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Algebra and Theory of
Order-Deterministic Pomsets
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Abstract  This paper is about partially ordered multisets (pomsets for short).
We investigate a particular class of pomsets that we call order-deterministic,
properly including all partially ordered sets, which satisfies a number of inter-
esting properties. among other things, it formsadistributive lattice under pom-
set prefix (hence prefix closed sets of order-deterministic pomsets are prime al-
gebraic), and it constitutes a reflective subcategory of the category of all pom-
sets. For the order-deterministic pomsets we develop an algebra with a sound
and (w-) complete equational theory. The operators in the algebra are concate-
nation and join, the latter being a variation on the more usual digjoint union of
pomsets. Thistheory isthen extended in order to capture refinement of pomsets
by incorporating homomorphisms between model s as objectsin the algebraand
homomorphism application as a new operator.

1 Introduction Weinvestigate aclass of structures commonly called partially or-
dered multisets (a term proposed by Pratt [[19]), or pomsets for short. Pomsets are
node-labeled directed graphs where the edges constitute an irreflexive and transi-
tive relation (i.e., a partial order) over the nodes, interpreted up to label- and edge-
preserving isomorphism so that the identity of the nodes (but not their ordering) is
abstracted away from. The multiset referred to in the term “pomset” is the multiset
of node labels. Thus, pomsets can be thought of as generalizations of traces (also
called strings or words), where the ordering of the nodesis linear.

It has been proposed by many researchersthat pomsets can be used as mathemat-
ical representations of runs of a concurrent system; see, for instance, Grabowski [[],
Pratt [[19], Gischer [, Nielsen et al. [17]. In this representation, the nodes of the
graph model activities of the system on some abstract level of description whereitis
not necessary to model any finer-grained structure within such an activity. The na-
ture of the activity associated to a node is described by an action name given as the
node label. The edges represent dependencies or causalities between the activities
which are due to, for instance, sequential composition (control flow) or communi-
cation (dataflow). In thisinterpretation, activities are unordered, or independent, if
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they take place concurrently or in different parts of a distributed system and neither
of them uses data generated by the other.

For instance, if a system has a component sending a message and then doing
somelocal activity, and asecond component that first does something locally and then
receivesthe message, the corresponding fragment of behavior may be modeled by the
following pomset:

snd— loc

loc —rcv

Because according to this point of view, the ordering of the nodes reflects an actual
relation between the activities of the system, one might call the model and its under-
lying interpretation intensional. There would seem to be some obvious advantages to
such an intensional model: since there is precise information about dependencies, it
should be easier to analyze properties of system behavior, or, vice versa, to provide a
distributed implementation of behavior specified through such a model.

Contrasting the intensional interpretation, there is the extensional interpretation
that models a system according to what can be observed about it in terms of the ac-
tivities it performs, i.e., the actions that it executes. This in turn depends on what
counts as an observation. A very popular point of view isthat it suffices to consider
linear observations. Thisleads to the interleaving interpretation, according to which
a system executing actions concurrently is no different from one that executes them
in arbitrary sequential order. For instance, the system modeled by the pomset above
would have the following sequential runs:

snd loc loc rev
snd loc rev loc
loc snd loc rcv
loc snd rcv loc

Itisclear that someinformation islost in theinterleaving interpretation; for instance,
the four sequential runs above could aso have arisen from the following pomset,
which specifies more dependencies than the previous one:

snd— loc

loc = rcv

However, if one adheresto the point of view that thisinformation was not relevant to
the correct functioning of a system, then such an abstraction step isin fact desirable.

The debate between the adherents of theintensional, partial-order school and the
extensional, interleaving school has been going on for quite some time, and a defini-
tive answer does not yet seem to be forthcoming. In the meanwhile, the least one
can do isto study and compare the models that are being proposed. This paper aims
to contribute to the already considerable amount of material that has been collected
in the course of that study. Our approach to thisaim is outlined below. In short, we
distinguish a class of pomsets with particularly nice properties, which we call order-
deterministic; the main part of this paper isconcerned with an exhaustive study of this
subclass, especially including the devel opment of a corresponding equational theory.
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The paper isstructured asfollows. After anintroductory account of our approach
and an overview of existing pomset algebras and theoriesin the remainder of this sec-
tion, in Section Rlwe introduce the basic facts about order-deterministic pomsets by
studying the notion of pomset prefix. Specifically, in Section[2.3lwe show that the sub-
class of order-deterministic pomsetsis a distributive lattice with respect to the prefix
ordering and that, given a suitable notion of morphism, it sits within the category of
pomsets in a specia way (it forms areflective subcategory).

In Section Blwe investigate the equational theory of order-deterministic pom-
sets. It isproved sound and complete, and w-completein the presence of enough ele-
ments. In SectionBwe discuss refinement of order-deterministic pomsets, analogous
to an operation that has been investigated for series-parallel pomsets. see especialy
Nielsen, Engberg, and Larsen [[17]. This comes down to introducing automorphisms
over POM[E] as objectsin the algebra and homomorphism application as a new op-
erator. The corresponding extension of the equations is again proved (w-) complete.

In Section E] after a summary of the results, we come back to the comparison
with some of the theories described above. We al so give an overview of some possi-
ble waysto follow up on the results of the paper. Among other things, it would seem
possible to use the principles used here to generalize strings to pomsets in a simi-
lar way to generalize from ordinary modal logics, which are usualy interpreted over
strings, to logics interpreted over pomsets.

In the full report [21], we give some additional results. In particular, we discuss
the notion of termination of pomsets and give complete equational theories for two
variations. distributed termination (where a pomset may have multiple exit points)
and global termination (where a pomset is either terminated as awhole or not termi-
nated at all).

1.1 Approach Sincestringsare clearly aspecial case of pomsets, one way to study
the latter is by generalizing and extending existing theory about the former. Thisis
indeed the approach that one generally finds in the literature. In particular, one may
introduce, in addition to the usua notion of (string) concatenation, an operation to
put elements in parallel, and study the objects that are generated in this way. Thus
the concept of regular languages is extended to pomsets.

One aspect of strings that does not generalize well along these lines is that of
prefix or initial segment. The property that one string isthe initial segment of another
induces a partial ordering relation over the set of strings, which has infima; it isthis
fact that allowsusto regard an arbitrary set of stringsasatree, and to unfold arbitrary
transition systemsinto trees. For pomsets however, although a prefix relation may be
defined, it no longer has infima.

b ,
Example1l.1 The pomsets ::))2 and e have common prefixes and
ﬁ
but no largest common prefix; in particul ar, /'b isitself not aprefix of Z:E;) .
a>c

We take the above observation asthe starting point of our study. The order-determin-
istic pomsets that we concentrate onin this paper are precisely the class of pomsetsin
which infimaare defined. Consequently, over order-deterministic pomsets the prefix
relation has avery rich structure: apart from infimait also has all suprema (of finite
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sets, since we regard finite pomsets only), and moreover the two distribute over one
another. Thisin turn impliesthat every set of order-deterministic pomsets can bein-
terpreted as a prime algebraic basis in exactly the same way a set of strings can be
interpreted as atree. Since prime algebraic bases play an important rolein partial or-
der semantics, which in fact mirrors the role of trees in interleaving semantics, we
regard this as an encouraging resullt.

Thejoin operation that yieldsthe supremum of two pomsetsisin fact avariant of
the well-known digjoint union of pomsetsthat lies at the heart of most of the existing
pomset theory. Concatenation and join give rise to a complete equational theory of
order-deterministic pomsets, which forms the main subject of this paper.

We now recall the basic definitions of pomsets and some theories that have been
developed for (specia cases of) pomsets. Throughout the paper, we consider pom-
sets abstractly, without taking into account the nature of the elements that are being
ordered. The elements are assumed to be collected in a set E; we will use the letters
a—eto refer to arbitrary elements. A labeled partially ordered set or |poset over E is
atriple p=(V, <, £) where

e Visanarbitrary set of vertices;
e < CV x Visanirreflexive and transitive ordering relation;
e (:V — E isalabeling function.

We will assume the existence of a large enough universe of vertices, closed under
pairing. In examples we sometimes use the natural numbers for this purpose. The
class of Iposets over E is denoted L PO[E]. We use V), <p, and £, to denote the
components of an Iposet p, and <, to denote the reflexive closure of <. A setV C
Vp will be called left-closed (with respect to <) if v <pw € Vimpliesv e V.
Two |posets p and g are isomorphic, denoted p = q, if there exists a bijection
f:Vp — Vg such that for al v, w € Vp, v <p wif and only if f(v) <4 f(w) and
Lp(v) =Lq(f(w)). A partially ordered multiset or pomset, finally, isanisomorphism
class of Iposets. The class of pomsets over E is denoted POM[E] (= LPO[E]/=).
Weuse[p] = {qe LPO[E] | = p} or [Vp, <p, £p] to denote the pomset with rep-
resentative p; by abuse of notation, we sometimes also write p for the pomset itself.

