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Abstract We define prenormalmodal logics and show that S1, S1◦, S0.9, and
S0.9◦ are Lewis versionsof certain prenormal logics, determination and decid-
ability for which are immediate. At the end we characterize Cresswell logics
and ponder C. I. Lewis’s idea of strict implication in S1.

1 Introduction The modal logics S1, S2, S3, S4, and S5—the “Lewis systems”—
made their first collective appearance in [14].1 The logics were presented syntacti-
cally, by means of axioms and rules of inference, and it was established that they are
distinct and form a chain under inclusion, with S1 being the weakest, or “strictest” in
Lewis’s accounting. The appearance of possible worlds models in the late 1950s ex-
pedited a systematic attempt to analyze modal logics semantically. As is well known,
the normal logics S4 and S5 were the first of the series to receive satisfactory treat-
ment in possible worlds terms. The others, being nonnormal, had to wait longer. The
last to succumb was S1, for which Cresswell [4] provided a possible worlds model
theory.2

Most modal logics studied in recent years have been at least classical, in the
sense that they permit replacement of logically equivalent formulas. The logic S1,
however, is nonclassical, as are certain others in its vicinity, notably S1◦, S0.9, and
S0.9◦. In this paper we present a uniform approach to S1 and these close relatives by
way of a class of classical “prenormal” logics, interesting in their own right.

Following some preliminary definitions we introduce prenormal logics, develop
their semantics, and establish determination and decidability theorems. Then we de-
fine certain nonclassical extensions of prenormal logics, of a kind we call Lewis log-
ics, determination and decidability results for which are thus ready to hand. Once we
describe S1, S1◦, S0.9, and S0.9◦ axiomatically and note some of their salient princi-
ples, the upshot is an identification of S1 and its relatives as Lewis logics. Finally, we
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generalize a key schema and rule and in terms of them characterize a class of what we
call Cresswell logics; this raises a question about Lewis’s idea of strict implication.

As will become evident, our approach in this paper is inspired by Cresswell’s
work and is based on a central idea due to him, viz., models of the kind he introduced
in [4], which combine features of the familiar “Kripkean” relational models with their
more general neighborhood counterparts first introduced by Montague and Scott.

2 Preliminary definitions In the course of the paper we consider a host of axiom
schemata and rules. Naming them all in a mnemonically satisfactory way presents
problems. Certain conventions will help. We begin with these two formulas:3

(N) ��
(Q) ♦⊥.

Then given a schema S we write nS for the schema N → (S), qS for the schema Q →
(S), and �S for the schema �(S). For example, among the schemata to be considered
are the following:

(K) �(A → B) → (�A → �B)

(X) (�(A → B) ∧ �(B → C)) → �(A → C)

(T) �A → A.

Thus by our convention we also have, inter alia:

(nK) �� → (�(A → B) → (�A → �B))

(qX) ♦⊥ → ((�(A → B) ∧ �(B → C)) → �(A → C))

(�T) �(�A → A).

(To aid memory, this is K for Kripke, X for chain-rule, T for Feys’s logique t, N for
normal, and Q for queer.) If we agree to list

(PL) the set of all tautologies,

as a kind of schema, we can stretch our convention a little by registering as well the
set of necessitations of tautologies:

(�PL) {�A : A ∈ PL}.
Another convention is to give rules a label beginning with the letter R. Examples are
rules of necessitation and denecessitation, Scott’s rule, a rule of congruence called
RE for historical reasons, and a general rule of replacement:

(RN∗) A / �A
(RN∗) �A / A
(RK) (A0 ∧· · ·∧ Am−1) → B / (�A0 ∧· · ·∧ �Am−1) → �B(m≥ 0)4

(RE) A ↔ B / �A ↔ �B
(RRE) A ↔ B, C / CA/B.

—where CA/B results from replacing one occurrence of A in C by B.5 Apart from
substitution the only deviation from this policy comes with a couple of rules of modus
ponens—the usual version and a “strict implication” counterpart:

(MP) A → B, A / B
(SMP) �(A → B), A / B.
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We also occasionally use “n” and “q”, not always with obvious meanings, in names
of rules. Some examples:

(RnN∗) A / �� → �A
(RnN∗) �� → �A / A
(RnK) (A0 ∧ · · · ∧ Am−1) → B / �� → ((�A0 ∧ · · · ∧ �Am−1) →

�B)(m≥ 0)

(RqX) A∨ B / (�A∧ �B) → ��.

We should emphasize that to say that a logic provides a rule of the form

A0, . . . , An−1 / B

means that the logic contains the conclusion Bwhenever it contains all the hypotheses
A0, . . . , An−1. In some cases we state a condition on a rule. One example is replace-
ment for tautological equivalents:

(RRTE) C / CA/B—whenever A and B are tautologically equivalent.

Another example is the rule RNAx mentioned later on.6

Much of the early work in modal logic concerns the idea of strict implicationand
its concomitant, strict equivalence. Strict implication is nowadays usually defined as
necessitation of the (“material”) conditional, �(A → B), which is the way we shall
construe it.7 But there are at least two plausible ways to represent strict equivalence.
The one used by Lewis, Feys, Lemmon, and most other traditional authors conjoins
strict implications: �(A → B) ∧ �(B → A). Another, simpler form necessitates
the biconditional: �(A ↔ B). These forms are not in general interchangeable, and
certainly not in the logics to which this paper is largely devoted.8 Thus when it comes
to representing a strict analogue of the rule RRE there are two choices. In the simpler
fashion, where the analogy is clearer, we write:

(RRSE) �(A ↔ B), C / CA/B.

In the traditional mode we write:

(RRSET) �(A → B) ∧ �(B → A), C / CA/B.

Likewise for strict counterparts of RE:

(RSE) �(A ↔ B) / �(�A ↔ �B)

(RSET) �(A → B) ∧ �(B → A) / �(�A → �B) ∧ �(�B → �A).

For the logics we shall consider, it fortunately makes no difference which form is
preferred—something we shall prove in Section 10.

3 Logics A set of formulas is a logic if it includes the set PL and is closed under
MP and substitution. Thus PL is itself a logic—ordinary propositional logic—and,
being the smallest logic, it lies within all the logics in this paper. This means that
every propositionally correct inference is available in every logic. We often signal
such inferences simply by PL.9

We distinguish between theses and theorems. A formula belonging to a logic is
a thesis, whereas a theoremis a formula provable in an axiom system. The distinction
is fine, but on occasion it will be useful. A logic is consistentjust in case it excludes
some formula.
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A schema or rule is said to be derivablein a logic if all instances of the schema
are theses of the logic or the logic is closed under the rule. If a schema or rule is
derivable in a logic we also say that the logic providesor, simply, hasthe schema or
the rule in question.

A classicallogic is one that provides the rule RRE or, equivalently, RE, and a
logic is monotonic, regular, or normalif it provides RK respectively for m= 1, m≥
1, or m ≥ 0. Clearly every monotonic logic—hence also every regular or normal
logic—is classical. Alternatively, a classical logic is monotonic if it has �(A∧ B) →
(�A∧ �B), regular if it has the schema

(F) �(A∧ B) ↔ (�A∧ �B),

and normal if it has N (or RN*) and either F or K. The smallest classical, monotonic,
regular, and normal logics are called E, M, R, and K respectively.10 The following
lemma records some further elementary facts.

Lemma 3.1 (1) Classical logics provide bothRnN* and RRTE. (2) A logic that
providesRRTE andX also hasK. (3) A logic that providesRN∗ also providesSMP,
and hence a logic that hasT also providesSMP. (4) A logic that hasRRTE provides
SMP if and only if it providesRN∗.

