))+a
=a<2n~|(a)+2(n—l)l(a)+.“+2|(a))+1),

provided ap; = a.
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For (b), let usfirst abbreviate aconcatenation ag x a3 * - - -« a, by “apaz . . . an.”
Atallyisastring of 1s. Thesequencenumber (ay, . .., a,)* isof theformVa;vayv . . .
Va,V where V. = 2v2 and v is the smallest tally that is not a part of any a. Then
@, ...,an)" < (y1, ..., yn)* wherey; = yforeachi, 1 <i < n, and the sequence
number (y1, ..., Yn)* isof theformwy,wyoW . . . Wy, W where w isthe smallest tally
that is not a part of y. Then w < 22 W+ — 1) and W < 2(2¥+3 — 1). Since
20 —1<y<22® 1), itfollowsthat W < 2° -y, and so,

#
(@1, ...,an)" < Zy* -+ * Zpya,

wherez = 2°. yforeachi, 1 <i < 2n+ 1. But then, by (a), if welet a(y) =2°-,
we have that,

(a]_, ey an)# < a(y) . 22n‘|(0l(y)) + 2(2”—1)-|(0{(y)) 4o 2'(0{()/)) n l) -
<a(y): @EHDIEON 1) = (5. y)@1EY +1) < (2P.y) 21EY,

wherer := n(2n+ 1). Since 2@ < 25. y+ 1, we then derive
@ ....a)" < (@ (@ y+1) < -2y =2 -yt
as required.

NOTES
1. Here

Ly | X2y i ysxo
X_y'—{o it y>x

the last two operations are usually defined by primitive recursion:
Yy<0 f(Xn, y) =0 Yy<zt1 f(Xn, y) = Yy<z f(Xn, y) + f(Xn, 2)

and
Hy<0f(>_('n, y) = 1 Hy<z+lf()?n, y) = Hy<zf(>_('n, y) . f()_{n, Z).

(Thesign*“:=" meansthat theidentity in question holds by definition.) In general, theel-
ementary functions are not closed under primitive recursion, and thusthey form a proper
subclass of the primitive recursive (p.r.) functions: e.g., superexponentiation (i.e., iter-
ated exponential) is not elementary.

2. A different hierarchy of elementary functions based on an idea similar to Ritchie’s but
using register machine programs (see below) instead of Turing machines was given by
Cleave [4]. These and other hierarchies of elementary functions are compared in Her-
man [[L1]. For textbook treatments of elementary functions see Rose [[17], Brainerd and
Landweber [3], or Cutland [].

3. See, eg., [[3], pp. 269-270. Whether or not thisisthe case, it would be amistake to con-
clude that the Church-Turing model of computability should therefore be abandoned as
obsolete. An unacceptable price would have to be paid in terms of efficiency. A funda-
mental theorem due to Blum implies that for any programming formalism restricted to,
say, elementary functions, there arefunctionsfor which theshortest programinsuch are-
stricted formalism is simply too lengthy and runsfar too long in comparison to programs
for computing the same function formulated in a formalism designed to express arbi-
trarily complex computation procedures. For a comprehensive survey of various other
approaches to bounded computability see [17].
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In Jeffrey [[12], chapters 7,8, there is a detailed informal treatment of elements of the
theory of computability cast in terms of RM programs. A formally precise description
of essentially the same language, Gs, isgiven, e.g., in Constable and Borodin [5], 82. In
Boolos and Jeffrey [2], chapters 6-8, it is proved that the functions computable by RM
programs are precisely the Turing computable functions.

It iseasily seen that every LOOP program is equivalent to one in which the variables V;
in the LooP commands occur neither in the programs P to which the LooP commands
apply nor in any of the subsequent instructionsin P. (Two programs are equivalent if
they compute the same function.)

This was first established by Meyer and Ritchie [[L3], who extended the result to show
that the functions computable by LooP programs with maximum depth of nesting < n
are precisely the functions in the n + 1st class £ of the Grzegorczyk hierarchy of
p.r. functions, for n > 2. (Seef17] for more information about the latter hierarchy.) The
elementary functions form the third class, £8, of the Grzegorczyk hierarchy.

“f o g" stands for the composition f(g(x)) of f and g, and similarly “ fyo---0o f,"
standsfor fi(fo(...(fa(X))...)).

Since we areinterested primarily in sets and relations of nonnegative integers, we shall
systematically interpret the numeral y asthe numeral y — 1for y — 1. Thus, eg., “1" is
0, the numeral for 0, and “2" is 1.

Bennett's view of the significance of this result is that it establishes a strong “isomor-
phism” between the theory of concatenation of strings of symbols on the one hand, and
the theory of integers on the other, at the level of “finitetheories.” Quine [15] originally
showed that such a relation obtains at the level of “infinite theories” with unbounded
quantifiers allowed.

Proskurin [[14] proved that the majorizing functions f,,, n > 0, that determine the Grze-
gorczyk Hierarchy of p.r. functions all have PRUD graphs, and that the same is true of
even the Ackermann function, which is known to be non-p.r.

Here we use some obvious abbreviations when dealing with the pairing operations J, K
and L: eg.,
KL(X) =y:& (Fz<X)(L(X,2) & K(zZ, V)).
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