1a
Graphically, we depict |posets by diagrams b\ o where 1, 2, 3 are vertices
20—3
a
and a, b their labels; and the corresponding pomsets by b\a’ i.e. by deleting the
—>

vertex identifiers.
1.2 Existing theories

1.2.1 Strings A very special case of partially ordered multisets comprises the

strings over a given set of elements. Here the partial ordering is actually total. It is

well known that strings are free monoids, meaning that they are freely generated by
the signature X, = (g, -) with the following equations:

X = X D

Xe = X ()]

xy)»z = x(y2) 3
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¢ denotes the empty string and - concatenation of strings; the latter is associative and
has the empty string as aleft and right neutral element. The pomsets that can be gen-
erated in thisway are precisely those p whose ordering is total, i.e., such that either
v<pworw=<pvforal v,w e V,. Hence for instance[a— b— a| can be generated

but a—b
a
single element e € E by [{0}, @, {(0, e)}] (where 0 is a simple placeholder without

intrinsic meaning), and the concatenation of p and q is defined by

cannot. The empty string ¢ is modeled by the empty pomset (@, @, 2], a

where the representatives p and q are digoint, i.e. are chosen such that Vp N Vg = @.

1.2.2 Multisets Another very special case of partially ordered multisets comprises
the multisets (sometimes called bags) over agiven set of elements. Here the elements
are actually completely unordered. Multisets are known to constitute free commuta-
tive monoids; that is, they are freely generated by the signature %,,,,; = (¢, W) with
the following equations:

eWX = X (4)
XYy)yWwz = x4 (ywz 5)
XWy = yWwx (6)

¢ now denotes the empty multiset and W multiset addition; the latter is associative and
commutative, and has the empty multiset as its neutral element. The pomsets that
can be generated in this way are precisely those without any ordering whatsoever,

i.e. those p with <, = @. Hence, for instance, || can be generated but can-

not. The empty multiset and single-element multisets are modeled in the same way
asthe empty string and single-element strings above; multiset addition is modeled by
disoint pomset union:

where again the representatives p and q should be disjoint.

1.2.3 Mazurkiewicz traces  An interesting mixture of strings and multisets can
be found in the Mazurkiewicz traces, sometimes also called partially commutative
monoids; see e.g. Mazurkiewicz [[15] and Aalbersberg and Rozenberg [[I]. Here one
does not assume a standard set of elements E, but rather a set with structure (E, 1)
(sometimes called a concurrent alphabet) where | C E x E isanirreflexiveand sym-
metric independency relation. Thisrelation controlsthe degree to which the concate-
nation operator (which wewill denote © rather than - to distinguishit from string con-
catenation) is commutative: d © e = e ® d precisely when d and e are independent.
Mazurkiewicz traces, then, are freely generated by ¥ ,,,, = (¢, ®, |) with equations

EOX = X @)
XOY)0z = XO(YO2 8)
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and rulesfor | to extend it from elementsto traces:

F oelx 9

xly F ylx (10)
xlyxlz F xl(yo©2z (11)
xly F xXOoy=yox (12

Note that x ® ¢ = x is derivable from (@), (@), and (12). It followsthat if | = & (no
independent elements) then the above system collapses to that for strings, whereas
if | = (E xE)~\{(e, e)|eec E} (total irreflexive independence) then it collapsesto
that for multisets.

The ordering in the pomsets generated by the above signature satisfies the fol-
lowing condition: for al v, w € Vp, if v £p w £p vthen £p(v) | £p(w), Whereas
ifv<pwthen3due Vp.v <pu<pwand—=(£y(v) | £p(u)). Thisimpliesthat in
principle only the dependent elements are ordered; some additional orderings must

a—b
be due to transitive closure. Hence, for instance, if c 1 a | d | b then /'d isavalid
C—

trace; onthe other hand, E cannot be generated (independenceisirreflexive), and nei-
a

ther can b\b (if a1 b then the a should not be ordered with respect to the second
%

b, otherwise it should also be ordered with respect to the first b).

Theindependence relation is extended to pomsets by putting p | qif and only if
Lp(v) | £g(w) foral v e Vpand w € Vq. The empty trace and single-element traces
are modeled in the same manner as before; the partially commutative concatenation
operation is defined by

POQ=[VpUVy <pU <pqU <q, £pULg],

where p and g are disjoint representatives and v < pq w if and only if there exist v’ €
Vpandw’ € Vgsuchthat v <p v', =(£p(v) | £gq(w’)) andw’ <q w. Notethat theonly
difference with respect to ordinary string concatenation liesin the fact that essentially
only the dependent vertices of p and q are ordered.

a a—b
Examplel2 Ifclaldl basabovethen(@a®c)® (bod) =®= al
c—

1.2.4 Series-parallel pomsets Probably the most intensively studied approach to
obtain amore extensive theory of pomsetsisthe direct combination of the algebras of
strings and multisets, where the neutral elements of both are made to coincide. This
leads to the theory of series-parallel or N-free pomsets, described in, e.g., Aceto [2],
Gischer [[7], Grabowski [[8], Jonsson [[I1], Pratt [[I9]. Series-parallel pomsets are
freely generated by the signature X, = (¢, -, W) with the following equations:

X = X (D]

Xe = X ()]
xy)z = x(y-2 (©)]
eWX = X 4)
XWy)wz = XxW(ywz 5)

XUy = yWwx (6)
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It is seen that concatenation (serial composition) and disjoint union (parallel compo-
sition, hence series-parallel) do not interact at al. The models that can be generated
using thissignature are N-freein the sensethat thefigure N cannot occur asasubstruc-
tureof theordering relation: if v <p v' >p w <p w’ fordistinct v, v', w, w’ € V then
V<worw<vorv<w.

a—b
Example 1.3 7 isnot N-free: it must be augmented at least to one of the fol-
lowing: c—~d
a c—a—b a—b
(awec)-bd=| \\ c((abywd) =| \ (awc)(bwd) = )
c—>b—d d c—d

The empty and singleton pomsets are clearly N-free, and N-freedom is preserved by
concatenation and disjoint union. It is less obvious that all N-free pomsets can be
generated in the above algebra; see however any of the papers cited above.

It should be mentioned that the theory of pomsets presented in the above papers,
especialy [[1], [19], and [[7], extends far beyond this brief exposition. More details
are given in Section[d]

1.25 Forests Forests(i.e., multisetsof trees) are pomsetswith the specia property
that all predecessors of a given element are totally ordered. Algebraically this can
be seen as an extension of multisets with an associative concatenation operator with
respect to which the empty forest isleft cancellative (rather than left and right neutral
as for strings), and which distributes over addition from the right. We denote this
operator by *;’ to distinguish it from string concatenation. Hence, forests are freely
generated by the signature X+, = (e, ;, W) with the following equations:

cWX = X (4)
XWUy)wz = XW(ywz 5)
XUy = yWwx (6)
e;X = ¢ (14
X;y);z = X;(¥;2) (15)
XWy);z = X;zWy;z (16)

Baeten and Weijland [3] present the above algebrawith the additional axiom x & x =
X. Intuitively, concatenation of two forests p and q appends g to al the termination
pointsof p, which are essentialy its maximal elements—although some maximal el-
ements may fail to be termination points (see below). The pomsets generated by this
system are hierarchical orders with termination, i.e., of the form p = [V, <, ¢, V]
suchthat u < w > vimpliesu < v orv < uforal u, v, w eV, and where the ter-
mination points are modeled by the extra component v € max. V. For instance,

b a
/' |isaforest but and| "\ _|arenot. The empty forest is modeled by
a>av b—a

(9, @, @, @] (hence has no termination points) and single-element forests are mod-
eled by [{0}, @, {(0, e)}, {0}] (hence the single vertex is atermination point). Forest
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addition coincides with multiset addition (taking the union of the termination points);
concatenationisdefined by p; q=1[V, <, ¢, v] such that

V = VoU(px Vg
< = <pU{u,(v,w)) |u<pvevpwe VyiU
U{((u,v), (U, w)) |U€ Vp, v <qw}
¢ = LpU{((Uv), Lq(v) | UE Vp,vE Vg
v = {(Uv)|uevpve gl
It follows that appending the empty forest has the sole effect of removing all ter-

mination points. Forest concatenation coincides with string concatenation if p isa
nonempty terminated string.

Example 1.4
bv b—cv
a;(bwa);c=| /  |:[cd]= —
a—av a—a—cv
bv’ C a—b—b—c
a;(bwa;e);b;(c;eyc) = S =
(b £) (©;ewc) aZ>a b—cv \a \c/

Notethat such forestscan easily beinterpreted aslabeled transition systemswherethe
vertices become element-labeled transitions. Thisisin fact the usual interpretation of
the above axioms in process algebra; see for instance Bagten and Weijland [3].