Proof: For (1): If A is a thesis of a classical logic then so is � ↔ A by PL and hence
�� → �A by way of RRE. Moreover, if A and B are tautologically equivalent then
A ↔ B is a tautology and hence a thesis of every logic. So by RRE if C is a thesis so
is CA/B. We make frequent appeal to the rule RRTE in the pages that follow. For (2):
Assume that the logic provides X and so too (�(� → A) ∧ �(A → B)) → �(� →
B). By two uses of RRTE we infer the thesis (�A∧ �(A → B)) → �B, which is a
PL-variant of K. The schemata K and X play important roles in the next few sections,
either by themselves or as components of other schemata such as nK and qX, and this
reasoning can be imitated in these other contexts. For (3): If both �(A → B) and A
are theses of a logic then by RN∗ so is A → B, whence B by MP. For (4): It is enough
to show that the logic provides RN∗ if it provides SMP. Assume that �A is a thesis.
From this we obtain �(� → A) via RRTE and then A from SMP and the thesis �. �
The logic S1 and certain others in its vicinity are not classical. Our aim, however, is
to show that they are systematically related to a class of logics that are classical. In
anticipation of our introduction of these logics we register the following proposition.

Lemma 3.2 A classical logic provides any one of (i)nK, (ii) RnK, (iii) nF, and (iv)
nX if and only if it provides them all.

Proof: The reasoning is like that for the “n-less” forms of the schemata and rule
in the realm of normal logics. From (i) to (ii) we argue inductively: When m = 0,

RnK is just RnN*, which every classical logic provides (Lemma 3.1(1)). So assume
that the rule is provided up to m > 0 and that (A0 ∧ · · · ∧ Am) → B is a thesis.
Then so is (A0 ∧ · · · ∧ Am−1) → (Am → B), from which by the inductive hypoth-
esis we reach �� → ((�A0 ∧ · · · ∧ �Am−1) → �(Am → B)). Using nK in the
form �� → (�(Am → B) → (�Am → �B)), we infer �� → ((�A0 ∧ · · · ∧
�Am−1) → (�Am → �B)), which is equivalent to the desired conclusion. From
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(ii) to (iii), note that by way of RnK and various tautologies nF follows (as, indeed,
do nK and nX). From (iii) to (iv), suppose now that the logic has nF. To see that it
has nX, note first that it provides the rule RnK for m = 1: the hypothesis A → B is
PL-equivalent to A ↔ (A∧ B), which yields �A ↔ �(A∧ B) by RE, from which
the conclusion �� → (�A → �B) follows via nF. So by this rule on a tautology,
�� → (�((A → B) ∧ (B → C)) → �(A → C)) is a thesis, and via an instance of
nF this becomes nX. Finally, from (iv) to (i), an argument like that for Lemma 3.1(2)
shows that nX yields nK. �

4 Strict classical logics As we remarked, many of the logics to be considered are
not classical, i.e., they do not provide for replacement of equivalents. These logics
do, however, provide for replacement of strict equivalents. Let us delimit as strict
classicalthose logics that include �PL and are closed under RRSE. In anticipation
of our needs in Section 10, and so as not to beg any questions, we also define a logic
to be strictT classical(“traditionally strict classical”) if and only if it includes �PL
and is closed under RRSET.

Lemma 4.1 A strict or strictT classical logic providesN andRRTE.

Proof: N is of course in such a logic. On the other hand, suppose that A and B are
tautologically equivalent—so that A ↔ B, A → B, and B → A are tautologies—and
that C is a thesis of the logic. By �PL,�(A ↔ B) is also a thesis, as are �(A →
B) and �(B → A) and hence too �(A → B) ∧ �(B → A). Then CA/B follows by
RRSE or by RRSET. �
When is it a matter of indifference which of RRSE and RRSET we use to characterize
strict (or strictT) classical logics? One weak, sufficient condition is the presence of
RRTE and the following rule (more precisely, pair of rules):

(RF) �(A∧ B) / �A∧ �B �A∧ �B / �(A∧ B).

Thus it should be evident that a logic that has both RRTE and RF provides RRSE if
and only if it provides RRSET. So by Lemma 4.1 strict and strictT classicality coin-
cide whenever a logic provides RF. More pertinent to our interests below are the next
two lemmas.

Lemma 4.2 A logic that hasN andRRTE (and hence�PL) andK also provides
RF.

Proof: For left-to-right, suppose that �(A∧ B) is one of the logic’s theses, for some
A and B. By �PL so are �((A∧ B) → A) and �((A∧ B) → B). Using PL, these
plus some instances of K—

�((A∧ B) → A) → (�(A∧ B) → �A)

�((A∧ B) → B) → (�(A∧ B) → �B)

—deliver �A∧ �B. Conversely, if �A∧ �B is a thesis for some A and B, then by
�PL so is �(A → (B → (A∧ B)). All this and two instances of K—

�(A → (B → (A∧ B))) → (�A → �(B → (A∧ B)))
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�(B → (A∧ B)) → (�B → �(A∧ B))

—deliver �(A∧ B). �
From Lemmas 3.1(2), 4.1, and 4.2, therefore, we have this corollary:

Lemma 4.3 A logic that providesK or X is strict classical if and only if it is strictT

classical.

It must be emphasized that, regardless of our use of “F” in its name, a logic that has
the rule RF may yet lack the schema F or either of its conditional halves:

�(A∧ B) → (�A∧ B) (�A∧ �B) → �(A∧ B).

For example, notwithstanding their classicality the logics defined below in Section 5
lack both these schemata and so are not even monotonic. The strict and strictT clas-
sical logics in Sections 9 and 10 likewise lack both the schemata.

One more result before we move on.

Lemma 4.4 A strict classical logic providesRSE, and a strictT classical logic pro-
videsRSET.

Proof: Suppose that �(A ↔ B) and �(A → B) ∧ �(B → A) are theses. Via PL
and �PL we reach �(�A ↔ �A) and �(�A → �A)∧�(�A → �A), from which
�(�A ↔ �B) and �(�A → �B) ∧ �(�B → �A) follow by RRSE and RRSET

respectively. �
It should be understood that, unlike the situation in classical logics, where RE does as
well as RRE, strict classical logics cannot be characterized simply as logics including
�PL and closed under RSE; the same goes for strictT classical logics and RSET.

5 Prenormal logics We call a classical logic prenormaljust in case it provides the
schema

(nK) �� → (�(A → B) → (�A → �B)).

So Lemma 3.2 gives a good feeling for the strength of prenormal logics. The smallest
such logic we dub P. As a considerable portion of this paper deals with prenormal
logics definable by adding to P any combination of K, X, and T (including the null
combination), let us call such a logic a prenormal KXT-logic.The following result is
obvious inasmuch as nX is in every prenormal logic.

Lemma 5.1 A prenormal logic providesK if and only if it providesqK, and it pro-
videsX if and only if it providesqX.

Next note this analogue of Lemma 3.1(2):

Lemma 5.2 A classical logic—and hence a prenormal logic—that providesqX
also providesqK.

Though there is thus some redundancy in characterizing KXT-logics in terms of K or
X rather than qK or qX, we shall continue to use the simpler nomenclature. At the
same time we note that the defining axiom nK is redundant in the axiomatizations
PK, PX, PKT, and PXT. It follows that there are at most six prenormal KXT-logics:
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P, PK, PX, PT, PKT, and PXT. As we shall see, they are all distinct; so their number
is exactly six.

