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Modal Logics in the Vicinity of S1

For Dana Scott

BRIAN F. CHELLAS and KRISTER SEGERBERG

Abstract Wedefineprenormalmodal logicsand show that S1, S1°, S0.9, and
S0.9° are Lewis versionsf certain prenormal logics, determination and decid-
ability for which are immediate. At the end we characterize Cresswell logics
and ponder C. |. Lewis'sideaof strict implication in S1.

1 Introduction The modal logics S1, S2, S3, $4, and S5—the “Lewis systems’—
made their first collective appearance in [14].> The logics were presented syntacti-
cally, by means of axioms and rules of inference, and it was established that they are
distinct and form a chain under inclusion, with S1 being the weakest, or “strictest” in
Lewis's accounting. The appearance of possible worlds modelsin the late 1950s ex-
pedited a systematic attempt to analyze modal logics semantically. Asiswell known,
the normal logics $4 and S5 were the first of the series to receive satisfactory treat-
ment in possible worlds terms. The others, being nonnormal, had to wait longer. The
last to succumb was S1, for which Cresswell [LZ._] provided a possible worlds model
theory.?

Most modal logics studied in recent years have been at least classical, in the
sense that they permit replacement of logically equivalent formulas. The logic S1,
however, is nonclassical, as are certain othersin its vicinity, notably S1°, S0.9, and
S0.9°. Inthis paper we present a uniform approach to S1 and these close rel atives by
way of aclass of classical “prenormal” logics, interesting in their own right.

Following some preliminary definitionsweintroduce prenormal logics, develop
their semantics, and establish determination and decidability theorems. Then we de-
fine certain nonclassical extensions of prenormal logics, of akind we call Lewislog-
ics, determination and decidability results for which are thus ready to hand. Oncewe
describe S1, S1°, S0.9, and S0.9° axiomatically and note some of their salient princi-
ples, the upshot isan identification of S1 and itsrelativesasLewislogics. Finally, we
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generalize akey schemaand rule and in terms of them characterize aclass of what we
call Cresswell logics; this raises a question about Lewis'sideaof strict implication.
As will become evident, our approach in this paper is inspired by Cresswell’'s
work and is based on a central ideadueto him, viz., models of the kind he introduced
in[4], which combinefeatures of thefamiliar “Kripkean” relational modelswith their
more general neighborhood counterparts first introduced by Montague and Scott.

2 Preliminary definitions  In the course of the paper we consider a host of axiom
schemata and rules. Naming them all in a mnemonically satisfactory way presents
problems. Certain conventions will help. We begin with these two formulas:®

(N) aT
Q OL.
Then given aschema Swewrite nSfor the schemaN — (S), gSfor theschemaQ —

(S), and OSfor the schemall(S). For example, among the schematato be considered
arethefollowing:

(K) (A — B) — (OA — OB)
X) (O(A— B)AO(B— C)) — [(A— C)
(T OA— A.

Thus by our convention we also have, inter aia

(nK) OT - (O(A— B) » (DA— [OB))
(gX) 0L —- (O(A— B AOMB—C) - 0OA— C)
@m OOA— A).

(To aid memory, thisisK for Kripke, X for chain-rule, T for Feys'slogique t N for
normal, and Q for queer.) If we agreeto list

(PL) the set of all tautologies,

as akind of schema, we can stretch our convention alittle by registering as well the
set of necessitations of tautologies:

(OPL) {(OA:AePLl.

Another convention isto giverulesalabel beginning with the letter R. Examples are
rules of necessitation and denecessitation, Scott’s rule, a rule of congruence called
RE for historical reasons, and a general rule of replacement:

(RN*)  A/OA

(RN,) DOA/A

(RK) (Ao A+ A An1) = B/ (OAgA---AOAR1) — OB(M=> 0)4
(RE) A< B/OA« B

(RRE) A< B,C/CHp.

—where C*/g results from replacing one occurrence of A in C by B.> Apart from
substitution the only deviation from this policy comeswith acouple of rules of modus
ponens—the usual version and a“strict implication” counterpart:

(MP) A—B,A/B
(SMP) O(A— B),A/B.
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We aso occasionally use “n” and “q”, not aways with obvious meanings, in names
of rules. Some examples:

(RON*)  A/0OT — OA

(RnN,) OT —->0OA/A

(RnK) (AgA - ANAn-1) — B/OT — (OAGA --- AOAN1) —
OB)(m=> 0)

(RgX) AvB/(OAAOB) — OT.

We should emphasize that to say that alogic provides arule of the form

AO,...,An_l/ B
meansthat thelogic containsthe conclusion B whenever it containsall the hypotheses
Ao, ..., An_1. In some cases we state a condition on arule. One exampleisreplace-

ment for tautological equivalents:
(RRTE) C/C”/g—whenever A and B are tautologically equivalent.

Another example is the rule RNAx mentioned |ater on.®

Much of the early work in modal logic concernstheideaof strict implicationand
its concomitant, strict equivalenceStrict implication is nowadays usually defined as
necessitation of the (“material”) conditional, (A — B), which isthe way we shall
construeit.” But there are at least two plausible ways to represent strict equivalence.
The one used by Lewis, Feys, Lemmon, and most other traditional authors conjoins
strict implications: (A — B) A (B — A). Another, simpler form necessitates
the biconditiona: (A < B). These forms are not in general interchangeable, and
certainly not in thelogicsto which this paper islargely devoted.®2 Thuswhen it comes
to representing a strict analogue of the rule RRE there are two choices. Inthe simpler
fashion, where the analogy is clearer, we write:

(RRSE) (A< B),C/C*/g.
In the traditional mode we write:

(RRSET) O(A— B)AO(B— A),C/CA/g.
Likewise for strict counterparts of RE:

(RSE) (A< B)/O(0A < OB)
(RSE;) O(A— B)ADO(B— A)/OA— OB) AO@B — DA).

For the logics we shall consider, it fortunately makes no difference which form is
preferred—something we shall prove in Section[10]

3 Logics A set of formulasis alogic if it includes the set PL and is closed under
MP and substitution. Thus PL is itself alogic—ordinary propositiona logic—and,
being the smallest logic, it lies within all the logics in this paper. This means that
every propositionally correct inference is available in every logic. We often signal
such inferences simply by PL.°

We distinguish between theses and theorems. A formulabelonging to alogicis
athesis whereasatheoremsaformulaprovablein an axiom system. Thedistinction
isfine, but on occasion it will be useful. A logic is consistenjust in case it excludes
some formula
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A schemaor ruleis said to be derivablein alogic if al instances of the schema
are theses of the logic or the logic is closed under the rule. If a schema or ruleis
derivablein alogic we also say that the logic providesor, simply, hasthe schema or
therule in question.

A classicallogic is one that provides the rule RRE or, equivalently, RE, and a
logic ismonotonic, regularor normalif it provides RK respectively form=1, m>
1,orm > 0. Clearly every monaotonic logic—hence also every regular or normal
logic—isclassical. Alternatively, aclassical logicismonotonicif ithasCO(AA B) —
(OA A OB), regular if it has the schema

P O(AA B) < (DAADB),

and normal if it has N (or RN*) and either F or K. The smallest classical, monotonic,
regular, and normal logics are called E, M, R, and K respectively.’® The following
lemma records some further elementary facts.