1.2.6 Order-deterministic pomsets  To enable a better comparison, we also show
the algebra we present in this paper, without going into details at this point. Rather
than changing the nature of concatenation, asin forests, we replace pomset union by
anew operator called join. The resulting signature is given by X ;.; = (e, -, 1) with
the following equations:

eX = X (D]

X-& = X 2
(xy)z = x(y2 (©)
eUX = X a7
Xuy)uz = xu(yuz (18)
XUy = yux (29
x-(yuz) = (xy)u(x2. (20)

The term order-deterministic for the pomsets generated by this algebra is derived
from common usage in the case of forests interpreted as labeled transition systems
(seeabove): such atransition systemiscalled deterministicif every transitioniscom-
pletely determined by its source node in combination with its label. Likewise, in
order-deterministic pomsets, as we will see, every vertex is completely determined
by its set of predecessors and its label. (See Rensink [23] for a more extensive dis-
cussion of various notions of determinism in partial order models; the notion of order-
determinism used hereis called causal determinism there.)
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The order-deterministic pomsets properly include all Mazurkiewicz traces (and
therefore all posets) but not all forests or series-parallel pomsets. Note that the only
syntactical difference with the theory of series-parallel pomsetsis that concatenation
distributes over join from the left. Using @), (@7, and it is straightforward to
derive x = XU X, i.e., join isidempotent.

2 Aninvestigation of pomset prefix  In thissection we consider the prefix ordering
over pomsets. After showing that this notion is not very well behaved over arbitrary
pomsets, we restrict ourselves to those pomsets over which it is well behaved and
show that thereit is very well behaved indeed.

2.1 Prefix relations and morphisms  Recall that a binary relation R is functional
if x Ryandx Rzimpliesy = z, injectiveif x Rzand y Rzimplies x = y, and one-
to-oneif it is both functional and injective. The domain of Ris defined asdom R =
{x]3y. x Ry} and the codomainascod R= {x | 3y. y R x}.

Definition 2.1 (prefix relations and morphisms)  Let p, g € LPO[E] be arbitrary.

1. A prefix relation between p and q is a one-to-one relation R € Vj, x Vg such
that both dom R C Vj, and cod R € V; are left-closed (according to <, resp.
<g)andforall v,v" € Vpand w, w’ € Vg, if v Rw and v Rw’ then £ (v) =
Lg(w) and v <p V' <= w <q w’. (In other words, a prefix relation is an
isomorphism between left-closed segments of p and q.) Because of the latter
property, there is an unambiguous extension of R to sets of vertices.

2. A maximal prefix relation between p and qisaprefix relation Rsuch that for all
veVp, we Vg, if £p(v) =Lg(w)and {v' e Vp | V' <p v} R{w e Vg | w' <q w}
then either vedom R or w € cod R.

3. Aprefixmorphismfrom ptoqisafunction f:V, — Vg whoseunderlying rela-
tional graph {(v, f(v)) | v € Vp}isa(maximal) prefix relation. If thereexistsa
prefix morphism from p to q then we say that p isaprefix of g, denoted p C g.

Example 2.2
e {(1,3)} isamaximal prefix relation between p = [;a— »b|and[z@=4C], but just
a(nonmaximal) prefix relation between pand| * sinceit can be extended
with (2, 5). 3875
° Z i})sb; in particular, {(1, 3)} is aprefix relation but not a prefix

morphism sinceit isundefined on 2, whereas R= {(1, 3), (2, 5)} isnot aprefix
relation since cod R = {3, 5} is not |eft-closed.

4C
. C a/’ b due to the prefix morphism {(1, 3), (2, 5)}.
3d—5
3ad—>4C

e From 10 5 eb there are two maximal prefix relations, {(1, 3)} and

{(1,5), (2, 6)}; only the latter is a prefix morphism.
o Maximal prefix relations are not closed under composition. For instance, R =

{(1,3)} isamaximal prefix relation between and p = and
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6b

S={(3,5), (4,7)} between pand ,but R; S={(1, 5)} isnot maximal

sa—>7C
since it can be extended with (2, 6).

Some facts about prefix relations and morphisms (straightforward to check) are col-
lected in the following proposition.

Proposition 2.3 (prefix relations and morphisms)

1. If the union of two prefix relations (between the same Iposets) is one-to-one,
then it isa prefix relation;

2. Prefix relations and maximal prefix relations (but not prefix morphisms) are
closed under inverse;

3. Prefix relations and prefix morphisms (but not maximal prefix relations) are
closed under composition;

4. BEveryidentity function idy, is a prefix morphism from p to p.

Remark 2.4  On the existence of maximal prefix relations. note that such relations
are indeed maximal, in an order-theoretic sense, in the space of al prefix relations
between a given pair of Iposets (ordered by C). Since this space is hecessarily finite
(we deal only with finite Iposets), it follows that every prefix relation is asubrelation
of amaximal prefix relation. Furthermore, for arbitrary pairs of Iposets, the empty
relationisaprefix relation. It followsthat thereisat |east one maximal prefix relation
between every pair of |posets.

As a consequence of the fact that prefix morphisms are closed under composition, =
istransitive; in fact it isapreorder over L PO that contains Iposet isomorphism asits
kernel.

Proposition 25 LC isareflexiveand transitiverelation suchthat pC qC p <
p=aq.

It followsimmediately that prefix iswell defined up to isomorphism and liftsto a par-
tial order over pomsets: [p] C [q] if and only if p C g. Also the number of maximal
prefix relationsisinvariant under isomorphism, although on the level of pomsets, the
prefix relations themselves are in general difficult to represent extensionally.

Example2.6 There are two prefix morphisms from to% viz. {(1,2)} and
{(1, 3)}, but their difference cannot be seen on the level of pomsets; the same holds

1a 3a
for and 4a— bt

The prefix ordering as defined above in fact coincides with the standard notion of
pomset prefix, according to which [p] CE [q] if p isisomorphic to aleft-closed frag-
ment of q; indeed such afragment isgiven by f (p) where f isthe prefix morphism.
For the special case of strings, our definition of pomset prefix comes down to the usual
notion of string prefix, as the following proposition shows.

Proposition 2.7  If p, g aretotal ordersthen p C g if and only if thereisa p’ such
thatq = p-p'.
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Proof sketch:  First note that there is exactly one maximal prefix relation between
every pair p, g of total orders. If p C q then apparently thisisin fact a prefix mor-
phism f. Now p’ defined asthat part of g not covered by f (p) (or possibly anisomor-
phic variant to satisfy the disjointness condition of concatenation) satisfies p-p’ = q.

O

When one further investigates the structure of the subclass of total orders under the
prefix ordering, the following becomes apparent.

Proposition 2.8 Every nonempty set of total orders has an infimum with respect to
C.

Thisfollows basically from the fact that the prefixes of agiven total order aretotally
ordered under prefix; hence so are the common prefixes of a set of total orders; more-
over thisset of common prefixesisfinite and nonempty (it contains at least the empty
string), hence it has a greatest el ement.

In general, sets of pomsets fail to have infima. We have shown a counterexam-
ple in the introduction. One may therefore ask if the existence of infima expresses
something particular about strings, or rather something that holds more generally but
not as generally as for the class of all pomsets. It turns out that the latter is the case.
In fact, uniqueness of maximal prefix relationsis sufficient to guarantee the existence
of infima.

Lemma2.9 Ifthereisaunique maximal prefix relation from p; to p,, then p; and
p2 have a C-infimum with a unique maximal prefix relation to p; and po.

Proof: Let R bethe unique maximal prefix relation from p; to p,, and define p =
p1 [ dom R (where restriction p | V is defined in the natural way). It follows that
idy, isaprefix morphism from p to p;, and R, taken asafunction Vp, — Vp,, isa
prefix morphism from p to p,; hence p isa=-lower bound of p; and p,.

Now assume that q is also a =-lower bound of p; and py; let fi:Vq — V;, be
prefix morphismsfrom q'to pi (i = 1,2). f;1; f;isthen aprefix relation from p;
to py; hence fl‘1 : f, € R, implying f, ; R~ C f;. Furthermore, for arbitrary v e
Vg we have (f1(v), f2(v)) € fi1; f, € Rand hence f2(v) € cod R, implying v €
dom(f;; R™1); hence Vg € dom( f,; R™1). We may conclude that f; = f,; R,
and since the f, ; R~1 is a prefix relation from q to p and f4 is atotal function, it
followsthat f; isaprefix morphism from qto p.

Finaly, if Sisamaximal prefix relation from p to p; such that vSw for some
w # vthen S~ ; Risaprefix relation from p; to p, suchthat w (S ; R) w’ where
w’ isuniquely determined by v Rw’. Since Risfunctional, it followsthat S1; R¢Z
R, contradicting the uniquenessof R. Itfollowsthat SC idy,, and since Sisassumed
to be maximal, S= idy,. We may conclude that idy,, is the unique maximal prefix
relation from p to p;. Similarly, if Sisamaximal prefix relation from p to p,, one
can prove S= R; hence Risthe unique maximal prefix relation from pto p,. O

2.2 Order-determinisn  Lemmal2.8lsuggests that it may be important to study the
conditionsfor uniquenessof maximal prefix relations. A maximal auto-prefix relation
of pwill beamaximal prefix relation between p and itself. Theidentity relation over
Vp isatrivial maximal auto-prefix relation; however, some Iposets also have non-
trivial maximal auto-prefix relations.
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E le210 |2
xample 2. Jas b
(2,1)}.

We call an Iposet prefix unique if it has no nontrivial maximal auto-prefix relations.
Clearly, if we want to restrict ourselves to |posets with unique maximal prefix rela-
tions, we must stay within the class of prefix unique Iposets. The following lemma
shows that we need no further restrictions.

has the nontrivial maximal auto-prefix relation {(1, 2),

Lemma?2.11 Between a pair of prefix unique Iposets there is exactly one maximal
prefix relation.