We call P and other such logics prenormal because they are separated from nor-
mal logics only by a logical hair’s breadth—viz., the formula N. The smallest clas-
sical logic containing both nK and its antecedent, N, is obviously EKN, i.e., K, the
smallest normal logic.

Before moving to semantics we note the equivalence of the schema qX to a rule
mentioned in Section 2.

Lemma 5.3 A classical logic providesqX if and only if it providesRqX.

Proof: For left-to-right, suppose that A∨ B is a thesis. Then so are A ↔ (B → A)

and B ↔ (A → B), as is the tautology � ↔ (B → B). Hence by RRE on an instance
of qX so is ♦⊥ → ((�A∧�B) → ��). Via RRE and PL this is equivalent to (�A∧
�B) → ��. For right-to-left, apply the rule to the tautology (A → B) ∨ (B → C)

to infer (�(A → B) ∧ �(B → C)) → ��—and use RRE and PL to reach ♦⊥ →
¬(�(A → B) ∧ �(B → C)), which at once yields qX by PL.11 �

6 Semantics for prenormal logics We begin with the idea of a frame, by which we
understand a structure F = (U, N, Q, R, S) in which U is a set, N and Q are disjoint
subsets of U that exhaust it (i.e., N ∪ Q = U and N ∩ Q = ∅), R is a binary relation
in N × U, and Sis a family {S(x) : x ∈ Q}, where each S(x) is a collection of subsets
of U subject to the condition that U 
∈ S(x). The set U is the universeof the frame, and
we think of the elements in N as normaland of those in Q as nonnormal, or queer. R
is an alternativenessrelation, and S(x) collects the neighborhoodsof x. For brevity’s
sake we reduce the frames to (U, Q, R, S), but throughout the paper we continue to
use N for U − Q.

A valuationin a set U is a mapping V from the set of atomic formulas to PU,

the power set of U. Modelsare structures M = (U, Q, R, S, V) consisting of a frame
(U, Q, R, S) together with a valuation in its universe.

A frame or model is said to be finite when its universe is.
The definition of truth at a point in a model is as usual except for the modal

clauses, where the truth conditions depend on whether the point is normal or queer:

For x ∈ N : M |=x �A if and only if ∀y(〈x, y〉 ∈ R⇒ M |=y A).

For x ∈ Q : M |=x �A if and only if ‖A‖M ∈ S(x).

Here ‖A‖M is {u ∈ U : M |=u A}, the “truth set” of A in M .

We shall usually drop references to F or M when it is clear what frame or model
is intended.

A formula is true in a modelif true at all points in the model; valid in a frame
if true in all models on the frame. A set of formulas is satisfiable in a frameif all
its members are true together at some point in some model on the frame. A logic is
said to be strongly determined bya class of frames just in case every set of formulas
consistent in the logic is satisfiable in a frame in the class (completeness) and vice
versa (soundness). A logic is weakly determined bya class of frames if and only if
the formulas valid throughout the class are theses of the logic (weak completeness)
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and vice versa. By L(F ) we mean the logic of the frame F , i.e., the set of formulas
valid in F .

To those familiar with the contemporary semantic analyses of modal logics it
will be apparent that the apparatus presented above combines the relational and neigh-
borhood approaches. Within the domain of normal points the alternativeness relation
holds sway, and the frames, models, and truth conditions are relational; for queer
points the structures and truth conditions are of a neighborhood type. In brief, if
N = U and Q = ∅ the frames become completely normal, as does their logic; when
the situation is reversed we are in the realm of neighborhood semantics.12 The fruit-
fulness of this way of doing things shows itself in our determination theorems.

7 Determination for prenormal logics To obtain determination theorems for the
prenormal KXT-logics the first task is to define the corresponding propertyof each
of the schemata K, X, and T—more precisely, of qK, qX, nT, and qT. Let F =
(U, Q, R, S) be any frame.

Corresponding to K is what we call the modus ponens property:

(qk) x ∈ Q ⇒ ((U − X) ∪ Y, X ∈ S(x) ⇒ Y ∈ S(x)).

For X we have the syllogism property:

(qx) x ∈ Q ⇒ ((U − X)∪Y, (U −Y)∪ Z ∈ S(x)⇒ (U − X)∪ Z ∈ S(x)).13

We say further that R is normal-reflexiveif it is reflexive in the ordinary sense with in
N; i.e., if 〈x, x〉 ∈ R whenever x ∈ N. And we say that S is queer-reflexiveif when-
ever x ∈ Q, X ∈ S(x) only if x ∈ X. Normal-reflexivity corresponds to nT, and queer-
reflexivity corresponds to qT.

When Ror Shas any of these properties we also say that the frame F fdoes, and
that any model on F does.14 Finally, we say that a frame or model is omnireflexive—
or has the property (t)—if R is normal-reflexive and S is queer-reflexive. Omnireflex-
ivity corresponds to T.

It will be evident that each prenormal KXT-logic is sound with respect to any
class of frames having the appropriate corresponding properties, and hence P, PK,
PX, PT, PKT, and PXT are all distinct.

To prove determination we employ canonical models.
Let L be any prenormal logic. Where MaxL is the set of all maximal consistent

sets of formulas in L, we write |A|L for the set {u ∈ MaxL : A ∈ u} (the “proof set”
of A in L).15 We say that ML = (UL, QL, RL, SL, VL) is a canonical model for L if
it satisfies these conditions:

(i) UL = MaxL.

(ii) QL = {x ∈ UL : �� 
∈ x}.
(iii) RL = {〈x, y〉 ∈ NL × UL : ∀A(�A ∈ x ⇒ A ∈ y)}.
(iv) |A|L ∈ SL(x) if and only if �A ∈ x, for every x ∈ QL.

(v) VL(P) = |P|L, for every atomic formula P.

We usually drop the reference to L when it is clear which logic L is.
Our definition allows for a variety of canonical models for a prenormal logic,

ranging from the smallest (where each S(x) contains just the proof sets |A| such that
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�A ∈ x) to the largest (where each S(x) contains all such proof sets together with
every nonproof set).16

Lemma 7.1 LetM be a canonical model for a prenormal logicL. Then, for every
formulaA and every x∈ U, M |=x A if and only if A∈ x.

Proof: The proof is an induction of the usual kind, and the nonmodal cases are un-
problematic. We will only highlight a detail in the proof for x ∈ N—i.e., for nor-
mal x—that M |=x �A if and only if �A ∈ x. This involves proving that �A ∈ x
if and only if A is L-deducible from {B : �B ∈ x}. The only-if part is immediate.
So suppose A is thus deducible. Then there are formulas �B0, . . . ,�Bm−1 ∈ x such
that (B0 ∧ · · · ∧ Bn−1) → A is a thesis of L. Consequently, by the rule RnK, �� →
((�B0 ∧ · · · ∧ �Bn−1) → �A) is also a thesis of L. Since x is normal, �� ∈ x. It
follows that �A ∈ x, since x is a maximal consistent set. �
It is immediate that P is strongly determined by the class of all frames. To show de-
termination for the rest of the prenormal KXT-logics it is sufficient to show that they
have canonical models that satisfy the appropriate conditions.

For PX and PT it is enough to check that their smallest canonical models re-
spectively have the properties of syllogism (qx) and omnireflexivity (t), and that that
for PXT has both. This is almost trivial for (t), and it is easy enough for (qx).17 For
PK and PKT something more is needed, what Benton [1] calls an “overlay” canonical
model—i.e., one in which the neighborhoods of queer points are defined for nonproof
sets X by:

X ∈ S(x) if and only if ∃A∃B(|A| ⊆ X ⊆ |B|&∀C(|A| ⊆ |C| ⊆ |B| ⇒ �C ∈ x)).