Lemma3.l (1) Classical logics provide botRnN* and RRTE. (2) A logic that
providesRRTE and X also hasK. (3) A logic that provide®kN, also providesSMP,
and hence a logic that haBalso providesSMP. (4) A logic that hadRRTE provides
SMPif and only if it providesRN.,..

Proof: For (1): If Aisathesisof aclassical logicthensoisT <« Aby PL and hence
OT — OAby way of RRE. Moreover, if Aand B are tautologically equivaent then
A < Bisatautology and hence athesis of every logic. So by RRE if C isathesisso
is CA/g. We make frequent appeal to the rule RRTE in the pages that follow. For (2):
Assumethat thelogic provides X and sotoo ((T — A) AO(A— B)) —» O(T —
B). By two uses of RRTE weinfer thethesis (A A (A — B)) — OB, whichisa
PL-variant of K. The schemataK and X play important rolesin the next few sections,
either by themselves or as components of other schemata such asnK and gX, and this
reasoning can be imitated in these other contexts. For (3): If both (A — B) and A
arethesesof alogicthen by RN, sois A — B, whence B by MP. For (4): Itisenough
to show that the logic provides RN, if it provides SMP. Assume that CJA isathesis.
Fromthisweobtain (J(T — A) viaRRTE andthen Afrom SMPandthethesisT. [

Thelogic S1 and certain othersin its vicinity are not classical. Our aim, however, is
to show that they are systematically related to a class of logics that are classical. In
anticipation of our introduction of these logics we register the following proposition.

Lemma3.2 Adassicallogic provides any one of (K, (ii) RnK, (iii)) nF, and (iv)
nX if and only if it provides them all.

Proof: The reasoning is like that for the “n-less” forms of the schemata and rule
in the realm of normal logics. From (i) to (ii) we argue inductively: When m = 0,
RnK isjust RnN*, which every classical logic provides (Lemmal3.1{1)). So assume
that the rule is provided up to m > 0 and that (Ag A --- A Ap) — Bis athesis.
Thensois (Ag A --- A Am_1) — (An — B), from which by the inductive hypoth-
esiswereach 0T — (A9 A --- AOAn-1) — O(An — B)). Using nK in the
fom OT — (O(An — B) — (A, — OB)), weinfer OT — (OAg A --- A
OAmn_1) — (OA,L — OB)), which is equivaent to the desired conclusion. From
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(i) to (iii), note that by way of RnK and various tautologies nF follows (as, indeed,
do nK and nX). From (iii) to (iv), suppose now that the logic has nF. To see that it
has nX, note first that it provides the rule RnK for m = 1: the hypothesis A — Bis
PL-equivalent to A <> (A A B), whichyields(JA < (A A B) by RE, from which
the conclusion T — (OA — OB) follows via nF. So by this rule on a tautology,
OT - (O(A— B)A(B— C)) — O(A— C)) isathesis, and viaan instance of
nF this becomes nX. Finally, from (iv) to (i), an argument like that for Lemmal3.1{2)
shows that nX yields nK. O

4 Strict classical logics Aswe remarked, many of the logics to be considered are
not classical, i.e., they do not provide for replacement of equivalents. These logics
do, however, provide for replacement of strict equivalents. Let us delimit as strict
classicalthose logics that include CIPL and are closed under RRSE. In anticipation
of our needs in Section[I0] and so as not to beg any questions, we aso define alogic
to be stricty classical(“traditionally strict classical”) if and only if it includes CIPL
and is closed under RRSEr.

Lemmad.l Astrict or stricty classical logic provide®N and RRTE.

Proof: N isof coursein such alogic. On the other hand, suppose that A and B are
tautologically equivalent—so that A <» B, A— B, and B — A aretautologies—and
that C isathesis of thelogic. By OPL, [J(A <> B) isaso athesis, asare LI(A —
B) and J(B — A) and hencetoo (A — B) AJ(B — A). Then C*/g follows by
RRSE or by RRSEr. O

Whenisit amatter of indifference which of RRSE and RRSET we useto characterize
strict (or stricty) classical logics? One weak, sufficient condition is the presence of
RRTE and the following rule (more precisely, pair of rules):

(RF) O(AAB) /OAAOB  OAAOB/O(AAB).

Thus it should be evident that alogic that has both RRTE and RF provides RRSE if
and only if it provides RRSET. So by Lemmal4Tlstrict and stricty classicality coin-
cide whenever alogic provides RF. More pertinent to our interests below are the next
two lemmas.

Lemma4.2 Alogic that hasN and RRTE (and hencélPL) andK also provides
RF.

Proof: For left-to-right, supposethat (1( A A B) isone of thelogic’stheses, for some
Aand B. By OPL soare [0((A A B) - A) and J((AA B) — B). Using PL, these
plus some instances of K—

O((AA B) — A) — (O(AA B) — OA)

O((AA B) — B) — (O(AA B) — [OB)

—deliver JA A OB. Conversely, if DA A OB isathesisfor some A and B, then by
OPL soisd(A— (B— (A A B)). All thisand two instances of K—

UOA— (B—- (AAB)) - UOA—T(B— (AAB)))
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(B — (AA B)) — (OB — O(AA B))
—deliver J(A A B). O
From Lemmas[2.1{2),[4.1] and[2.2] therefore, we have this corollary:

Lemmad4.3 Alogic that provides or X is strict classical if and only if it is strigt
classical.

It must be emphasized that, regardless of our use of “F” in its name, alogic that has
the rule RF may yet lack the schemaF or either of its conditional halves:

O(AAB) - (HAAB) (OAAOB) - O(AA B).

For example, notwithstanding their classicality the logics defined below in Section[5]
lack both these schemata and so are not even monotonic. The strict and strictt clas-
sical logicsin Sections@land [10llikewise lack both the schemata.

One more result before we move on.

Lemmad4.4 Adrict classical logic provide®RSE, and a strict classical logic pro-
videsRSEr.

Proof: Supposethat (A <> B) and (A — B) ALJ(B — A) aretheses. ViaPL
and OPL wereachOJ(OA < OA) and O(OA — OA) AO(OA — OA), fromwhich
OOA <« OB) and OOA — OB) AOEOB — OA) follow by RRSE and RRSET
respectively. O

It should be understood that, unlike the situation in classical logics, where RE does as
well asRRE, strict classical logics cannot be characterized simply aslogicsincluding
OPL and closed under RSE; the same goes for stricty classical logics and RSEr.

5 Prenormal logics Wecall aclassical logic prenormaljust in caseit providesthe
schema

(nK) OT —- (O(A— B) —» (OA— OB)).

So Lemmal3.2hjives agood feeling for the strength of prenormal logics. The smallest
such logic we dub P. As a considerable portion of this paper deals with prenormal
logics definable by adding to P any combination of K, X, and T (including the null
combination), let us call such alogic aprenormal KXT-logic.The following result is
obvious inasmuch as nX isin every prenormal logic.

Lemmab.1 A prenormallogic provideK if and only if it provideggK, and it pro-
videsX if and only if it providesyX.

Next note this analogue of LemmaB:1(2):

Lemmab.2 A dassical logic—and hence a prenormal logic—that provid&s
also providegK.