Proof: Let Rand Sbe maximal prefix relations between prefix unique Iposets p
and g. It followsthat R; S™1isaprefix relation from p to p, hence givesriseto a
maximal auto-prefix relation of p, which must equal idy,; hence RU Sisinjective.
On the other hand, also R™1; SC z‘dvq; hence RU Sis functional. It follows that
RU Sisaprefix relation; however, it cannot be larger than either R or S since those
are maximal; therefore we may concludethat R= S(= RU S). O

Lemmal[2.9lthen gives rise to the following resuilt.
Corollary 2.12  Theclass of prefix unique pomsets has C-infima of nonempty sets.

(The existence of the infimum of an infinite set P follows from the fact that the set
of lower bounds of P isbound to be finite; in fact, it is aso the set of lower bounds
of afinite subset of P, and thus has a greatest element.) In fact, from the proof of
Lemma[2:9]it is clear that the infimum of p and q is defined as follows:

prq:= pdomR,

where Ris the unique maximal prefix relation between p and g.

We now have that the class of prefix unique pomsets generalizes the stringsin
such away that the existence of prefix infimais preserved. Moreover, it turns out that
this class also has prefix suprema.

Proposition 2.13  The class of prefix unique pomsets has C-suprema of finite sets.

Proof: The empty set has supremum &, and the supremum of a singleton set {p} is
given by p. We show the existence of suprema of pairs p; = (M, <j, ¢i) (i = 1, 2).
Consider the Iposet q such that

Vg = ((Vi~domR) x {x}) U ({*} x (Vo codR)) UR
<qg = {(uV), (w,w))|v<iwVvy <xw}
g = {(v,v),a) [ L1(v) =aVv (V') =a}.

where Risthe unique maximal prefix relation between pandgand x ¢ V, U Vs isan
arbitrary vertex identifier. (Those who are familiar with event structures will recog-
nize the similarity of this construction to the synchronization of two event structures;
seee.g. Winskel [26], Boudol and Castellani [[4].) Fori = 1, 2 let r; denote the partial
projections from Vq to V;; these are in fact maximal prefix relations, and the ;1 are
prefix morphisms from p; to g.

First we prove that q is prefix unique. Let S be amaximal auto-prefix relation
of g. Combining the factsthat R = {(7r1v, mow) | vSw} isaprefix relation between
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prand p; andhence R € R, and R = {(mrjv, myw) | vSw} isan auto-prefix relation
of pj and hence R; C idy;, it can be derived that S= idy,,.

Now we prove that q isthe C-supremum of p and g. Because the ;! are prefix
morphisms, giscertainly aC-upper bound. Now assume p; E ¢ fori = 1, 2whereq’
is prefix unique; let the relevant prefix morphisms be given by f;. It follows that the
mi ; T are prefix relations between g and ' such that 71 ; f; Umo; fo isone-to-one,
hencer, ; fUmy; fyisaprefix morphism, provingq = ¢'. O

In the remainder of this paper, we will essentially restrict ourselves to the prefix
unique pomsets. Wewill in fact use amore explicit characterization of prefix unique-
ness. The principal ideals of an Iposet p are sets | ,v = {w € Vp | w <p v} for
v € Vp. Wecdl vthetopof | jvand ;v = (] ,v) \ {v} the pre-set. We omit the
index p whenever this does not give rise to confusion.

Definition 2.14 (order-determinism)  Anlposet p € L PO iscalled order-determin-
istic if every vertex of piscompletely determined by the combination of its pre-set
and itslabel, i.e, if

YoweV. Jv=JwAllw) =L(w) = v=uw.

Example 2.15 and have /b as their supremum, whereas for

a>c
. . . a—C a—C
instance and the non-prefix-unique | have no supremum assb and
a—C

a\b are upper bounds with no common lower bound).

The class of order-deterministic Iposets will be denoted DLPOI[E]; we aso use
DPOM|E] = DL POI[E]/= to denote the order-deterministic pomsets. Thefollowing
proposition states that order-determinism in fact precisely coincides with the unique-
ness of auto-prefix morphisms.

Proposition 2.16  AnIposet is order-deterministic if and only if it is prefix unique.

Proof: (=) Assumethat p € POM isnot order-deterministic. Let v, w € V, besuch
that Jv=wand(v) =£(w)butv#w;then R={(u,u) |u< v}U{(v,w)}isa
prefix relation from p to p, hence can be extended to anontrivial maximal auto-prefix
relation, which impliesthat pisnot prefix unique.

(<) Assumethat p € POM isnot prefix unique. Let R be anontrivial maximal
auto-prefix relation, and let S € R be aminimal prefix relation that is not a subre-
lation of idy. It follows that there is a unique (v, w) € Ssuch that v # w, hence
Uv) S w) implies § v = | w; moreover £(v) = £(w). It followsthat p is not
order-deterministic. O
The empty pomset and all single-element pomsets are trivially order-deterministic,
and concatenation preserves order-determinism; not so however digjoint union, since
for instance[@w[@ = . Instead of digjoint union we will therefore use the supre-

mum as defined in the proof of PropositionP.13]as a constructor, which we will call
joinintheremainder of thispaper. Thejoin of order-deterministic pomsets can befor-
mulated alternatively as a slight variation of digoint union, where instead of taking
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digoint representatives, isomorphic common ideals are merged together. Similarly,
the meet of order-deterministic pomsets corresponds to the intersection of such rep-
resentatives.

Example 2.17 3 /tc) and 2_>b have the isomorphic common ideal [a— b]. Their
LN

a—b

joinisgiven by A and their meet by [a— b).

Formally, thisis defined as follows. We call Iposets p and q compatible if
Vv e Vp, w € Vy. Jpv=UquwAlpv) =L{q(w) = v=mw.

Note that pairs of order-deterministic pomsets always have compatible representa-
tives: for if p and g are digoint representatives with maximal prefix relation R be-
tween them, then the Iposet obtained from p by replacing the verticesin the domain
of R by their R-images isisomorphic to p and compatible with g. In fact, we have
the following slightly stronger result.

Proposition 2.18 Every set of order-deterministic pomsets has a set of pairwise
compatible representatives.

Now the meet and join are characterized asfollows: if p and q are compatible repre-
sentatives then

Hence the only difference between digoint union and join is the choice of represen-
tatives.

Example 2.19
H = > = a—b . . —
1. (a-b) W (a-c) = W il whereas (a-b) U (a-c) =
b
EoBuEES = | )
a a—b
2. ((auc)byu(ca) =| \( |uC=a = /|, hence we can construct N-
c—b csa
shaped pomsets, which is not possible in the theory of series-parallel pomsets,

as mentioned in the Introduction.

Asafinal fact concerning the relation between disjoint union and join we mention the
following:

Proposition 220 If p, g € DPOM then pug= pwqifandonlyif prig=e.
Thefollowing property liesat the heart of the completeness proofsin Sectionsi3bndl4]
Proposition 2.21  If p € DPOM then p = |_|U6Vp(p FJv)-L(v).
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2.3 Propertiesof order-deterministic pomsets  In this subsection we discuss some
additional properties of order-deterministic pomsets. First we discussthe structure of
the class of order-deterministic pomsets under prefix; then we investigate, in a cate-
gory theoretic setting, the manner in which the order-deterministic pomsets sit inside
the full class of pomsets.

The characterization above of prefix suprema and infimain terms of union and
intersection immediately gives rise to the following distributivity property: for al
P1, P2, g € DPOM

(P1M p2) Ug=(PLuQ) M (p210).

An ordered structure (X, ) is called distributive if the above property is satisfied
whenever the relevant infimaand supremaexist. Moreover, we call an ordered struc-
ture (X, C) abasisif it hasall nonempty infimabut noinfinite suprema. (Notethat the
existence of nonempty infima implies consistent completeness, this being the prop-
erty that all sets with an upper bound have a supremum; hence the absence of infi-
nite supremain abasis implies the absence of upper bounds of infinite sets, which in
turn implies that no element of a basis may have an infinite number of predecessors.
In fact, there is a one-to-one correspondence between bases in the above sense and
consistently complete partial orders (ccpo for short); the latter are obtained from the
former by adding suprema of directed sets, whereas the inverse operation consists of
omitting all elementswith infinitely many predecessors; see Rensink [20] for details.
We will henceforth ignore the difference between bases and ccpos.) We then have the
following strong order-theoretic structure of the order-deterministic pomsets.

Corollary 2.22 (DPOM, C) isadistributive basis with all finite suprema.

Note that this property is stronger than the fact that (DPOM, L, M) isafinitary dis-
tributive lattice (where finitariness is the property that compact elements have only
finitely many predecessors—compactness of elements in turn being defined by the
nonexistence of certain suprema, in particular infinite ones), since asremarked above,
in abasis all elements have only finitely many predecessors. (Another way of stat-
ing thisisthat in abasis, all elements are compact.) A further consequence of Corol-
lary R 22]is that all prefix closed subclasses of (DPOM, =) form distributive bases,
too, although these do not necessarily contain all finite suprema.