In terms of these constructions and Lemma 7.1 we reach:

Theorem 7.2 Each prenormalKXT-logic is strongly determined by the class of
frames with the appropriate corresponding properties.

We can further obtain finite determination results for the prenormal KXT-logics.

Theorem 7.3 Each prenormalKXT-logic is (weakly) determined by the class of
finite frames with the appropriate corresponding properties.

Theorem 7.3 can be shown by means of filtrations and Theorem 7.2. But because
the KXT-logics are all noniterative—i.e., there is no nesting of modalities in their
axioms—the results are in fact a consequence of Lewis’s principal theorem in [15].18

From Theorem 7.3 we conclude that each of the prenormal KXT-logics has the
finite model property: each nonthesis is false in some finite model for the logic. Of
course an axiomatizable logic that has the finite model property is decidable.19 There-
fore:

Theorem 7.4 The prenormalKXT-logics are all decidable.

8 The rule RnN∗ We devote this section to showing that all of the prenormal logics
definable in terms of K, X, and T provide the rule RnN∗, which will play an important
role later on.

Where M = (U, Q, R, S, V) is a model, we say that M # = (U #, Q#, R#, S#, V #)

is a safe extensionof M if the following conditions hold:
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(i) U # ⊇ U.

(ii) Q# = Q.

(iii) R# ∩ (U × U) = R.

(iv) 〈x, y〉 ∈ R# ⇒ (x ∈ U ⇒ y ∈ U), for every x, y ∈ U #.

(v) X ∈ S#(x) ⇔ X ∩ U ∈ S(x), for every x ∈ Q# and every X ⊆ U #.

(vi) V #(P) ∩ U = V(P), for every atomic formula P.20

Theorem 8.1 LetM # be a safe extension ofM . Then for every formula A and ev-
ery x∈ U, M # |=x A if and only ifM |=x A.

Proof: Let us write ‖A‖ for ‖A‖M , and ‖A‖# for ‖A‖M #. Then the theorem asserts
that ‖A‖ = ‖A‖# ∩ U. We prove it by induction on A. If A is atomic or boolean there
is no difficulty. Suppose that A = �B and—as the induction hypothesis—that the
result holds for B. Let x be any element of U.

First suppose that x is normal. Note that it follows from the definition of a safe
extension that, for every y ∈ U #, 〈x, y〉 ∈ R# if and only if 〈x, y〉 ∈ R. With the help
of this observation and the induction hypothesis we see that ∀y ∈ U #(〈x, y〉 ∈ R# ⇒
M # |=y B) if and only if ∀y ∈ U(〈x, y〉 ∈ R⇒ M |=y B). Therefore M # |=x �B if
and only if M |=x �B. Next suppose that x is queer. Using the definition of S# and
the induction hypothesis we see that ‖B‖# ∈ S#(x) if and only if ‖B‖# ∩ U ∈ S(x)

if and only if ‖B‖ ∈ S(x). Therefore M # |=x �B if and only if M |=x �B. �
Note that new points in a safe extension M #, i.e., those in U # −U, are always normal.
It is easy to see that when M is omnireflexive and 〈u, u〉 ∈ R# for every new u, M # is
normal-reflexive. It is also omnireflexive: for any x ∈ Q#, i f X ∈ S#(x), then x ∈ Q
and X ∩ U ∈ S(x). So if S(x) is queer-reflexive, x ∈ X ∩ U ⊆ X.

Lemma 8.2 If M # is a safe extension ofM, thenM # has the property (qk) or (qx),
respectively, ifM does.

Proof: As (qk) is actually a special case of the syllogism property, (qx), let us argue
just for the latter. Suppose that M has (qx). Where x ∈ Q# = Q, take any subsets
X, Y, and Z of U # such that both (U # − X) ∪ Y and (U # − Y) ∪ Z are elements of
S#(x). Then by the definition of safe extension:

((U # − X) ∪ Y) ∩ U ∈ S(x). (1)

((U # − Y) ∪ Z) ∩ U ∈ S(x). (2)

Given that U ⊆ U #, we can rewrite (1) and (2) thus:

((U − (X ∩ U)) ∪ (Y ∩ U) ∈ S(x). (3)

((U − (Y ∩ U)) ∪ (Z ∩ U) ∈ S(x). (4)

Hence by the syllogism condition for S, ((U − (X ∩ U)) ∪ (Z ∩ U) ∈ S(x), which
works out to mean that ((U # − X)∪ Z)∩U ∈ S(x). So by the definition of S#, (U # −
X) ∪ Z ∈ S#. �

Theorem 8.3 All the prenormalKXT-logics provide the ruleRnN∗.
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Proof: Let L be one of the logics, and suppose that A is not a thesis of L. By Theo-
rem 7.3, A is false at some point x in some model M having the appropriate properties
from among (qk), (qx), and (t). Where u is new to M , let M # be the safe extension
of M obtained by adding 〈u, x〉 to R to form R#; add 〈u, u〉 as well in case L provides
T. Then by Lemma 8.2 M # has the relevant properties among (qk), (qx), and (t), and
so is a model for L. But �A is false at u, and so, as u is normal,�� → �A is also
false at u. Hence �� → �A is not a thesis of L. �

9 Lewis logics and their semantics By the Lewis versionLew(L) of a logic L we
understand the smallest logic that extends L and contains ��. Thus Lew(L) is the
closure of L ∪ {��} under modus ponens. Notice that Lew(L) is closed under sub-
stitution and so is a logic, but that Lew(L) may not be closed under other rules under
which L is closed. For example, if L has the rule RRTE so does Lew(L), whereas the
rule RRE is not generally inherited by Lewis versions of classical logics. We define
a Lewis logicas a logic that is the Lewis version of some classical logic.

Lemma 9.1 Let L be a classical logic and A be any formula. (1) A is a thesis of
Lew(L) if and only if�� → A is a thesis ofL. (2) If L providesRnN∗ then A is
a thesis ofL if and only if�A is a thesis ofLew(L). (3) If L providesRnN∗ then
Lew(L) is strict classical and provides RN∗.

Proof: (1) is simply a matter of definition and the deduction theorem. For the left-
to-right of (2), suppose A to be a thesis of L. Then so too is ��→�A(Lemma 3.1(1)).
Hence by part (1) Lew(L) has �A. For right-to-left, suppose that �A is a thesis of
Lew(L). By part (1) �� → �A is a thesis of L, and hence by RnN∗ so is A. In the
case of (3), for �PL, suppose that A is a tautology. Then A is a thesis of L, and by
part (2) �A is a thesis of Lew(L). For RRSE, suppose that both �(A ↔ B) and C are
in Lew(L). Then A ↔ B is a thesis of L by part (2), and so is �� → C by part (1).
Since L is classical, it has �� → CA/B and so CA/B is a thesis of Lew(L) by part
(1) again. Therefore Lew(L) is strict classical. For RN∗, suppose that �A is a thesis
of Lew(L). Then L has A by part (2) and so does Lew(L) since L ⊆ Lew(L). �

It follows from Theorem 8.3 and Lemma 9.1 that each prenormal KXT-logic is
strict classical. Moreover, by Lemmas 3.1(3), 4.1, and 4.4 we find this corollary to
Lemma 9.1:

Lemma 9.2 WhereL is a classical logic that providesRnN∗—e.g., by Theo-
rem 8.3, where L is a prenormalKXT-logic—Lew(L) providesRRTE, RSE, and
SMP.