Though thereis thus some redundancy in characterizing KXT-logicsin terms of K or
X rather than gK or gX, we shall continue to use the simpler nomenclature. At the
same time we note that the defining axiom nK is redundant in the axiomatizations
PK, PX, PKT, and PXT. It followsthat there are at most six prenormal KXT-logics:
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P, PK, PX, PT, PKT, and PXT. Aswe shall see, they areall distinct; so their number
isexactly six.

We call P and other such logics prenormal because they are separated from nor-
mal logics only by alogical hair’'s breadth—viz., the formula N. The smallest clas-
sical logic containing both nK and its antecedent, N, is obviously EKN, i.e.,, K, the
smallest norma logic.

Before moving to semantics we note the equival ence of the schemagX to arule
mentioned in Section[2]

Lemmab5.3 Aclassical logic providesgX if and only if it providesRgX.

Proof: For left-to-right, supposethat Av Bisathesis. Thensoare A< (B — A)
and B < (A — B), asisthetautology T <> (B — B). Hence by RRE onaninstance
of gX s0is¢L — ((HAAOB) — OT). ViaRRE and PL thisisequivalentto (OAA
0O0B) — OT. For right-to-left, apply the rule to the tautology (A — B) v (B — C)
toinfer (O(A— B) AO(B— C)) —» OT—and use RRE and PL to reach L. —
—(O(A — B) AJ(B — C)), which at onceyields gX by PL.}1 O

6 Semanticsfor prenormal logics We begin with theideaof aframe by whichwe
understand astructure ¥ = (U, N, Q, R, S) inwhich U isaset, N and Q aredigoint
subsets of U that exhaustit (i.e, NUQ=U and NN Q = &), Risabinary relation
in N x U, and Sisafamily {S(x) : x € Q}, whereeach S(x) isacollection of subsets
of U subject totheconditionthat U ¢ S(x). Theset U istheuniverseof theframe, and
wethink of theelementsin N asnormaland of thosein Q asnonnormal, or queer R
isan alternativenessdlation, and S(x) collectsthe neighborhoodsf x. For brevity’s
sake we reduce the framesto (U, Q, R, S), but throughout the paper we continue to
use N for U — Q.

A valuationin aset U isamapping V from the set of atomic formulas to PU,
the power set of U. Modelsare structures M = (U, Q, R, S, V) consisting of aframe
(U, Q, R, S) together with avaluation in its universe.

A frame or model is said to be finite when its universeis.

The definition of truth at a point in a model is as usua except for the modal
clauses, where the truth conditions depend on whether the point is normal or queer:

Forxe N: M pExOAifandonlyif Vy((x,y) € R= M &y A).
Forxe Q: M =xOAifandonly if |A]™ € S(x).

Here |AlM is{ue U : M =, A}, the “truth set” of A in M.

We shall usually drop referencesto F or M whenitisclear what frame or model
isintended.

A formulaistrue in a modelf true at al pointsin the model; valid in a frame
if true in al models on the frame. A set of formulas is satisfiable in a framef all
its members are true together at some point in some model on the frame. A logic is
said to be strongly determined ba class of framesjust in case every set of formulas
consistent in the logic is satisfiable in a frame in the class (completeness) and vice
versa (soundness). A logic is weakly determined bg class of frames if and only if
the formulas valid throughout the class are theses of the logic (weak completeness)
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and vice versa. By L (F) we mean the logic of the frame 7, i.e., the set of formulas
vaidin 7.

To those familiar with the contemporary semantic analyses of modal logics it
will be apparent that the apparatus presented above combinestherel ational and neigh-
borhood approaches. Within the domain of normal pointsthe alternativenessrelation
holds sway, and the frames, models, and truth conditions are relational; for queer
points the structures and truth conditions are of a neighborhood type. In brief, if
N = U and Q = & the frames become completely normal, as does their logic; when
the situation is reversed we are in the realm of neighborhood semantics.*? The fruit-
fulness of thisway of doing things shows itself in our determination theorems.

7 Determination for prenormal logics To obtain determination theorems for the
prenormal KXT-logics the first task is to define the corresponding propertef each
of the schemata K, X, and T—more precisely, of gK, gX, nT, and qT. Let F =
(U, Q, R, S) beany frame.

Corresponding to K iswhat we call the modus ponens property

(k) xe Q= ((U—-X)UY, Xe S(X)=Y e SX).
For X we have the syllogism property
(x) xeQ= ((U=X)UY,U-Y)UZe S(X)= (U-X)UZ e S(x)).13

We say further that Risnormal-reflexivef it isreflexivein the ordinary sensewithin
N; i.e, if (x, X) € Rwhenever x € N. And we say that Sis queer-reflexivéf when-
ever x e Q, X e S(x) only if x e X. Normal-reflexivity correspondsto nT, and queer-
reflexivity correspondsto gT.

When Ror Shasany of these propertieswe a so say that the frame ¥ fdoes, and
that any model on F does.'* Finally, we say that aframe or model isomnireflexive—
or hasthe property (t)—if R isnormal-reflexive and Sis queer-reflexive. Omnireflex-
ivity correspondsto T.

It will be evident that each prenormal KXT-logic is sound with respect to any
class of frames having the appropriate corresponding properties, and hence P, PK,
PX, PT, PKT, and PXT aredl distinct.

To prove determination we employ canonical models.

Let L beany prenormal logic. Where Max, isthe set of all maximal consistent
sets of formulasin L, we write | Al for theset {u € Max_ : A € u} (the “proof set”
of AinL).*® Wesay that M, = (U_, Q_, R, S, V) isacanonical model for L if
it satisfies these conditions:

(i) U, =Max,.
(i) QL ={xeU_:0OT & x}.
@ii) RL={(x,yy e NL xU_ :YA(OAex= Acy)l.
(iv) 1AL e S () ifandonly if A € x, forevery x e Q..
(v) VL(P)=|P|_, for every atomic formula P,
We usually drop the referenceto L when it is clear which logic L is.

Our definition allows for a variety of canonical models for a prenormal logic,
ranging from the smallest (where each S(x) contains just the proof sets | A| such that



MODAL LOGICS 9

OA € x) to the largest (where each S(x) contains all such proof sets together with
every nonproof set).16

Lemma7.l1 LetM be acanonical model for a prenormal lodic Then, for every
formulaA and every xe U, M =« Aif and only if Ae x.

Proof: The proof isaninduction of the usual kind, and the nonmodal cases are un-
problematic. We will only highlight a detail in the proof for x € N—i.e., for nor-
mal x—that M =y A if and only if CJA € x. Thisinvolves proving that (A € x
if and only if AisL-deducible from {B : (OB € x}. The only-if part is immediate.
So suppose A isthus deducible. Then there are formulas By, . .., (0By,_1 € X such
that (Bp A --- A Bh_1) = Aisathesisof L. Consequently, by therule RnK, OT —
((OBg A ---AOBy—1) — OA) isaso athesisof L. Since x isnormal, OT € x. It
followsthat A € X, Since x isamaximal consistent set. O

Itisimmediate that P is strongly determined by the class of all frames. To show de-
termination for the rest of the prenormal KXT-logicsit is sufficient to show that they
have canonical models that satisfy the appropriate conditions.