Distributivity of a basis can be characterized in quite adifferent way aswell. A
basis (X, C) iscaled primealgebraic if for al x € X,

x=|]{yE x| yisprime}

where y € X is called prime if for al consistent Y € X (i.e,, such that Y has an
upper bound and hence a supremum), y C | |Y impliesy C z for some z € Y.
Prime algebraic bases play animportant rolein partial order semantics. For instance,
Winskel [25] has shown that every prime algebraic domain arises as the set of con-
figurations of aprime event structure; Corradini et al. [[5] give asimilar result for safe
parallel graph grammars, which include all safe Petri nets. Now distributive bases
are known to be exactly the same objects as prime algebraic bases (see e.g. [25]);
therefore CorollaryZ2ZJimplies the following.
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Corollary 2.23  Every C-left-closed subset of (DPOM, C) isaprimealgebraic ba-
Sis.

It follows that every set P of order-deterministic pomsets determines a prime alge-
braic basis given by its left-closure with respect to C, with certain “terminated” ele-
ments corresponding to the members of P. Thisisanalogous to the total order case,
where every prefix-closed set of strings determines a (deterministic) tree ordered by
string prefix, and every (arbitrary) set of strings L atree with termination pointscorre-
sponding to theelementsof L. Itisalso not difficult to seethat just asevery determin-
istic tree arisesin thisway as a prefix closed set of strings, so every prime algebraic
domain can be obtained as a prefix closed set of order-deterministic pomsets. For
the restricted case of unlabeled posets (which correspond to pomsets with injective
labeling functions) more details can be found in Rensink [[20].

a—C

Example2.24 The set of order-deterministic pomsets containing [a— b, b

a
d
an b—c—a

nated elements are marked v'):

givesrise to the following prime algebraic basis (where termi-

asblv
/! a—>c

Ao B=2d - v

8/’ \ /!

NS N\ @ a
0% 5255 F g o

When considering the class of pomsets and the subclass of order-deterministic pom-
sets, anatural question is whether anything can be said about the nature of this sub-
class, and about the relation (if any) between the pomsets outside to those inside the
subclass. To make the question precise and provide an answer to it, we make a brief
excursion to the field of category theory. For the duration of this excursion we once
more view our objects as |posets rather than pomsets.

It turns out that under an appropriate notion of morphism, one may characterize
the order-deterministic |posets as a reflective subcategory of the Iposets.

Definition 2.25 (determinizing morphisms) Let p,q € LPO. A determinizing
morphismfrom pto gisafunction f:V, — V that preserves labeling and ordering
and isimage |eft-closed in the following sense: if v <4 f(w) thenv = f(u) for some
u<puw.

The typical effect of a determinizing morphism is to merge vertices with the same
predecessors and the same label, i.e., precisely such vertices as should coincide in
order-deterministic |posets, according to Definition P14]

a—gh
;gzig toq= :azic there is a single determinizing
morphism, viz. {(1,5), (2, 6), (3,5), (4, 7)}. Note that there is no prefix morphism

from ptoq.
The following facts are straightforward to establish.

Example2.26 From p =
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Proposition 2.27 (determinizing morphisms)

1. Prefix morphisms are deter minizing morphisms, but not necessarily vice versa.

2. Thereisat most one determinizing morphism from a given Iposet to any order-
deterministic |poset.

3. Every determinizing morphism from an order-deterministic Iposet is a prefix
mor phism.

4. Every identity function on verticesis a determinizng morphism.

5. Determinizing morphisms are closed under composition.

From the latter two facts it follows that determinizing morphisms give rise to a cat-
egory of Iposets (where isomorphism corresponds to standard |poset isomorphism);
moreover, in the full subcategory of order-deterministic |posets, the morphisms coin-
cide with prefix morphisms. This subcategory isin fact a preorder category (at most
one morphism between every pair of objects); hence meetsand joinsare products and
coproducts, respectively.

Theorem 2.28  Thelposetswith deter minizing morphismsforma category L PO 4.
with full subcategory DL PO ,.; = DL PO (where the latter has prefix morphisms).

Now from an arbitrary Iposet p we can construct an order-deterministic [poset Dp by
collapsing all isomorphic prefixes of p, asfollows: let ~, C V), x V,, be the largest
label and prefix preserving equivalence relation in Vp, i.e., such that if v ~p w then
Lp(v) = £p(w) and for all v/ <p vthereisaw’ <, w such that v' ~p w’. Such a
largest equival ence exists because the identity relationisalabel and prefix preserving
equivalence, and label and prefix preservation are preserved by union and transitive
closure. (Notethe analogy of ~, to bisimilarity, which is an equivalence over transi-
tion systems (cf. e.g. Milner [[16]). Thisisnot coincidental: |posets can be seen as fi-
nite labeled transition systemsin such away that isomorphism of order-deterministic
Iposets is fully abstract with respect to bisimilarity.) Now for Dp take V,/~p, as a
new vertex set, with the ordering and labeling induced from p; hence

V<ppW & FIveViweWv<pw
tpp(V)=a & FveV.lpv)=a

whereV, W e Vpp = Vp/~q. It should beclear that Dpisindeed order-deterministic.
Infact, since~, = z‘dVp if pisorder-deterministic already, it followsthat in that case
Dp = p. Furthermore, from an arbitrary determinizing morphism f from p to g we
can define a prefix morphism Df from Dp to Dq (which is therefore in fact deter-
minizing) as follows: for all v e Vp,

Df:[v]~, = [f(W)]~,.
It follows that D is left adjoint to the inclusion functor U: DLPO < LPO,,; the
existence of such aleft adjoint is called reflectivity of the subcategory.

Theorem 2.29 DL PO isa reflective subcategory of LPO,;.

Proof: We have to show that for al Iposets p € LPO and q € DLPO there are as
many prefix morphisms from Dp to g as there are determinizing morphisms from p
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toUq, i.e, from p to g. We have already remarked above that there is at most one
determinizing morphism to any order-deterministic Iposet; hence we have to show
that Dp C qif and only if thereisadeterminizing morphism from ptoq. Since Dg =
g, any determinizing morphism f from pto qgivesrisetoaprefix morphism Df from
Dpto Dq, hence Dp C g. On the other hand, if f isaprefix morphismfrom Dptoq
then g: Vp — Vg defined by g: v — f([v]~,) isadeterminizing morphism from Dp
toq. O

Among other things, it is known that right adjoints preserve colimits, in particular
coproducts. It followsthat L PO,; has coproducts, and indeed for arbitrary pomsets
pand g, pW g with identity injections idy, and idy, is the coproduct of p and g in
LPO.; (but not in L PO with prefix morphisms, as we have seen).

The object part of the functor D also preserves the A, -structure of LPO 4,
modulo isomorphism, i.e., the structure induced by the signature X, = (e, -, W) and
the corresponding equations. To beprecise, € and - are mapped to themsel veswhereas
W is mapped to L, hence

D(pwq) = Dpu Daq.

Note that the equations of A, automatically remain valid under this mapping, since
joins are commutative and associative, and ¢ isaneutral element with respect to join.
This property isformulated in the following theorem.

Theorem 2.30 The object part of D is an A,,-homomorphism from POM to
DPOM, where digoint unionin POM iscarried over tojoinin DPOM.

3 An equational theory of order-deterministic pomsets We have seen that order-
deterministic pomsets arise rather naturally from an attempt to preservethe properties
of string prefix inthe more general classof pomsets. Theinvestigation so far hasbeen
based solely on the models we have defined for strings and pomsets. However, it is
well known that strings can be characterized algebraically: they are the free model
generated by E in the algebra of monoids. That is, if we take the signature X, =
(e, -) with the equations

X = X (D]
Xe = X 2
xy)z = x(y-2 3

(seea sothelntroduction), then the class of stringsisisomorphicto Ty, (E) />, where
Ts (E) isthe set of terms obtained by applying the operators of X, to the elements
of E,and~ C Ty,-(E) x Ty, (E) is“provableequality,” i.e. the equivalence generated
by the equations above plus the rules of reflexivity, symmetry, transitivity, instantia-
tion and congruence.

Now let us regard once more the standard definition of string prefix:

XEYy & dJzy=xz

Using the equations above it can be deduced, besides the fact that C is a partial or-
dering relation with smallest element ¢, that string concatenation is monotonic in its
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right operand: for if yC zthenz=y-y for somey’, hencex-z= x-(y-y') = (X-y)-Y,
implying x-y C x-z. (However, concatenation is not monotonic in its left operand, as
is apparent from a = a-b = ab but ac Z abc.)

As anext step, we can algebraize the prefix ordering by introducing ajoin-like
operator, which for the moment is only partial; in other words, we let

X if yE x
Xuy:=14Yy ifxXCy
undefined otherwise.

Using this definition we can express various properties of the prefix ordering equa-
tionally, in the sense that the equation holdsif and only if the corresponding property
holdsfor C:

Reflexivity: xuUx=X.

Trangitivity: (Xuy)uUz= xu (yu z).
Smallest element: ¢ LIX = X.
Right-monotonicity: Xx-(yu z) = (X-y) U (X-2).