Notice that if L is normal then L = Lew(L). The converse is not generally true. For
example, the smallest classical logic that contains �� is a Lewis version of itself, but
it is not normal. However, if L is prenormal, then L = Lew(L) only if L is normal.

The semantics for prenormal logics is readily adapted to suit their Lewis ver-
sions. Frames and models are as before, but the ideas of validity and satisfiability are
relativized to normal points. We say that a set of formulas is Lewis-satisfiablein a
frame if at some normal point in some model on the frame all the formulas are true,
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and that a formula is Lewis-validin a frame if it is true at every normal element in ev-
ery model on the frame. The concepts of strong and weak Lewis-determination are
obvious. The fundamental result is this.

Theorem 9.3 WhereL is a classical logic strongly determined by a class of frames,
Lew(L) is strongly Lewis-determined by the class.

Proof: Let L be a classical logic determined by a class of frames. Lewis-soundness
is evident. For Lewis-completeness, suppose � to be a Lew(L)-consistent set of for-
mulas. Then � ∪ {��} is Lew(L)-consistent, and also L-consistent (since L is a
sublogic of Lew(L)). By Theorem 7.2 the formulas in � ∪ {��} are true together
at some point in some model on a frame in the class. Because of �� this point is
normal. �
Using models like those in the case of prenormal KXT-logics (in Section 7) one can
readily prove the following proposition.

Theorem 9.4 The Lewis versions ofP, PK, PX, PT, PKT, and PXT are all dis-
tinct.

The Lewis versions of the prenormal KXT-logics are of course axiomatizable, and by
means of filtrations they can all be shown to have the finite model property. So they
are all decidable.21 But more simply, the question of whether or not a formula A is a
thesis of the Lewis version boils down to that of whether �� → A is a thesis of the
prenormal KXT-logic itself; since the latter is decidable so is the former. The result
is worth recording:

Theorem 9.5 The Lewis versions ofP, PK, PX, PT, PKT, andPXT are all decid-
able.

10 S1 and S0.9, S1◦ and S0.9◦ Our aim now is to show that the four logics men-
tioned in the title of this section—we refer to them as “the squadron”—are simple
examples of Lewis logics. In fact, we shall be able to identify them as follows:

S1◦ = Lew(PX). S1= Lew(PXT).
S0.9◦ = Lew(PK). S0.9 = Lew(PKT).

To prepare for these results we first revise various formulations of S0.9◦, S1◦, S0.9,
and S1 found in the literature so as to obtain a uniform set of axiomatizations that
reveal at a glance certain important properties.

In [11] Lemmon provided a simple axiomatization of S1 that, unlike earlier for-
mulations, clearly separated its modal elements from its basis in propositional logic.22

Specifically, Lemmon took as axioms PL and all instances of the schemata X and T,
and by way of rules he used MP, a limited form of necessitation,

(RNAx) A / �A —whenever A is one of the axioms,

and the traditional replacement rule for strict equivalents, RRSET.
In [11] Lemmon also introduced the system S0.9, defining it by taking as ax-

ioms PL and all instances of K and T and as rules MP, RNAx, and the rule RSET of
congruence for strict equivalence.
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The other two systems, S1◦ and S0.9◦, are often loosely described as S1 and S0.9
minus the schema T. However, care is needed here, for it cannot be assumed a priori
that deleting an axiom schema shared by two different axiomatizations of the same
old logic will always result in the same new logic. Slightly modifying the definitive
axiomatization of S1◦ given in [6] we note that S1◦ can be axiomatized by taking as
axioms PL and all instances of X and by adopting as rules MP, RNAx, RRSET, and
the strict version of modus ponens, SMP.

Similarly, we may consider that S0.9◦ is a logic that can be axiomatized by re-
placing �X in Feys’s axiomatization of S1◦ by �K. Then in the same way we may
describe S0.9◦ as axiomatized by the system that has PL and all instances of K as
axioms, and MP, RNAx, RRSET, and SMP as rules.

Thus all the logics in the squadron have PL, MP, and RNAx; the “1-logics” have
X where the “0.9”s have K; the “◦-logics” have SMP where the “◦-less” ones have T.
The situation is pictured in Figure 1. The figure reveals the anomaly that S0.9 uses

K, SMP

RRSET

K, T

RSET

X, T

RRSET

X, SMP

RRSET

RNAx

PL, MP

S0.9

S1

S0.9◦

S1◦

Figure 1

RSET where the others have RRSET. In what follows we propose to regularize this
and otherwise recast the axiomatizations of the logics in the squadron.

First the rule RNAx. Attractive for its summarizing properties, it is too radically
context-dependent for a project such as ours, where we are dealing with a number of
logics. We therefore replace RNAx by the combination of RRTE, N, and �S for each
non-PL axiom schema S in the squadron’s logics. The first two of these yield �PL,
the necessitations of all tautologies.

Next notice that since S1 and S0.9 provide T, by Lemma 3.1(3) all the logics in
the squadron have the rule SMP (we shall shortly improve on this result).

Lemmon himself remarked that the rule RRSET is derivable in S0.9.23 Indeed,
a routine induction proves this lemma.

Lemma 10.1 A logic that providesK, �PL, and RSET also provides this rule of
replacement:�(A → B) ∧ �(B → A) / �(C → CA/B) ∧ �(CA/B → C).

From this we obtain the following proposition, from which the desired result for S0.9
follows.
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Lemma 10.2 Alogic that providesK,�PL, RSET, andSMP also providesRRSET.

Proof: Suppose that �(A → B) ∧ �(B → A) and C are theses. Then by the rule
in Lemma 10.1 so is �(C → CA/B) ∧ �(CA/B → C) and hence, by PL, �(C →
CA/B). From this CA/B follows via SMP. �
To see that in Lemmon’s axiomatization of S0.9 RSET is indeed equivalent to RRSET,
note that if RSET is replaced by RRSET, then given �PL the logic is strictT classical
and by Lemma 4.4 RSET is derivable.

Thus we see that the logics in the squadron are all strictT classical. Note, more-
over, that they all provide K or X; indeed, by Lemmas 3.1(2) and 4.1, they all provide
K. Therefore, by Lemma 4.3 the squadron’s logics are all strict classical. This means
that we may adopt—as we hereby do—RRSE in place of RRSET or RSET.

Furthermore, Lemmas 3.1(4) and 4.1 together tell us that each logic in the
squadron provides the rule RN∗. So we are also free to use this simpler rule instead of
SMP in axiomatizing S1◦ and S0.9◦. Indeed, if we stipulate RN∗ in each of the four
axiomatizations, we can eliminate the schemata K, X, and T throughout the formula-
tions and make do with just their necessitations, �K, �X, and �T.

This leads to the following axiomatizations: each of the squadron’s logics has
PL, MP, N, RRTE, RRSE, and RN∗; the “1-logics” have �X where the “0.9-logics”
have �K; and the “◦-less” logics in addition have �T.24 To help to keep track of the
squadron’s logics as thus formulated we offer the chart in Figure 2, in which a logic’s
more inclusive relatives are reached by traveling directly upward or rightward.