For PX and PT it is enough to check that their smallest canonical models re-
spectively have the properties of syllogism (gx) and omnireflexivity (t), and that that
for PXT has both. Thisisamost trivial for (t), and it is easy enough for (gx).” For
PK and PK T something moreisneeded, what Benton [1] callsan“overlay” canonical
model—i.e., onein which the neighborhoods of queer points are defined for nonproof
sets X by:

X € S(x) if and only if IJAIB(|A] € X C |B|&VYC(|A| C |C| C |B| = C € X)).

In terms of these constructions and LemmalZ.1lwe reach:

Theorem 7.2 Each prenormaKXT-logic is strongly determined by the class of
frames with the appropriate corresponding properties.

We can further obtain finite determination results for the prenormal KXT-logics.

Theorem 7.3 Each prenormaKXT-logic is (weakly) determined by the class of
finite frames with the appropriate corresponding properties.

Theorem [Z.2]can be shown by means of filtrations and Theorem[Z2] But because
the KXT-logics are al noniterative—i.e., there is no nesting of modalities in their
axioms—the results are in fact a consequence of Lewis's principal theoremin [Iﬁ.18

From Theorem[Z3we conclude that each of the prenormal KXT-logics has the
finite model propertyeach nonthesis is false in some finite model for the logic. Of
course an axiomatizablelogic that hasthefinite mode! property isdecidable.'® There-
fore:

Theorem 7.4 The prenormaKXT-logics are all decidable.

8 TheruleRnN, Wedevotethissectionto showingthat all of the prenormal logics
definableintermsof K, X, and T providetherule RnN,,, which will play animportant
role later on.

Where M = (U, Q, R, S, V) isamodel, wesay that M* = (U* Q* R* S* v#)
isasafe extensionf M if the following conditions hold:
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(i) U* o U.
(i) Q*=Q.
(i) R*nUxU)=R
(iv) (x,y)e R*= (xeU=yeU), forevery x, y e U*.
(v) Xe S*(x) & XNU e S(x), forevery x e Q* and every X c U*.
(vi) V#(P)nU = V(P), for every atomic formula P.2°

Theorem 8.1 LetM* be a safe extension 6f. Then for every formula A and ev-
ery xe U, M# =, Aifand only if M =, A.

Proof: Letuswrite || Al for || A|™, and || Al|# for || A ™ #. Then the theorem asserts
that | Al = || Al|* NU. We proveit by induction on A. If Aisatomic or boolean there
is no difficulty. Suppose that A = (1B and—as the induction hypothesis—that the
result holds for B. Let x be any element of U.

First suppose that x isnormal. Note that it follows from the definition of a safe
extension that, for every y e U¥, (x, y) € R¥if and only if (x, y) € R. With the help
of this observation and the induction hypothesiswe seethat Vy € U#((x, y) € R =
M* =y B)if andonly if Yy e U((X, y) € R= M =, B). Therefore M* =, OB if
and only if M =4 OB. Next suppose that x is queer. Using the definition of S* and
the induction hypothesis we see that || B||# € S*(x) if and only if |B|#NU e S(x)
if and only if || B|| € S(x). Therefore M# =, OB if and only if M = OB. O

Notethat new pointsinasafeextension M# ie,thoseinU?—U, arealwaysnormal.
It iseasy to seethat when M isomnireflexiveand (u, u) € R* for every new u, M*is
normal-reflexive. It is aso omnireflexive: for any x € Q% if X € S¥(x), thenx e Q
and XNU e S(x). Soif S(x) isqueer-reflexive, x e XNU C X.

Lemma8.2 If M*is asafe extension 6f, then * has the property (qk) or (gx),
respectively, itV does.

Proof: As(gk) isactually aspecia case of the syllogism property, (gx), let usargue
just for the latter. Suppose that M has (gqx). Where x € Q* = Q, take any subsets
X, Y, and Z of U¥ such that both (U# — X) U'Y and (U# — Y) U Z are elements of
S*(x). Then by the definition of safe extension:

(U F=X)uY)nU e S(x). (1)
(U =Y)uzZ)nU e S(x). 2

Giventhat U € U#, we can rewrite (1) and (@) thus:
(U= (XNU)U(YNU) e S(x). ©)

((U—=(YNU)U(ZNU) e Sx). (4)

Hence by the syllogism condition for S, (U — (XN U)) U (ZNU) e S(x), which
worksout tomeanthat (U# — X)U Z)NU e S(x). So by thedefinition of S*, (U# —
X)uzZe S O

Theorem 8.3  All the prenormaKXT-logics provide the ruldRnN,,.
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Proof. LetL beoneof thelogics, and supposethat Aisnot athesisof L. By Theo-
rem[73] Aisfalseat somepoint xin somemodel M having the appropriate properties
from among (gk), (gx), and (t). Where u is new to M, let M # be the safe extension
of /M obtained by adding (u, x) to Rto form R#; add (u, u) aswell in caseL provides
T. Then by LemmalB.21 # has the relevant properties among (gk), (gx), and (t), and
soisamodel for L. But JAisfalseat u, and so, asuisnorma,JT — JAisaso
faseat u. HenceOT — JAisnot athesisof L. O

9 Lewislogics and their semantics By the Lewis versior_ew(L) of alogic L we
understand the smallest logic that extends L and contains (OJT. Thus Lew(L) isthe
closure of L U {{JT} under modus ponens. Notice that Lew(L) is closed under sub-
stitution and soisalogic, but that L ew(L) may not be closed under other rules under
which L isclosed. For example, if L hastherule RRTE so doesL ew(L), whereasthe
rule RRE is not generally inherited by Lewis versions of classical logics. We define
aLewis logicas alogic that is the Lewis version of some classical logic.

Lemma9.1 LetL be a classical logic and A be any formula. (1) A is a thesis of
Lew(L) if and only ifO0T — A is athesis ofL. (2) If L providesRnN, then A is

a thesis ofL if and only ifCJA is athesis ofLew(L). (3) If L providesRnN, then
Lew(L) is strict classical and provides RN

Proof: (1) issimply amatter of definition and the deduction theorem. For the left-
to-right of (2), suppose Atobeathesisof L. Thensotoois(OT — L A(LemmaBTI{1)).
Hence by part (1) Lew(L) has OA. For right-to-left, suppose that CJA is athesis of
Lew(L). By part (1) OT — OJAisathesisof L, and hence by RnN,, sois A. In the
case of (3), for OPL, suppose that A isatautology. Then Aisathesisof L, and by
part (2) OJAisathesisof Lew(L ). For RRSE, supposethat both (J(A <> B) and C are
inLew(L). Then A< Bisathesisof L by part (2), and sois(JT — C by part (1).
Since L isclassical, it hasOT — C#/g and so C”/g isathesis of Lew(L) by part
(1) again. Therefore Lew(L ) isstrict classical. For RN,,, supposethat (JA isathesis
of Lew(L). Then L has A by part (2) and sodoesLew(L) sinceL C Lew(L). O

It follows from Theorem [8.3]and Lemma [.1]that each prenormal KXT-logic is
strict classical. Moreover, by Lemmas[B.1(3), [4.1] and 2.4 we find this corollary to
Lemmalo.1]

Lemma9.2 WherelL is a classical logic that provide®nN,—e.g., by Theo-
rem[8.3] whereL is a prenormalK X T-logic—L ew(L) providesRRTE, RSE, and
SMP.