These equations should be understood as follows: for al valuations of X, y, z, either
both sides are undefined, or both are defined and provably equal. (Note, by the way,
that the reflexivity equation can be proved from the athers.) In addition, the following
is obvious:

Symmetry of definition: XUy =yLX.

3.1 ThealgebraA,; To obtain atheory of order-deterministic pomsets, all one
has to do now is turn the join operator into a constructor of the algebra rather than
a derived notion, with the above equations as axioms. Thisimplies that join is now
totally defined, i.e., we have to add objects to represent the joins that were hereto-
fore undefined. Of course, these “new” objects are exactly those pomsets that are not
linear. We obtain asignature ¥4, = (s, -, U) with equations and in addition

eUX = X a7
(xuy)uz = xu(yuz (18)
XUy = yux (19)
X(yuz) = (xy)u(x2. (20)

Thisisthetheory that we already announced in theintroduction. Denoting the result-
ing algebraby A ;.;, we have the following result.

Theorem 3.1 DPOM|[E] isthefree A ;.,-model generated by E.

Proving thisinvolves showing that DPOM|[E] is closed under the intended interpre-
tation of ¢, - and L and the equations hold under this interpretation (soundness), that
every object in DPOM|[E] can be denoted using aterm of the algebra (no junk), and
that terms denoting the same object are provably equal (no confusion). Thelatter two
properties together are also known as compl eteness of the theory, and we will in fact
prove aslightly stronger version of it.
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It is now important to distinguish carefully between objects and their denota-
tions. the former correspond to pomsets, the latter to terms of the signature 4.
Tge: (E, X), ranged over by s, t, will denote the set of X ,.;-termson generators E and
variables X, and T, (E) the corresponding set of ground terms, i.e., terms without
variables. We will drop the parameter E when this does not give rise to confusion.
A substitution is afunction p: X — T,.; (X) mapping variables to terms; p is called
ground if its images are ground terms. Substitutions inductively give rise to func-
tions p: Ty (X) — Tae: (X) (note the overloading of the symbol p); applications of
the latter are postfix denoted, e.g., tp. The semantics of terms, i.e., the corresponding
pomsets, are returned by a function [_]]: T4.; — DPOM defined inductively on the
structure of ground terms.

Theorem[3.1]s equivalent to Theorems[3.2] B.3]andB.5lbelow. Thefirst of these
statesthat the semantic functioniswell behaved inthat it mapsto theintended class of
model s (the order-deterministic pomsets) and preserves provable equality as pomset
equality (= Iposet isomorphism); in other words, that DPOM is indeed a model of
Adet-

Theorem 3.2 (A4 issound) For all s, t € Ty, [t] € DPOM,and A, Fs=t
implies[[s]] = [[t]].

Next, we state that all the objects of our model can be denoted. For the proof, thefol-
lowing meta-notationisconvenient: | | T for finitesets T € Ty, standsfor thejoin of
alte T,where| |@ =¢c¢and| |{t} =t. Weadsouse]| [, ti where | isanindex set
such that tj = tj impliesi = j, correspondingto | |{tj | i € I}. This meta-notation is
well-defined up to provable equality of terms, due to the fact that LI is commutative,
associative, and idempotent with identity ¢ (Equations (17}—(19)). Now we recur-
sively define afunction R: DPOM — Fin(Ty,;) (the latter denoting the set of finite
subsets of Ty,;) asfollows:

R(p) = {(LURP T (Upv)))-€pv) | v e Vp}.

Hence p is decomposed into all prefixes with a unique top element, and R is recur-
sively applied to the predecessors of those prefixes. This can be shown to bewell de-
fined by induction on the size of p. The following theorem then statesthat thisyields
a denotation for all order-deterministic pomsets. It can be proved by induction on
thesize of p, using thefact that p = |_|vevp( pl{v)£(v)foral order-deterministic
pomsets p (Proposition 2.21).

Theorem 3.3 (nojunk) For all pe DPOM, p=[|_| R(p)I.

a—c
Example3.4 The R-constructed denotation for b/'a ise-alle-bu(s-aue-b)-cu
—

(¢-b)-a, or in meta-notation,

LIH{U@)-a (L2)-b, (L{L2)a (L]2)bh-c (U{(]2)-b}h)-a}.
A simpler denotation for the same pomset is, e.g., (au b)-cub-a.

Finally, we show that our equational theory is strong enough to prove al equalities
that hold in the model; in other words, that denotations of objects are unique up to
provable equality.
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Theorem 3.5 (no confusion) For all s,t € Ty, iIf [S]] = [[t]] then Age; E S=1.
As usual, this theorem is proved by rewriting terms to normal forms.

Definition 3.6 (normal forms)  Consider the following production rulefor termsin
Tdet(E):
N ::= (|_|saturated set of N)-e,

wheree e Eandaset T of N-producedtermsissaturatedif T' € T foral (| | T')-€ €
T. Atermisinnormal formif it equals| | T for some saturated set T of N-produced
terms.

Notation 3.7  For the sake of readability, wewill in practice not write normal forms
using the meta-notation |_| T, but rather use e, t and t; LI - - - LI t, for (respectively)

Lo, L|{thand | |{ts, ..., tn}.

Saturation is required to guarantee uniqueness of normal forms, as the following ex-
ample shows.

Example 3.8 /b isgenerated by | | T; and | | T, where T; and T, are sets of

a—C

N-produced terms:

T1 = {(s-a)b, (sa)c}
T, = TyU{e-al.

Ty isnot saturated since (¢-a)-b € T but e-a ¢ Ty. Thisisremediedin T,, and indeed
T, issaturated and |_| T» isin normal form.

Thefunction Rdefined aboveinfact yields normal forms; moreover, on normal forms
Ristheleft inverse of the semantic mapping. It followsthat thereis at most one nor-
mal form term describing a given pomset; in other words, normal forms are unique.
Thisis stated in the following lemma.
Lemma 3.9 (normal formsareunique) | | R([t]) =t for all normal formtermst.
Proof: By induction on the structure of normal forms. First note that if s = s'-e
then [[s]| has a unique greatest vertex v with £y (v) = eand [[s] | ({v) = [S].
Furthermore, if T is a saturated set of N-produced terms then there is a one-to-one
correspondence between the elements of T and the vertices of p=[[| | T, i.e., for
dl v e Vpthereisexactlyonese Twith[[s = p[ (Jpv) = (P [ Upv)-Lp(v).
Assumethat T isasaturated set of N-produced termssuchthat R([|_|T]) =T
and R([| | Tsll) = Tsfor al s= (| | Ts)-es € T, and consider the N-produced term
t=(_]T)-e Itfollowsthat

RO = (LRI ¥v)-£) | ve Vg
= {(URAUTI T Vo)€@ | ve Vo UL RALITID) €
= {(URALTsD)-esIse THu(t)
= {(UTo)eslseTHu{t}
= TU({t}L
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Now let | | T be anormal form term such that R([|_| Ts[]) = Ts for dl s e T; since
Ts € T (T issaturated), it follows that

RILITD = JRAsD = JTsutsi=T.

seT seT
This proves the lemma. O

It follows that syntactically different normal form terms yield different pomsets,
which is one of the two crucial properties of normal forms. The second crucia prop-
erty isthat every term can be rewritten up to provable equality to anormal form term.
To see that this holds, consider the following inductively defined agorithm:

norm(e) = O
norm(e) = {e-€}
norm(st) = mnorm(s)U{(| |Jnorm(st))-e|t-e € norm(t)}
norm(sut) = norm(S)U norm(t).

It can be proved by induction on the term structure that for all t € Ty, (E), norm(t)
yields a finite saturated set of N-produced terms whose join is provably equal to t.
Hence every term can be rewritten to a normal form term up to provable equality.
Thisis stated in the following lemma.

Lemma 3.10 (normal formsexist) For all termst € Ty, |_| norm(t) isa normal
formsuchthat A 4., Ft = | | norm(t).

Proof sketch: By induction on the term structure of t. We just show the (most in-
teresting) case of concatenation. Assume that the lemma holds for sand t and for all
st’ wheret’ C t, and regard the term st. The elements of norm (st) areby induction
N-produced terms. To see that norm(st) itself is saturated, consider (| | T')-€ €
norm (st); then by construction of norm(st), one of the following cases holds.

e (LT)-€ € norm(s), in which case T" € norm(s) due to the saturation of
norm(S);

e T'=norm(st’) wheret’-€ € norm(t), meaningthatforall t; € T', eithert;
norm(s) and hencet; € norm(st), or ty = (|| norm(sty))-e; wheret,-e, €
norm(t"); but then also ty-e, € norm(t) and hencet; € norm(st).