�K �K,�T

�X,�T�X

RRSE, RN∗

N, RRTE

PL, MP

S0.9

S1

S0.9◦

S1◦

Figure 2

11 Lewis logics and the logics of the squadron We are nearly ready to demonstrate
the identities advertised at the beginning of Section 10. The result appears as Theo-
rem 11.2, the way to which is paved by the following:

Lemma 11.1 If A is a theorem ofPK, PKT, PX, or PXT, then�A is atheorem
respectively ofS0.9◦,S0.9, S1◦, or S1.
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Proof: For the purposes of the proofs of this and the theorem to follow we write SL
for a logic in the squadron (S0.9◦, S0.9, S1◦, S1) and L for the corresponding logic in
the “presquadron” (PK, PKT, PX, PXT). Let L be one of the latter. As the defining
axiom nK for L is redundant, we take L to be axiomatized by PL, all instances of the
relevant schemata (K, X, T), and the rules MP and RRE.

Suppose that A is a theorem of L and so appears on a line in a proof in the axiom
system for the logic. We argue inductively.

Case 1: Ais a tautology, an instance of X, or an instance of T. Recall that SL has
�PL and, as axioms, �X and �T.

Case 2: Ais inferred by modus ponens from previous formulas B and B → A. By
the inductive hypothesis the necessitations of both of these are theorems of SL. Since
SL provides K, it follows by two uses of MP in SL that �A is a theorem.

Case 3: Ahas the form BC/D and is inferred by RRE from earlier formulas C ↔ D
and B. By the inductive hypothesis, �(C ↔ D) and �B are SL theorems. Hence the
rule RRSE applies, so (�B)C/D, i.e., �(BC/D), i.e., �A is also a theorem of SL. �

Theorem 11.2 Lew(PK) = S0.9◦, Lew(PKT) = S0.9, Lew(PX) = S1◦, and
Lew(PXT) = S1.

Proof: Again let L be one of PK, PKT, PX, and PXT. Suppose that A is a thesis of
Lew(L). Then L has �� → A (Lemma 9.1). By Lemma 11.1, SL has �(�� → A)

as a thesis. So by RN∗, �� → A is also a thesis of SL, and hence so is A, since N is.
This shows that Lew(L) ⊆ SL. To prove the converse it is enough to note that Lew(L)
includes PL and is closed under MP (by definition); that Lew(L) contains all instances
of the relevant axiom schemata (by Lemma 9.1(2), since their “denecessitations” are
all in L); and that Lew(L) provides �PL, RRSE, and RN∗ (by Lemma 9.1(3)). �

Determination and decidability for S0.9◦, S0.9, S1◦, and S1 follow from Theo-
rems 9.3, 9.5, and 11.2. Credit for completeness, finite model property, and decidabil-
ity of S1◦ and S1 goes to Shukla [19] and independently Cresswell [4]. The proofs
in those papers are algebraic; the arguments in Cresswell’s recent [5] use canonical
models.

The distinctness of the logics of the squadron is part of Theorems 9.4 and 11.2.
The fact that S0.9 
= S1 is worth a comment. The question was raised and left open by
Lemmon in [11] and remained open until Girle gave the answer in [7]. However, Scott
had an earlier, unpublished proof that he presented in lectures at Stanford University
in 1967. The details of this proof seem to have been lost, but a simple proof is easily
constructed, given our results.

Consider the frame (U, Q, R, S) in which U = {0, 1, 2}, Q = {2}, R = {〈0, 0〉,
〈1, 1〉} and S(2) = PU −{U}. We wish to argue that (i) this frame validates all theses
of S0.9, yet (ii) the formula �((�(A → B)∧�(B → A)) → �(A → A)), where A
and B are distinct atomic formulas, fails at 2 under any valuation V such that V(A) =
{0} and V(B) = {1}.

That (i) holds follows from the fact that this frame has the property (qk) and is
omnireflexive. To see that the former claim is true, suppose that X and Y are subsets
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of U such that both (U − X)∪ Y and X are elements of S(2). If Y 
∈ S(2), then Y = U,

contradicting the assumption that (U − X) ∪ Y ∈ S(2); hence Y ∈ S(2).

To establish (ii), let V be any valuation in U such that V(A) = {0} and V(B) =
{1}. Then ‖A → B‖ = (U − ‖A‖) ∪ ‖B‖ = {1, 2} ∪ {1} = {1, 2} and ‖B → A‖ =
(U −‖B‖)∪‖A‖ = {0, 2}∪ {0} = {0, 2}, while ‖A → A‖ = {0, 1, 2}. Consequently,
�(A → B) and �(B → A) are true at 2 in the model defined by V, whereas �(A →
A) is not; hence (ii) holds.

An eight-valued matrix of the kind Lemmon sought in [11] can be extracted from
this example. As truth values take 1, 2, 3, 4, 5, 6, 7, and 8, with 1 as sole designated
value. The truth tables of, for example, conjunction, negation and necessity are as in
Figure 3.

∧ 1 2 3 4 5 6 7 8 ¬ �
1 1 2 3 4 5 6 7 8 1 8 1 4
2 2 2 5 6 5 6 8 8 2 7 2 2
3 3 5 3 7 5 8 7 8 3 6 3 3
4 4 6 7 4 8 6 7 8 4 5 4 1
5 5 5 5 8 5 8 8 8 5 4 5 5
6 6 6 8 6 8 6 8 8 6 3 6 6
7 7 8 7 7 8 8 7 8 7 2 7 2
8 8 8 8 8 8 8 8 8 8 1 8 8

Figure 3

We conclude this section with the diagram in Figure 4, which gives us a certain
perspective on the logics discussed so far. The convention again is that a logic’s more
inclusive relatives are upward or rightward. The structure shown is in fact a lattice
if the meet of two logics is taken as their set-theoretical intersection and their join is
taken as the smallest logic including both. By C2, first defined by Lemmon in [11],
we understand the smallest regular logic, i.e., R, which can be viewed as the smallest
prenormal logic to contain all instances of the schema �A → ��. (This says in effect
that all necessitations are false at queer points in any model, something that secures
the truth of all instances of the schema F throughout any model; so the logic is at least
regular. Normality is still lacking, however, since �� remains false at queer points.)

By E2, also introduced in [11], we understand the smallest prenormal logic to
extend C2 and provide T. It is easy to show, by the safe extension technique Lemmon
demonstrated in [12], that C2 and E2 provide the rule RnN∗. Therefore, as Lemmon
noted, S2◦ = Lew(C2) and S2 = Lew(E2); also see [10].

12 Cresswell logics No doubt many logicians, frustrated in their efforts to under-
stand the system S1, would be tempted to agree with Cresswell’s opinion in [3], re-
peated in [5], that it is “on almost any account a very silly system.”25 This view of
the man to whom we owe what insight into S1 there is cannot be taken lightly. But
whether or not S1 can be defended on philosophical grounds, it is not without interest
from a formal point of view, as we hope this section will demonstrate.

The fruitful new semantic condition on a frame (U, Q, R, S) that Cresswell in-
troduced in his analysis of S1 was
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(c2) x ∈ Q ⇒ (X, Y ∈ S(x) ⇒ X ∪ Y 
= U).26

Cresswell proved, in effect, that S1 is Lewis-determined by the class of omnireflexive
frames that satisfy this condition. Since conditions (qx) and (c2) are equivalent, it
follows by Theorem 7.2 that any logic determined by a class of frames satisfying (c2)
is prenormal.

The condition (c2) is a special case of the following more general condition:

(cn) x ∈ Q ⇒ (X0, . . . , Xn−1 ∈ S(x) ⇒ X0 ∪ · · · ∪ Xn−1 
= U) (n ≥ 2).

We shall say that X0, . . . , Xn−1 ⊆ U cover U if X0 ∪ · · · ∪ Xn−1 = U; in that case
X0 ∪ · · · ∪ Xn−1 is said to be an n-element covering. Thus (cn) expresses the condi-
tion that S(x) possesses no n-element covering. In particular, Cresswell’s condition
is that no neighborhood system for a queer point has a 2-element covering. We note
the following fact.