Noticethat if L isnormal then L = Lew(L). The converse is not generally true. For
example, the smallest classical logic that contains T isaLewisversion of itself, but
itisnot normal. However, if L isprenormal, then L = Lew(L) only if L isnormal.
The semantics for prenormal logics is readily adapted to suit their Lewis ver-
sions. Frames and models are as before, but the ideas of validity and satisfiability are
relativized to normal points. We say that a set of formulas is Lewis-satisfiablén a
frameif at some normal point in some model on the frame all the formulas are true,
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and that aformulais Lewis-validin aframeif itistrue at every normal elementin ev-
ery model on the frame. The concepts of strong and weak Lewis-determination are
obvious. The fundamental result isthis.

Theorem 9.3 Wherel is a classical logic strongly determined by a class of frames,
Lew(L) is strongly Lewis-determined by the class.

Proof: LetL beaclassica logic determined by aclass of frames. Lewis-soundness
isevident. For Lewis-completeness, suppose I'" to be a L ew(L)-consistent set of for-
mulas. Then I' U {(OT} is Lew(L)-consistent, and also L-consistent (since L is a
sublogic of Lew(L)). By Theorem [Z.Z]the formulas in " U {{JT} are true together
at some point in some model on a frame in the class. Because of T this point is
normal. O

Using models like those in the case of prenorma KX T-logics (in Section[7} one can
readily prove the following proposition.

Theorem 9.4 The Lewis versions d?, PK, PX, PT, PKT, and PXT are all dis-
tinct.

The Lewisversions of the prenormal KX T-logics are of course axiomatizable, and by
means of filtrations they can all be shown to have the finite model property. So they
are all decidable.?* But more simply, the question of whether or not aformula Aisa
thesis of the Lewis version boils down to that of whether T — Aisathesis of the
prenormal KXT-logic itself; since the latter is decidable so is the former. The result
isworth recording:

Theorem 9.5 The Lewis versions d?, PK, PX, PT, PKT, andPXT are all decid-
able.

10 Sl and S0.9, S1° and S0.9°  Our aim now is to show that the four logics men-
tioned in the title of this section—we refer to them as “the squadron”—are simple
examples of Lewislogics. In fact, we shall be able to identify them as follows:

SI° = Lew(PX). Sl= Lew(PXT).
S0.9° = Lew(PK). S0.9 = Lew(PKT).

To prepare for these results we first revise various formulations of S0.9°, S1°, S0.9,
and S1 found in the literature so as to obtain a uniform set of axiomatizations that
revea at a glance certain important properties.

In [[1] Lemmon provided a simple axiomatization of S1 that, unlike earlier for-
mulations, clearly separated itsmodal €lementsfromitsbasisin propositional logic.??
Specifically, Lemmon took as axioms PL and all instances of the schemata X and T,
and by way of rules he used MP, alimited form of necessitation,

(RNAX) A/OA —whenever Aisone of the axioms,

and the traditional replacement rule for strict equivalents, RRSEr.

In [ Lemmon also introduced the system S0.9, defining it by taking as ax-
ioms PL and all instances of K and T and as rules MP, RNAX, and the rule RSET of
congruence for strict equivalence.
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Theother two systems, S1° and S0.9°, are often loosely described as S1 and S0.9
minus the schema T. However, careis heeded here, for it cannot be assumed a priori
that deleting an axiom schema shared by two different axiomatizations of the same
old logic will always result in the same new logic. Slightly modifying the definitive
axiomatization of S1° given in [6] we note that S1° can be axiomatized by taking as
axioms PL and all instances of X and by adopting as rules MP, RNAX, RRSET, and
the strict version of modus ponens, SMP.

Similarly, we may consider that S0.9° is alogic that can be axiomatized by re-
placing OOX in Feys's axiomatization of S1° by (OK. Then in the same way we may
describe S0.9° as axiomatized by the system that has PL and all instances of K as
axioms, and MP, RNAX, RRSE+, and SMP asrules.

Thusall thelogicsin the squadron have PL, MP, and RNAX; the* 1-logics’ have
X wherethe*0.9"shaveK; the*°-logics’ have SMP wherethe “°-less’ ones have T.
The situation is pictured in Figure 1. The figure reveals the anomaly that S0.9 uses

S1° S1

X, SMP X, T

RRSET RRSET
PL, MP
RNAX

K, SMP K, T

RRSET RSET

S0.9° 0.9

Figure 1

RSET where the others have RRSEy. In what follows we propose to regularize this
and otherwise recast the axiomatizations of the logics in the squadron.

First therule RNAX. Attractivefor its summarizing properties, it istoo radically
context-dependent for a project such as ours, where we are dealing with a number of
logics. Wetherefore replace RNAX by the combination of RRTE, N, and (IS for each
non-PL axiom schema S in the squadron’s logics. The first two of these yield COPL,
the necessitations of all tautologies.

Next notice that since S1 and S0.9 provide T, by Lemma[3.1{3) all thelogicsin
the squadron have the rule SMP (we shall shortly improve on this result).

Lemmon himself remarked that the rule RRSE+ is derivablein S0.9.23 Indeed,
aroutine induction proves thislemma.

Lemma10.1 Alogic that provideK, (OPL, and RSEr also provides this rule of
replacementt)(A — B) AO(B— A) /O(C — C*/g) AO(C*/g — C).

From this we obtain the following proposition, from which the desired result for S0.9
follows.
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Lemma10.2 Alogicthat provides, OPL, RSEr, andSMPalso providedfRRSEr.

Proof: Supposethat (0(A — B) AO(B — A) and C are theses. Then by the rule
in Lenmall01lso isJ(C — C*/g) AO(C*/g — C) and hence, by PL, O(C —
C”/g). From thisC#/g follows via SMP, O

To seethat in Lemmon’saxiomatization of S0.9 RSEr isindeed equivalent to RRSEr,
note that if RSEr isreplaced by RRSEr, then given OPL thelogic is stricty classical
and by Lemmal4.4IRSE+ is derivable.

Thus we see that the logics in the squadron are all stricty classical. Note, more-
over, that they all provide K or X; indeed, by Lemmas[3.1(2) and[4.1] they all provide
K. Therefore, by LemmalZ.3khe squadron’slogics are all strict classical. This means
that we may adopt—as we hereby do—RRSE in place of RRSEr or RSEr.

Furthermore, Lemmas [3.1(4) and [4.1] together tell us that each logic in the
squadron providestherule RN,. Soweare also freeto usethissimpler ruleinstead of
SMPin axiomatizing S1° and S0.9°. Indeed, if we stipulate RN, in each of the four
axiomatizations, we can eliminate the schemata K, X, and T throughout the formula-
tions and make do with just their necessitations, LIK, (X, and CIT.

This leads to the following axiomatizations: each of the squadron’s logics has
PL, MP, N, RRTE, RRSE, and RN,; the “1-logics’ have [OX where the “0.9-logics’
have 0K ; and the “°-less” logics in addition have CJT.2* To help to keep track of the
squadron’slaogics as thus formulated we offer the chart in Figure 2, inwhich alogic’'s
more inclusive relatives are reached by traveling directly upward or rightward.