Finally, we prove that the norm-rule for st preserves provable equality.
| norm(st) = |_|(n0rm () U{(||norm(st))-e|t-ec norm(t)})
= | norm(s)u |_| (| norm(st’))-e

t'-ecnorm(t)

= su |_| (st')-e

t'-eenorm(t)

= s || (eute

t'-eenorm(t)
= S| |norm(t)
= St

This concludes the proof of this case. The other cases are analogous. O
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Proof of Theorem[35] If [[s] = [[t] for two terms s,t € T,.; then by applying
Lemma[3I0]and LemmaBBlwe can prove A 4.; - s=|_ | norm(s) = |_| R([S]) =
LI Rt = || norm(t) =t. O

3.2 w-completeness of A,,; If there are enough elements around (E is large
enough) then not only the above completeness property holds, but one which is even
stronger. Whereas Theorem[3.5]expresses that A 4., is complete for ground terms,
a more interesting notion is completeness for open terms. This is the property that
if two terms denote the same object under arbitrary ground substitutions then they
are are provably equal before substitution. Thisisalso called inductive completeness
(because it impliesthat all theorems that can be proved by induction on the structure
of terms can aso be proved equationally) or w-completeness. See, e.g., Groote [|§]
Heering [[10], or Lazrek et al. [[13] for a general discussion.

Theorem 3.11 (A 4.; iSsw-complete) Assume |[E| = w. For all s,t € Ty (E, X), if
[sell = [te]] for all ground substitutions p: X — Ty (E) then Ay - s=1.

The side condition |[E| = w is needed to ensure that for any pair of terms st €
Tqe: (E, X) there are enough “unused elements,” i.e., not occurring in sor t, to “en-
code” the free variables of t.

Example3.12 If |E| = 1 then A, iS not w-complete. The order-deterministic
pomsets over aone-element set arein fact totally ordered; hence they are isomorphic
to the natural numbers (by mapping p to |Vp|), where pomset concatenation corre-
sponds to addition and pomset join to the maximum. It follows that under all ground
substitutions, the following equations are valid:

Xy = YyX
(XUy)»z = (Xy)u(x2z.

However, theseequationsare not provablein A 4.; (and indeed do not holdin generd),
hence we do not have w-completeness.

To prove w-completeness, two general techniques can be found in the literature.
One technique, proposed by Groote [[9], is to construct for any pair of open terms
S, t € Ty (X) a“characteristic” ground substitution ps ; with the property that A 4., -
Sost = tpst if and only if Ay, = s=t. Clearly, if such characteristic substitutions
exist then w-completeness reduces to ordinary (ground) completeness. A more spe-
cialized variant of this technique, described by Heering in [[10] and by Lazrek, Les-
canne and Thiel in [13], isto use normal forms once more, in particular open normal
forms, with the following properties:

e for any open term thereisanormal form that is provably equal to it;
e for any pair of different normal forms there is a ground substitution that maps
them to (closed) terms dencoting different objects.

The difference from the first proof idea is that the substitutions required by the lat-
ter property, which correspond to the characteristic substitutions of Groote's, are ap-
plied only to normal forms, which makes their characteristicness a good deal easier
to prove. This advantage is offset by the need to define an appropriate normal form
in thefirst place.



306 AREND RENSINK

Definition 3.13 (open normal forms)  Consider thefollowing grammar for terms of
Tdet (Ev X)

N := (| |sat'd set of N)-e| (|_]sat’d set of N)-x,

wheree € E, x e X and aset T of N-produced termsis saturated if T C T for all
(L] Tt e T. A termisin open normal formif it equals| | T for some saturated set
T of N-produced terms.

This format is a simple variation on Definition [3.6]in which variables x are treated
in the exact same way as elements e. Since all our equations allow variables to be
handled in the same way as elements (there are no special equations for elements),
thefirst step of the w-completeness proof (every open term hasaprovably equal open
normal form) isimmediate. The characteristic substitution required in the second step
(for every pair of different open normal forms there is a characteristic substitution
mapping them onto different ground terms) is also easy: every variable is mapped to
adistinct new element not yet occurring in the normal forms being compared.

Proof sketch of Theorem[3.11] For every open term t thereis an open normal form
termt’ such that A 4.; =t =t’. The proof is analogous to that of Theorem Ba]

Now let s, t be syntactically different open normal forms, and let Eg; € E bethe
set of elements that occur syntactically insort. Forall x e X letex € E~\ Est bea
distinct element (note that since Es iscertainly finite, the cardinality of E guarantees
that there are enough such ey), and define psi: X — ey for al x € X. Then sps and
tost are two syntactically different (ground) normal forms, hence [[sost]l # [tost]-
Hence A ;.; = s=t for open normal formsif and only if s=t (syntacticaly).

Now if s, t arearbitrary opentermssuch that [[ se]] = [te]] for al ground substitu-
tions p, and s" and t’ are corresponding open normal forms(i.e., Ag.; - s=95,t =t'),
thenalso [[S' ps v]] = [t ps .+ fOr the specific characteristic ground substitution ps ¢
and hences = t/; it followsthat A4, - s=1. O

4 Refinement of pomsets  In this section we will be looking at refinement, which
is the principle of replacing the elements of a pomset by entire pomsets. After dis-
cussing in detail the relation between refinement and homomor phism application, we
proceed to introduce it as an operator in the algebra of order-deterministic pomsets.
For the extended a gebra we once more give an w-complete equational theory.

4.1 Homomorphisms, refinement, and determinization  Let us consider A ;-
homomorphismsfrom DPOM to itself, i.e., functions h mapping order-deterministic
pomsetsto order-deterministic pomsets while preserving the operations of - ,4.;. This
preservation comes down to the following equations:

h(e) = ¢
h(p-@) = h(p)-h(a)
h(puqg) = h(p)uh().

Because in DPOM there is no junk, h is completely determined by its action on the
generators E, i.e., by theimages h(e) for all e € E. On the other hand, because there
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isno confusion in the model and none of the equationsrefer to single elements, every
function h: E — DPOM [E] can be extended to a homomorphism. We will overload
the symbols h, k to denote both kinds of functions.

A homomorphism h has the effect of a substitution or refinement: in principle,
its application to a pomset has the effect that every element of the pomset is replaced
by (a copy of) its h-image. We can define this operation directly as follows: p[h] =
[V, <, €] where

V. = {(vw)|ve Vp we Vel
< = {((hw), W, w))|v<pvV@=VAW<phe,w) w)}
¢ = {((v,w),e) | Lhpw)(w) =€}

Hence vertices v € V,, are replaced by vertices (v, w) for al w from the h-image of
£p(v); these new (v, w) receive their label from w. The ordering is inherited partly
from p (asfar as ordering between (v, w) and (v’, w’) for v # v’ is concerned) and
partly from h(£,(v)) (asfar asthe ordering of (v, w) and (v, w’) is concerned).

Example4.1l Let h map a to itself, b to ¢ and ¢ to g—>d; then for instance,
a
bl =0, land ] = |codta
— D—> = = |C—d—al
e>>a c—b e/

Unfortunately, refinement does not always yields an order-deterministic pomset even
if p and theimages of h are order-deterministic.

Example4.2 Let p=/| |andlet hmap ato[c—d|and b to[c=€. Now p[h] =
c—~d

which is not order-deterministic; on the other hand, h(p) = h(a) u h(b) =

c—>e
d
codue=g=| 7 |

Hencein general it isnot the casethat h(p) = p[h]. In particular, asthe above exam-
ple shows, refinement does not distributeover join, i.e., (pug)[h] = p[h] ug[h] does
not hold in general. On the other hand, refinement does distribute over concatenation
and digjoint union.

Proposition 4.3 For all p,q € POM and h: POM — POM the following equa-
tions hold:

plhl-alhl = (p-[h]
plhlwalh] = (pwaq)h].

This follows directly from the definitions of concatenation, digoint union, and re-
finement. The reason why refinement failsto distribute over join isbasically that the
images of different elementsmay fail to be sufficiently different themselves; in partic-
ular, they may shareinitial elements, ash(a) and h(b) in Examplel4.2] in which case
refinement no longer yields an order-deterministic pomset. We can, however, formu-
late necessary and sufficient conditions on h under which h(p) = p[h] does hold for
al p. Let uscal ahomomorphism image distinct if the following conditions hold:
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o theimages are nonempty: h(e) # ¢ for dl e € E;
o different images have nothing in common: d # eimplies h(d) mh(e) = ¢ for
ald,ecE.

Proposition 4.4 Let h.DPOM — DPOM be an arbitrary homomorphism; then
h(p) = p[h] for all p € DPOM if and only if h either isimage distinct or maps all
pomsetsto ¢.

The proof followsbelow. The proof of the*if” part depends on the following lemma.

Lemma4.5 If h:DLPO — DL PO isimage distinct with pairwise compatible im-
agesand p, g € DL PO are compatible, then p[h] and g[h] are also compatible.

Proof: Let (v, w) € Vpy and (v, w') € Vg be arbitrary such that | oy (v, w) =
Ygrn (Vs w') and €y (v, w) = Lo (v, w'). Theset § (v, w) can be split up into
the digoint subsets

Xww = {0, w")e Vi | v’ <p v}
Yoy = {@w") € Vo | w” <y w):

Likewise, {4y (v', w') can be split up into

X(v/,w’) — {(UU, w//) e Vq[h] | U// <q U/}
Y(v’,w’) = {(U/, w//) c Vq[h] | w// <h(€q(v/)) w/}.