Lemma 12.1 (cm) implies (cn) if and only if m≥ n.

Thus for n ≥ 2 any logic determined by a class of frames satisfying (cn) is prenormal.
In order to study the covering conditions we introduce a family of rules each of

which we refer to as a Cresswell rule:27

(RCn) A0 ∨ · · · ∨ An−1 / (�A0 ∧ · · · ∧ �An−1) → �� (n ≥ 2).

In terms of Cresswell rules we have a syntactic counterpart to Lemma 12.1, telling us
that classical logics having these rules are always prenormal:

Lemma 12.2 A logic that providesRCn also providesRCm, for every m≤ n.

Proof: Assume that we have a logic providing RCn, and that A0 ∨ · · · ∨ Am−1 is a
thesis. To ignore trivial cases, say that m < n. By PL, A0 ∨ · · · ∨ Am−1 ∨ B is also a
thesis, where B is a disjunction of n− m occurrences of Am−1. By RCn we have the
thesis (�A0 ∧ · · ·∧�Am−1 ∧ C) → ��, where C is the (n− m)-termed conjunction
of the formula �Am−1. But C ↔ �Am−1 is a tautology. So by PL, (�A0 ∧ · · · ∧
�Am−1) → �� is a thesis, as we wished to show. �
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The Cresswell rules correspond closely to the covering conditions as the following
results show.

Lemma 12.3 If a frameF satisfies (cn), then the logicL(F ) providesRCn.

Proof: Assume that F = (U, Q, R, S) satisfies (cn). Suppose that A0 ∨ · · · ∨ An−1

is a thesis of L(F ) and therefore is valid in F . Let M be any model on F . Suppose
that x is an element of U such that M |=x �Ai , for every i < n. We wish to prove
that M |=x ��. If x is normal this is trivial. If x is queer, then ‖Ai‖ ∈ S(x), for
every i < n. By (cn), ‖A0‖ ∪ · · · ∪ ‖An−1‖ 
= U. But the validity of A0 ∨ · · · ∨ An−1

implies that ‖A0 ∨ · · · ∨ An−1‖ = U. This is impossible, so the case that x is queer
cannot arise. �

Lemma 12.4 (cn) is satisfied by the smallest canonical frame for a classical logic
that providesRCn.

Proof: Let M = (U, Q, R, S, V) be a canonical model for a classical logic that pro-
vides RCn, and suppose that (cn) is not satisfied by the frame of M . Then there is a
point x ∈ Q and sets X0, . . . , Xn−1 ⊆ U that are elements of S(x). This means that
there are formulas A0, . . . , An−1 such that:

|A0|, . . . , |An−1| ∈ S(x). (1)

|A0| ∪ · · · ∪ |An−1| = U. (2)

From (2) it follows that |A0 ∨ · · · ∨ An−1| = U, so A0 ∨ · · · ∨ An−1 is a thesis of the
logic, whence by RCn

(�A0 ∧ · · · ∧ �An−1) → �� is a thesis. (3)

But (1) implies that �A0, . . . ,�An−1 ∈ x. By (3), then, �� ∈ x. This contradicts the
assumption that x is queer. Thus condition (cn) is satisfied. �
Prenormal logics closed under RCn we shall call Cresswell logics. Define PCn as the
smallest Cresswell logic to provide RCn, and PCnT as the smallest Cresswell logic to
have both RCn and T. The following is an immediate consequence of Lemmas 12.3
and 12.4.

Theorem 12.5 PCn is determined by the class of frames satisfying (cn), andPCnT
is determined by the class of omnireflexive frames that satisfy (cn).

Of course one corollary to Theorem 12.5 we have had for some time, given the equiv-
alence of qX and RqX. But it is worth noting formally.

Theorem 12.6 PC2 = PX and PC2T = PXT, and so Lew(PC2) = S1◦ and
Lew(PC2T) = S1.

Thus PX and PXT are Cresswell logics.28

Rules are usually more difficult to work with than schemata, and therefore The-
orem 12.6 is welcome. Indeed it suggests there are many schemata with the same
effect as the Cresswell rules; we shall now proceed to make good this claim.29 The
schemata we have in mind are the members of the following family:
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(Xn) (�(A → (B1 ∧ · · · ∧ Bn))∧
�(B1 → C1) ∧ · · · ∧ �(Bn → Cn)) → ��.

(Here we begin the numbering with 1.)

Theorem 12.7 For each n≥ 1, a classical logic providesRCn+1 if and only if it
providesXn.

Proof: Assume that the logic is classical and suppose, first, that it provides RCn+1.

Then it also provides Xn, inasmuch as

(A → (B1 ∧ · · · ∧ Bn)) ∨ (B1 → C1) ∨ · · · ∨ (Bn → Cn)

is a tautology. For the reverse, suppose that the logic provides Xn. Suppose that

A0 ∨ · · · ∨ An (1)

is a thesis. For i ≤ n let
∧

j 
=i ¬Aj be the conjunction in some order of all formu-
las ¬Aj ( j ≤ n) except ¬Ai . Then it is easy to see the following tautological conse-
quences of (1):

Ai ↔ (¬Ai →
∧

j 
=i

¬Aj ). (2)

From (2) by RRE the logic has these theses:

�Ai ↔ �(¬Ai →
∧

j 
=i

¬Aj ). (3)

Next we have an instance of Xn:

(�(¬A0 → (¬A1 ∧ · · · ∧ ¬An))∧
�(¬A1 →

∧

j 
=1

¬Aj ) ∧ · · · ∧ �(¬An →
∧

j 
=n

¬Aj )) → ��. (4)

Hence from (3) and (4) by PL we arrive at the desired thesis:

(�A0 ∧ · · · ∧ �An) → ��. (5)

�
As a corollary to Theorem 12.7 we have the following.

Theorem 12.8 PCn+1 = PXn andPCn+1T = PXnT.

The first two members of the Xn family are:

(X1) (�(A → B) ∧ �(B → C)) → ��
(X2) (�(A → (B0 ∧ B1)) ∧ �(B0 → C0) ∧ �(B1 → C1)) → ��.

Schema X1 throws a certain light on S1, for it follows from Theorems 12.6 and 12.8
that S1 can be axiomatized by replacing schema �X in our axiomatization of that
logic by the schema �X1. It is noteworthy that in his 1967 lectures Scott showed that
replacing �X by �X′

1 will also yield S1, where X′
1 is

(�(A → B) ∧ �A) → ��
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—a schema that is deductively equivalent in classical modal logics to an instance of
X1. Another example of a schema that does the job is:

(�(A → B) ∧ �(B → A)) → ��.

It is interesting that S1 can be axiomatized in such different ways.
In [4] Cresswell remarks that “Lewis’s reasons for arriving at S1 have only an

accidental connection with its formal structure.”30 Perhaps in hindsight one may say
that we now finally understand why S1 proved so difficult to understand. Lewis hap-
pened to hit upon a schema whose structure leads one to suppose that S1 has some-
thing to do with strict implication. In fact it does not, or at least if it does, it does so
indirectly and opaquely. Schemata such as X do little to suggest their essential con-
nection with the covering condition (c2); it took the ingenuity of Cresswell to uncover
that.