S1° S1
OX Ox,daT
PL, MP
N, RRTE
RRSE, RN,
OK oK., dT
S0.9° 0.9
Figure 2

11 Lewislogicsandthelogicsof thesguadron Wearenearly ready to demonstrate
the identities advertised at the beginning of Section[10] The result appears as Theo-
rem[L1.2] the way to which is paved by the following:

Lemmall.l If Ais atheorem ofPK, PKT, PX, or PXT, thenOJA is atheorem
respectively 0580.9°,50.9, S1°, or S1.
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Proof: For the purposes of the proofs of thisand the theorem to follow we write SL
for alogicinthe squadron (S0.9°, S0.9, S1°, S1) and L for the corresponding logicin
the “presquadron” (PK, PKT, PX, PXT). Let L be one of the latter. Asthe defining
axiom nK for L isredundant, wetake L to be axiomatized by PL, all instances of the
relevant schemata (K, X, T), and the rules MP and RRE.

Supposethat Aisatheorem of L and so appearson alineinaproof inthe axiom
system for the logic. We argue inductively.

Case 1: Aisatautology, an instance of X, or an instance of T. Recall that SL has
OPL and, asaxioms, (IX and [IT.

Case 2: Asinferred by modus ponens from previous formulas B and B — A. By
the inductive hypothesis the necessitations of both of these are theoremsof SL. Since
SL providesK, it follows by two uses of MPin SL that (JA is atheorem.

Case 3: Ahastheform B®/p andisinferred by RRE from earlier formulasC < D
and B. By theinductive hypothesis, [1(C <> D) and (1B are SL theorems. Hencethe
rule RRSE applies, so (OB)C/p, i.e., J(B¢/p),i.e., JAisasoatheoremof SL. O

Theorem 112 Lew(PK) = S0.9°, Lew(PKT) = S0.9, Lew(PX) = SI°, and
Lew(PXT) = SL.

Proof: Againlet L beoneof PK, PKT, PX, and PXT. Supposethat Aisathesis of
Lew(L). ThenL hasOT — A (Lemmal@.1). By Lemmall1l1] SL has (0T — A)
asathesis. Soby RN,, T — Aisasoathesisof SL, and hencesois A, sinceN is.
Thisshowsthat Lew (L) € SL. To provethe converseitisenoughto notethat L ew(L )
includesPL and isclosed under MP (by definition); that L ew(L ) containsall instances
of the relevant axiom schemata (by LemmaMZ), since their “ denecessitations’ are
al inL); and that Lew(L) provides JPL, RRSE, and RN, (by Lemmal@.1{3)). O

Determination and decidability for S0.9°, S0.9, S1°, and Sl follow from Theo-
remsl2.3][2.5] and[[1.2] Credit for compl eteness, finite model property, and decidabil-
ity of S1° and S1 goes to Shukla [[19] and independently Cresswell [[4]. The proofs
in those papers are agebraic; the arguments in Cresswell’s recent [[5] use canonical
models.

The distinctness of the logics of the squadron is part of Theorems[2.4land[11.2]
Thefact that S0.9 # S1isworth acomment. The question wasraised and |eft open by
Lemmonin [IE and remained open until Girlegavetheanswer in [Z]. However, Scott
had an earlier, unpublished proof that he presented in lectures at Stanford University
in 1967. The details of this proof seem to have been lost, but asimple proof is easily
constructed, given our results.

Consider theframe (U, Q, R, S) inwhichU = {0, 1, 2}, Q = {2}, R= {{(0, 0),
(1, 1)} and S(2) = PU — {U}. Wewishto arguethat (i) thisframevalidates all theses
of S0.9, yet (ii) theformulaCd((O(A— B) AO(B— A)) — O(A— A)), where A
and B aredistinct atomic formulas, failsat 2 under any valuation V such that V(A) =
{0} and V(B) = {1.

That (i) holds follows from the fact that this frame has the property (gk) and is
omnireflexive. To seethat the former claim istrue, supposethat X and Y are subsets
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of U suchthat both (U — X) UY and X areelementsof S(2). If Y & S(2),thenY = U,
contradicting the assumption that (U — X) UY € S(2); henceY € S(2).

To establish (ii), let V be any valuation in U such that V(A) = {0} and V(B) =
{1}. Then [A— Bll= (U —[[AD U 1B ={1,21U{1} = {1, 2} and | B - A| =
(U—|BIH)UJA| ={0, 2} U {0} = {0, 2}, while || A— A|| = {0, 1, 2}. Consequently,
O(A— B)and(B — A) aretrueat 2inthemodel defined by V, whereas (A —
A) isnot; hence (ii) holds.

An eight-valued matrix of thekind Lemmon sought in can beextracted from
this example. Astruth valuestake 1, 2, 3, 4, 5, 6, 7, and 8, with 1 as sole designated
value. The truth tables of, for example, conjunction, negation and necessity areasin
Figure 3.

All 2 3 45 6 7 8 - O
1/1 2 3 4 5 6 7 8 1] 8 1] 4
2|2 2 5 6 5 6 8 8 2| 7 2| 2
3/3 5 3 7 5 8 7 8 3|6 3| 3
4/4 6 7 4 8 6 7 8 4|5 4| 1
5|5 5 5 8 5 8 8 8 5| 4 5| 5
6|6 6 8 6 8 6 8 8 6| 3 6| 6
717 8 7 7 8 8 7 8 71 2 71 2
8/8 8 8 8 8 8 8 8 8| 1 8| 8
Figure 3

We conclude this section with the diagram in Figure 4, which gives us a certain
perspective on the logics discussed so far. The convention againisthat alogic’'smore
inclusive relatives are upward or rightward. The structure shown isin fact alattice
if the meet of two logicsis taken as their set-theoretical intersection and their joinis
taken as the smallest logic including both. By C2, first defined by Lemmon in [[L],
we understand the smallest regular logic, i.e., R, which can be viewed as the smallest
prenormal logicto contain all instances of theschemalJA — (JT. (Thissaysin effect
that all necessitations are false at queer points in any model, something that secures
thetruth of all instances of the schema F throughout any model; sothelogicisat |east
regular. Normality is still lacking, however, since T remainsfalse at queer points.)

By E2, also introduced in [[11], we understand the smallest prenormal logic to
extend C2 and provide T. It is easy to show, by the saf e extension technique Lemmon
demonstrated in [[I2], that C2 and E2 provide the rule RnN,.. Therefore, as Lemmon
noted, S2° = Lew(C2) and S2 = L ew(E2); also see [10].

12 Cresswell logics No doubt many logicians, frustrated in their efforts to under-
stand the system S1, would be tempted to agree with Cresswell’s opinion in E re-
peated in [[E], that it is “on almost any account a very silly system.”?® This view of
the man to whom we owe what insight into S1 there is cannot be taken lightly. But
whether or not S1 can be defended on philosophical grounds, it is not without interest
from aformal point of view, as we hope this section will demonstrate.

The fruitful new semantic condition on aframe (U, Q, R, S) that Cresswell in-
troduced in his analysis of S1 was
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S2° 2
C2 / E2 /
S1° S1
PX / PTX /
S0.9° S0.9
PK / PTK /
Lew(P) Lew(PT)
P / PT /
Figure 4
(c2) xe Q= (X,YeS(x)= XUY#U).%

Cresswell proved, in effect, that S1isLewis-determined by the class of omnireflexive
frames that satisfy this condition. Since conditions (gx) and (c,) are equivalent, it
follows by Theorem[Z.2lthat any logic determined by aclass of frames satisfying (c,)
isprenormal.