If Lewis was attracted to S1 as a logic of strict implication because it provided
the schema

((A −−⊃ B) ∧ (B −−⊃ C)) −−⊃ (A −−⊃ C),

where −−⊃ stands for strict implication, one wonders whether he would also have been
attracted to the schema

((A −−⊃ (B0 ∧ B1)) ∧ (B0 −−⊃ C0) ∧ (B1 −−⊃ C1)) −−⊃ (A −−⊃ (C0 ∧ C1)),

or, more generally, to

((A −−⊃ (B0 ∧ · · · ∧ Bn−1)) ∧ (B0 −−⊃ C0) ∧ · · · ∧ (Bn−1 −−⊃ Cn−1))

−−⊃ (A −−⊃ (C0 ∧ · · · ∧ Cn−1)).

In our view these schemata are not much less plausible, from an intuitive point of
view, than the defining schema of S1. But they are not provided by S1, as simple se-
mantic arguments show. If Lewis had pursued this direction in his inquiries he would
have been led to the definition of a whole family of new logics, viz., Lew(PCn+1T)
= Lew(PXnT). In Figure 5 we present a diagram where these logics appear with their
relatives PXn, PXnT, and Lew(PXn). For each a completeness result exists along
the lines drawn earlier. Thus PXn is determined by the class of frames in which no
neighborhood system possesses an n-element covering, and PXnT is determined by
the class of those frames that share this property but in addition are omnireflexive.
The Lewis versions are of course Lewis-determined by the same classes.

In Figure 5 we have also included the logic PXω and its relatives. This logic,
defined as the join of the logics PXn where n < ω, is determined by the class of all
frames in which no neighborhood system possesses a finite covering; thus it repre-
sents a limiting case—the ultimate Cresswell logic. It is included in Lemmon’s C2
but not conversely: as noted in Section 11, C2 (i.e., the smallest regular logic, R)
provides the schema �A → ��; but this not in PXω or its relatives.

In closing let us remark that a safe extension of a model satisfies the condi-
tion (cn) whenever the model does; the reasoning generalizes that in the proof of
Lemma 8.2. It follows from this that the Cresswell logics PXn and PXnT all provide
the rule RnN∗.
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NOTES

1. Collectiveappearance. Lewis formulated S3 more than a decade earlier, in [13].

2. Some subsequent misgivings about Cresswell’s results (see [17] and [21]) have been al-
layed by his [5].

3. For convenience’ sake, throughout the paper the possibility operator ♦ is regarded as
defined by ¬�¬.

4. When the antecedent is devoid of conjuncts, a conditional (A1 ∧ · · · ∧ Am) → B is iden-
tified with its consequent. In other cases empty conjunctions are identified with �, and
empty disjunctions with ⊥.

5. So long as we have PL this rule can equally well be formulated: A ↔ B / C ↔ CA/B.

Similarly for the other replacement rules in the paper, RRTE, RRSE, and RSET.
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6. Note that we might adopt a rule of necessitation for tautologies in this fashion: / �A—
whenever A ∈ PL. We prefer not to do so, since this would in effect be the “schema”
�PL.

7. Lewis, Feys, and others define strict implication in terms of (im)possibility: ¬♦(A ∧
¬B). But for all traditional authors strict implication is interchangeable with �(A → B)

however it is defined.

8. A point noted, e.g., in [6], p. 45.

9. As we shall see, PL need not appear in the list of axioms for a logic. The rule of sub-
stitution is presumed for every logic we discuss in this paper, and so it will rarely be
mentioned.

10. See, e.g., [2] for these and other identifications.

11. In this connection we may note a rule-alternative RqK to the schema qK in classical log-
ics: A∨ B, A → (B ↔ C) / (�A∧ �B) → (�C ∨ ��).

12. A relational frame is a structure (U, R) in which U is a set and R is a binary relation
in U. The truth condition for the operator � with respect to a point x in a model M on
such a frame is: M |=x �A if and only if ∀y ∈ U(〈x, y〉 ∈ R ⇒ M |=y A). The class
of all relational frames determines K, the smallest normal logic. Neighborhood frames
are structures (U, S) with U as before, Sa set {S(x) : x ∈ U} such that S(x) ⊆ PU, and
truth condition: M |=x �A if and only if ‖A‖M ∈ S(x). The smallest classical logic E
is determined by the class of all neighborhood frames. For more on normal logics, see,
e.g., [8], [9], [12], [2], or [18]; for classical logics, the last two of these.

13. It is noteworthy, and easily proved, that the syllogism property is equally well expressed:
x ∈ Q ⇒ (X, Y ∈ S(x) ⇒ X ∪ Y 
= U).

14. The modus ponens and syllogism properties are so called because they say in effect that
the class of propositions necessary at a point in effect obeys the rules of modus ponens
and hypothetical syllogism, respectively. Actually, the properties say this only with re-
spect to queer points, but we can be content with the unrefined names.

15. Note that |A|L = |B|L whenever A ↔ B is a thesis of L, since in that case Aand Bbelong
to the same maximal consistent sets in L. This fact secures the correctness of clause (iv)
in the definition, to follow, of a canonical model.

16. Compare the notions of canonical model in [2], [12], and [18].

17. Particularly in the equivalent guise mentioned in Note 13. The proof for Lemma 12.4
contains a general argument.

18. Indeed, Theorem 7.2 itself follows from a generalization of Lewis’s result due to Suren-
donk [20].

19. At least so long as the logic is finitely axiomatizable or the finite frames for it form a
recursively enumerable class—properties satisfied by the prenormal KXT-logics.

20. The idea of safe extensions originated with Lemmon, in [12]. The results that follow
should be compared to Theorem 3.5 in that volume.

21. See Note 19.

22. Lemmon omitted an axiom that had been shown to be redundant in [16]; cf. [6], p. 44.

23. [11], p. 180. Lemmon used RSET rather than RRSET, it seems, because he was mov-
ing from the logic P2 to S0.9 by weakening “Becker’s rule”—�(A → B) / �(�A →
�B)—to RSET.
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24. For the sake of uniformity we retain the formulas in PL, though they are derivable via
N, RRTE, and RN∗. It is perhaps worth mentioning that in the axiomatizations of the
squadron’s logics presented in Figure 1 RRSE cannot be replaced by RSE. Such re-
placement works, however, wherever the schema K is already derivable without the use
of RRSE—i.e., in the “0.9-logics”. This is because (as arguments like those for Lem-
mas 10.1 and 10.2 will show) a logic that provides K, N, RRTE, and RSE also provides
RRSE. Thus if K were to be stipulated as an additional axiom in the “1-logics” RSE
could replace RRSE in all the axiomatizations of the squadron’s logics.

25. The reference in [3] is n. 3 on p. 199.

26. This is the alternative to (qx) mentioned in Note 13.

27. The cases n = 0 and n = 1 are worth noting, if only to dispose of them. RC0 is trivial,
holding vacuously in every logic, and RC1 says that �A → �� is a thesis whenever
A is, which holds in every classical logic. Thus only for n ≥ 2 do we get something
interesting (RC2 is of course the rule RqX, which figures in Lemma 5.3). Note in this
connection that the condition (cn) is similarly uninteresting when n < 2.

28. This is perhaps a good place to note a condition equivalent to (qk): if U 
∈ S(x), X ∪ Y =
U, and (U − X) ∪ Y = (U − X) ∪ Z, then X, Y ∈ S(x) only if Z ∈ S(x). Compare the
rule RqK mentioned in Note 11.

29. The general issue we touch on here is of considerable interest: when is it possible to ex-
press a rule by an axiom schema? To the best of our knowledge there are only relatively
few particular answers to this question and no general one.

30. [4], p. 495, n. 4.
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