The condition (c,) is aspecia case of the following more general condition:

(Cn) X€ Q= (Xo,..., Xn-1€ S(X) = XoU---UXp_1 #U) (n=2).

We shall say that Xo, ..., Xn—1 € U cover Uif XpU---U X,_1 = U; in that case
XoU---U X,_1 issaid to be an n-element coveringThus (c,) expresses the condi-
tion that S(x) possesses no n-element covering. In particular, Cresswell’s condition
isthat no neighborhood system for a queer point has a 2-element covering. We note
the following fact.

Lemmal2.1l (cy)implies () if and only if m> n.

Thusfor n > 2 any logic determined by aclass of frames satisfying (cp) isprenormal.
In order to study the covering conditions we introduce a family of rules each of
which we refer to as a Cresswell rule?’

(RCh) AoV .-V A1/ (OAA--- AOA-1) — OT (n>2).

Interms of Cresswell ruleswe have a syntactic counterpart to Lemma[12.1] telling us
that classical logics having these rules are always prenormal:

Lemma12.2 Alogic that provideRC, also provideRC, for every m< n.

Proof: Assume that we have alogic providing RC,, and that AgVv --- v A1 isa
thesis. Toignoretrivial cases, say thatm < n. By PL, AgVv --- VvV An_1 VvV Bisasoa
thesis, where B isadigunction of n — m occurrences of Ayn_1. By RC, we have the
thesis (CApA -+ - AOAR-1 A C) — OT_ where C isthe (n — m)-termed conjunction
of the formula JAn_1. But C <> A, isatautology. So by PL, (A A -+ A
OAn—1) — OT isathesis, aswe wished to show. O
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The Cresswell rules correspond closely to the covering conditions as the following
results show.

Lemma12.3 If aframe ¥ satisfies (g), then the logid_( ¥) providesRC,;,.

Proof: Assumethat ¥ = (U, Q, R, S) satisfies (cy). Supposethat AgV -+ Vv Ap_1
isathesis of L() and thereforeisvalidin . Let M be any model on . Suppose
that x is an element of U such that M =, CJA;, for every i < n. We wish to prove
that M =x OT_ If x isnormal thisis trivia. If x is queer, then || Aj|| € S(x), for
everyi < n. By (Cn), | AollU--- U ||An_1ll # U. But thevalidity of Agv ---Vv Ap_1
impliesthat ||Ag Vv --- v An_1|| = U. Thisisimpossible, so the case that x is queer
cannot arise. O

Lemmal2.4 (c,)issatisfied by the smallest canonical frame for a classical logic
that providesRC,,.

Proof: LetM = (U, Q, R, S, V) beacanonica model for aclassical logic that pro-
vides RCy,, and suppose that (cp) is not satisfied by the frame of M. Then thereisa
point X € Q and sets Xy, ..., Xp—1 € U that are elements of S(x). This means that

there areformulas Ay, . .., Ay—1 such that:
[Aol, - s |An-1| € S(X). (1)
Aol U---U|Aq_1| = U. 2

From @) it followsthat [AgV --- Vv Ap_1] =U, so Ag v --- v A,_1 isathesis of the
logic, whence by RC,,

(OAgA---AOAL_1) — OT isathesis. (©)]

But (1) impliesthat DA, ..., JA,_1 € x. By (), then, OT e x. Thiscontradictsthe
assumption that x is queer. Thus condition (c;) is satisfied. O

Prenormal logics closed under RC,, we shall call Cresswell logicsDefine PC,, asthe
smallest Cresswell logic to provide RC,,, and PC,, T asthe smallest Cresswell logicto
have both RC,, and T. The following is an immediate consequence of Lemmas[12.3]

and[12.4]

Theorem 12.5 PC,, is determined by the class of frames satisfying, @dPC,T
is determined by the class of omnireflexive frames that satigfy (c

Of course one corollary to Theorem[12.5lwe have had for sometime, given the equiv-
alence of gX and RgX. But it isworth noting formally.

Theorem 12.6 PC, = PX and PC,T = PXT, and so Lew(PC,) = S1° and
Lew(PC,T) = SL.

Thus PX and PXT are Cresswell logics.?®

Rules are usually more difficult to work with than schemata, and therefore The-
orem [12.6lis welcome. Indeed it suggests there are many schemata with the same
effect as the Cresswell rules; we shall now proceed to make good this claim.?® The
schemata we have in mind are the members of the following family:
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(Xn) A= (ByA---ABa)A
OBy — C)A---A(B,— Cp)) — OT.
(Here we begin the numbering with 1.)

Theorem 12.7 For each n> 1, a classical logic provide®RC,; if and only if it
providesXp.

Proof: Assumethat thelogicisclassical and suppose, first, that it provides RCy,, 1.
Then it also provides X, inasmuch as
(A= (BiA---ABp)V(Bi—> Cp) V-V (B — Cp)
isatautology. For the reverse, suppose that the logic provides X,,. Suppose that
AgV -V Ay (D]

isathesis. Fori < nlet /\;; —Aj be the conjunction in some order of all formu-
las —Aj(j < n) except —A;. Thenit is easy to see the following tautological conse-
quences of (1):
A< (A= \-A). &)
j#

From () by RRE the logic has these theses:

OA < O=A - A\ -A). (3)

j#

Next we have an instance of Xj:

(O(=Ag— (=ALA - A= A))A
O(=A; — /\ﬂAj)/\---/\D(—-An—> /\—|Aj))—>DT. (4)
j#1 j#n
Hence from @) and (@) by PL we arrive at the desired thesis;

(OAA - ADAy) — OT. (5)

Asacorollary to Theorem [[2.7we have the following.
Theorem 12.8 PCp,1 = PX,andPCp 1T = PX,T.
The first two members of the X, family are:

X2 OA— B)ALOB—C)) - 0OT

X2) (O(A— (BpABy))AO(By— Co) AD(B; — Cq)) — OT.
Schema X 1 throws a certain light on S1, for it follows from Theorems[12.6]land[12.8]
that S1 can be axiomatized by replacing schema [JX in our axiomatization of that
logic by the schema X . It is noteworthy that in his 1967 lectures Scott showed that
replacing CIX by [OX/ will asoyield S1, where X} is

(O(A— B)ADOA) — OT
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—aschemathat is deductively equivalent in classical modal logics to an instance of
X1. Another example of aschemathat doesthejobis:

(OA— B)AOB— A) —0OT.

It isinteresting that S1 can be axiomatized in such different ways.

In [4] Cresswell remarks that “Lewis's reasons for arriving at S1 have only an
accidental connection with its formal structure.”%° Perhapsin hindsight one may say
that we now finally understand why S1 proved so difficult to understand. Lewis hap-
pened to hit upon a schema whose structure leads one to suppose that S1 has some-
thing to do with strict implication. In fact it does not, or at least if it does, it does so
indirectly and opaguely. Schemata such as X do little to suggest their essential con-
nection with the covering condition (c,); it took theingenuity of Cresswell to uncover
that.

If Lewiswas attracted to S1 as alogic of strict implication because it provided
the schema

(A=BA(B—>=C) =5 (A=0),

where — standsfor strict implication, one wonders whether he would also have been
attracted to the schema

(A2 (BoAB1)A (B2 Co) A (B 2C)) 2 (A2 (CoACy)),
or, more generaly, to

(A= (BoA - ABy1)) A (Bp =2 Co) A-+- A (Broy = Cyo))
= (A2 (G- ACho1)).

In our view these schemata are not much less plausible, from an intuitive point of
view, than the defining schema of S1. But they are not provided by S1, assimple se-
mantic arguments show. If Lewis had pursued thisdirection in hisinquiries he would
have been led to the definition of a whole family of new logics, viz., Lew(PC,;1T)
=Lew(PXnT). In Figure 5 we present a diagram where these logics appear with their
relatives PXp, PXyT, and Lew(PXy). For each a completeness result exists along
the lines drawn earlier. Thus PX,, is determined by the class of frames in which no
neighborhood system possesses an n-element covering, and PX,T is determined by
the class of those frames that share this property but in addition are omnireflexive.
The Lewis versions are of course Lewis-determined by the same classes.

In Figure 5 we have aso included the logic PX,, and its relatives. This logic,
defined as the join of the logics PX,, where n < w, is determined by the class of all
frames in which no neighborhood system possesses a finite covering; thus it repre-
sents a limiting case—the ultimate Cresswell logic. It isincluded in Lemmon’s C2
but not conversely: as noted in Section[I1] C2 (i.e., the smallest regular logic, R)
provides the schemaJA — [JT. but thisnot in PX,, or itsrelatives.

In closing let us remark that a safe extension of a model satisfies the condi-
tion (c,) whenever the modd does; the reasoning generalizes that in the proof of
LemmalB.2] It follows from this that the Cresswell logics PX,, and PX,, T al provide
therule RnN..
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T
S2
E2
Lew(PX,) Lew(PX,T)

PX,T
Lew(PXn) Lew(PX,T)

PX,T

Lew(P) //: Lew(PT)
P;//

Lew(E Lew(ET)

Figure 5
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NOTES

1. Collectiveappearance. Lewis formulated S3 more than a decade earlier, in [[L3].

2. Some subsequent misgivings about Cresswell’s results (see [I7] and [21]) have been al-
layed by his|[E].

3. For convenience' sake, throughout the paper the possibility operator <) is regarded as
defined by —O0—.

4. When the antecedent is devoid of conjuncts, aconditional (A; A --- A Ap) — Bisiden-
tified with its consequent. In other cases empty conjunctions are identified with T, and
empty disjunctionswith L.

5. So long as we have PL this rule can equally well be formulated: A <+ B/ C <> C*/g.
Similarly for the other replacement rulesin the paper, RRTE, RRSE, and RSE;.
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Note that we might adopt arule of necessitation for tautologiesin thisfashion: / OA—
whenever A € PL. We prefer not to do so, since this would in effect be the “schema’
OPL.

Lewis, Feys, and others define strict implication in terms of (im)possibility: =0 (A A
—B). But for al traditional authorsstrict implicationisinterchangeablewith C1(A — B)
however it is defined.

A point noted, e.g., in [[], p. 45.

As we shall see, PL need not appear in the list of axioms for alogic. The rule of sub-
gtitution is presumed for every logic we discuss in this paper, and so it will rarely be
mentioned.

See, e.g., [I2] for these and other identifications.

In this connection we may note arule-alternative RgK to the schemagK in classical log-
ics AVB,A— (B< C)/(OAADOB) — (OdCvOT).

A relational frame is a structure (U, R) in which U isaset and R is a binary relation
in U. The truth condition for the operator [J with respect to a point x in amodel M on
such aframeis: M ¢ OAif andonly if Vy e U((x, y) € R= M =, A). Theclass
of al relational frames determines K, the smallest normal logic. Neighborhood frames
are structures (U, S) with U asbefore, Saset {S(x) : x € U} such that S(x) € PU, and
truth condition: M =, DA if and only if || A|™ € S(x). The smallest classical logic E
is determined by the class of all neighborhood frames. For more on normal logics, see,

eg. [8], [9, [2], [2, or [&]; for classical logics, the last two of these,

Itisnoteworthy, and easily proved, that the syllogism property isequally well expressed:
Xe Q= (X,Ye S(x)= XUY#£U).

The modus ponens and syllogism properties are so called because they say in effect that
the class of propositions necessary at a point in effect obeys the rules of modus ponens
and hypothetical syllogism, respectively. Actually, the properties say this only with re-
spect to queer points, but we can be content with the unrefined names.

Notethat | Al = | B|. whenever A <> Bisathesisof L, sinceinthat case Aand B belong
to the same maximal consistent setsin L. Thisfact securesthe correctness of clause (iv)
in the definition, to follow, of a canonical model.

Compare the notions of canonical model in [E], [[2], and [18].

Particularly in the equivalent guise mentioned in Note 13. The proof for Lemmall2.4]
contains a general argument.

Indeed, Theorem[Z.2litself follows from ageneralization of Lewis's result dueto Suren-

donk [20].

At least so long as the logic is finitely axiomatizable or the finite frames for it form a
recursively enumerable class—properties satisfied by the prenormal KXT-logics.

The idea of safe extensions originated with Lemmon, in [[2]. The results that follow
should be compared to Theorem 3.5 in that volume.

See Note 19.
Lemmon omitted an axiom that had been shown to be redundant in [ILE]; cf. [[6], p. 44.

[1], p. 180. Lemmon used RSEr rather than RRSET, it seems, because he was mov-
ing from the logic P2 to S0.9 by weakening “Becker’'srule’—[(A — B) / O(OA —
0B)—to RSEr.
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For the sake of uniformity we retain the formulasin PL, though they are derivable via
N, RRTE, and RN,,. It is perhaps worth mentioning that in the axiomatizations of the
squadron’s logics presented in Figure 1 RRSE cannot be replaced by RSE. Such re-
placement works, however, wherever the schemaK is already derivable without the use
of RRSE—i.e., inthe “0.9-logics’. Thisis because (as arguments like those for Lem-
mas[10.1nd[10.2lwill show) alogic that provides K, N, RRTE, and RSE also provides
RRSE. Thus if K were to be stipulated as an additional axiom in the “1-logics’ RSE
could replace RRSE in al the axiomatizations of the squadron’slogics.

The referencein [[3] isn. 3 on p. 199.
Thisisthe alternative to (gx) mentioned in Note 13.

The casesn = 0 and n = 1 are worth noting, if only to dispose of them. RCy istrivia,
holding vacuously in every logic, and RC; saysthat JA — [T is athesis whenever
A is, which holds in every classical logic. Thus only for n > 2 do we get something
interesting (RC; is of course the rule RgX, which figuresin LemmaE.3). Note in this
connection that the condition (c,) is similarly uninteresting when n < 2.

Thisis perhapsagood placeto note acondition equivalent to (gk): if U & S(x), XUY =
U, ,and(U-X)UY=(U—-X)UZ, then X, Y € S(x) only if Z € S(x). Compare the
rule RgK mentioned in Note 11.

The general issue we touch on hereis of considerableinterest: whenisit possibleto ex-
press arule by an axiom schema? To the best of our knowledge there are only relatively
few particular answers to this question and no general one.

[, p. 495, n. 4.
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