If Yeo,u) € Xr,wy then apparently v <q v', whichwould imply (v, w) <qr (v, w'),
contradicting {4y (v/, w') = | iy (v, w). Hence Y, ) N Y, wr) # &, immediately
implying Yo, u) = Y,u). Thisinturnimplies Y o)) w = dhiegry) w'- We aso
have fh(gp(v))(w) = Ep[h](v, w) = Zq[h](vl, w’) = Eh(gq(vf))(w/), Implylng w=uw
since al images of h are compatible. Because clearly h(¢,(v)) mh(£q(v")) contains
at least w, by the distinctness of h it also followsthat £,(v) = £q(V').

Furthermore, Y(,, ) = Y u) S0 implies X, ) = X wy, and therefore

(v <pv ]I’ (v, w") e Vyn} =" <qv' | Tw". ", w") € Vgn}-

Becauseby assumptionh(e) # ¢ forall e E, foral v” <p vthereisaw” € Vi, w))»
hence (v, w”) € Vpn; likewise, for al v <q v’ thereisaw” € Vi, )y and hence
(v", w") € Vqr)- Hence the above equality is equivalent to |} ;v = |4 v’. Together
with £, (v) = £4(v"), already deduced above, and thefact that p and g are compatible,
thisimpliesv = v’. In combination with w = w’, already deduced above, this proves
the compatibility of p[h] and q[h]. O

Proof of Proposition[4.4] (<) If h(a) = ¢ for all athen h(p) = p[h] = ¢ for all p.
Otherwise assume that the h-images, regarded as |posets, are compatible (there are
such compatible representatives according to Proposition[2.18), and that p and g are
compatible; then according to Lemmal4.5] p[h] and q[h] are compatible as well. A
straightforward application of the definitions of join and refinement then establishes
that (pu g)[h] = p[h] uq[h] for al p,ge DPOM. h(p) = p[h] can then be shown
by induction on the structure of p.
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(=) Assume h is not constantly ¢. If h(a) = ¢ and h(b) = p # ¢ then eqg.

E_)b[h] = [asb[h w[Bh] = pwp# p = h(ﬁ*b). On the other hand, if

h(a) m h(b) # ¢ then h(a) u h(b) # h(a) W h(b) and hence for instance [h] =

h(a) & h(b) # h () 0

Another consequence of Lemmali5]s the following.

Proposition 4.6  Every image distinct homomor phism h: DPOM — DPOM isin-
jective.
Proof: Assume h(p) = h(q) where p # g, with p and g compatible. It fol-
lows that p[h] = h(p) = h(q) = g[h] according to Proposition 4] let f be the
(unique) isomorphism from p[h] to g[h]. Let (v, w) € Vpn be <pr-minimal
suchthat f(v, w) = (v', w’) # (v, w). It follows by minimality that || iy (v, w) =
f (U ppry (v, w)) = Yy (v, w"), and € ppry (v, w) = Lo (v, w') because f isan iso-
morphism. Because p[h] and g[h] are compatible (Lemma (5] it follows that
(v, w) = (v, w"), which contradicts the assumptions; hence such p, g do not exist.
O

If we are working with arbitrary homomorphisms h rather than image distinct ones,
there is still a clear relation between refinement and homomorphism application,
through the determinization of arefined pomset (see Section[2.3). Namely, if we de-
terminize p[h] then the resulting order-deterministic pomset does correspond to h( p)
for arbitrary h. For the combination of refinement and determinization we introduce
anew operator x*, defined by

hs p := D(p[h)).
The following lemma states that it does not matter if we first determinize p before
applying hx _.
Lemma4.7 For all pe POM and h: POM — POM, h* p=h=x* Dp.

Proof:  Established by comparing ~ py With ~pp)ry. In particular, it can be seen
that for all v € Vp and w € Vh(Zp(v)), ([v]wp, w) <(Dp)[h] ([v’]wp, w’) if and OnIy
if there is a v” ~ v" such that (v, w) <p (v, w’), and that v ~p v" implies
(v, w) ~pn (v, w). It followsthat

(v, w) ~pi V', w) = ([v]~,, w) ~pn V]~ w),
hence the function f: Vh,p — Vh.pp defined by
f:[(l}, w)]"’p[h] = [([v]"’p’ w)]’v(Dp)[h]

is an isomorphism. O

We are now ready to state and prove the correspondence of refinement followed by
determinization to homomorphism application.

Theorem 4.8 For all pe DPOM and h: DPOM — DPOM, h(p) = hx p.
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Proof: First recall Theorem 2.30lwhich states that D takes - over POM to - over
DPOM, and W to L. Using also Proposition A-3] we can derive

hs (p-a) = D((p-ap[h]) = D(p[h]-q[h]) = D(p[h])-D(afh]) = (h* p)-(h*q).
Furthermore, by applying LemmalZ_Zlwe get

hx(pug)=hxD(pwq) =h*(pwq) =D((pwqlh] =
= D(p[h] wq[h]) = (h* p)u (h=Q).

Finaly, itisclear that h+ e = D(e[h]) = De = e andforal ec E, hxe= D(e[h]) =
D(h(e)) = h(e). The theorem therefore follows by induction on the structure of
termsin Ty,;. O

The following corollary supplements Proposition n that it states some more cir-
cumstances in which refinement corresponds directly to homomorphism application,
without the intermediate step of determinization.

Corollary 49 For all pe DPOM and h: E — DPOM, p[h] = h(p) if and only if
p[h] is order-deterministic.

In the remainder of this paper we will apply the term “refinement” as equivalent to
“homomorphism application,” henceignore the fact that a determinization step takes
place in between. Accordingly, we will refer to * as the “ refinement operator.”

4.2 Refinementalgebraically. thealgebraA’,, Having established that for order-
deterministic pomsets, homomorphism application corresponds to a refinement-like
operator, we now want to introduce this operator into the algebra of order-determin-
istic pomsets. This entailsintroducing denotations for refinement functions. We will
restrict ourselvesto refinement functionsthat are the identity almost everywhere, i.e.,
which map only afinite number of eventsto terms other than themselves. To denote
a refinement function h, we then list the pairs of events and images for which the
image doesnot syntactically equal theevent: e.g.,h=[ty/ey, ..., tn/en] (abbreviated
[ti/&]ici) denotesthefunctionmapping g tot; foralli e | ={1, ..., n},andetoitself
for al eventse € E \ {&}ic; in other words,

] ti ife=g
h.e|—>: e ife£gfordliel.

We sometimesreferto {e | i € |} asthe syntactic domain of h. The empty list, corre-
sponding to theidentity function over E, isdenoted id. Thisgivesriseto an extended
algebra A% , with % . = (e, -, U, [/€]ecE * -), Where [_/€ece * _ is an E-indexed
family of |E| + 1-ary operators. Hence, the refinement of t according to arefinement
function h is denoted h % t. The refinement operator is aso extended pointwise to

refinement functions as right hand operands, by setting hx k = Ae. hx k(e); in our
chosen notation, this becomes

[Se/€leck * [ta/dlaer = [([Se/€lecE * ta)/d, Se/€ldeF,ecE~F-

Finally, for al finite E C E we introduce function terms hg = [Xe/€lece and kg =
[Ve/€lece mapping theeventsin E todistinct variables, i.e., suchthat xq # X if d # €,
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and xq # Ye for dl d, e € E. (Hence, in this notation, hy = id = kg.) We then have
the following additional equationsfor al finite E, F C E:

L R @

hexe = ¢ (22

hex (xy) = (hexx)-(hexy) (23)
hex (xuy) = (hexx)u(hexy) (24)
hex (ke xX) = (hegs*kg)*X (25)
idxkx = X (26)

Note that @) —25) actually correspond to a (countable) infinity of equations, one for
each instantiation of E resp. F. The alternative would be to introduce second-order
variablesfor refinement functions, for which a compl ete theory would be much more
difficult to obtain. For A%, , we can prove basically the same soundness and compl ete-
ness propertiesasfor A 4.;. First we state soundness and ordinary (ground) compl ete-
NEss.

A*

Yo - S=tifand

Theorem 4.10 (A%, issound and complete) Foralls teT),,,
onlyif [[s]] = [t]-

Proof: The soundness of (21J-{26) is immediate; this together with Theorem B.2]
proves the “only if” part of the theorem. For the “if” part, note that every t € T ,
can be rewritten modulo provable equality to a pomset normal form in the sense of
Definition[3.6] by application of 21)—{24); in particular, one may add the following
rule to the algorithm presented in the proof of Theorem[RH

norm(hxt) = U norm((hxt)-h(e)).

t'-eenorm(t)

Note that equations (25) and (28] are not necessary for the purpose of this proof;
indeed, they are required only if we want to prove the stronger property of w-
completeness, aswe will see below. O

4.3 w-completeness of A%, The theory of order-deterministic pomsets with re-
finement is stronger than is apparent from the results so far: just as for the basic the-
ory A ,.; We can aso prove completeness for open terms. The relevant statement of
this property is as follows:

Theorem 4.11 (A%, isw-complete) Assume |[E| = w. For all s, t € T}, (E, X), if
[sell = [[te]l for all ground substitutions p: X — T; ,(E) then A%, -s=t.

To prove this, we use the same technique as before, but its application this time
around has become a good deal more complicated. In particular, it is not the case
that refinement-free open normal forms suffice to capture all open A”,_,-terms: for in-
stance, [t/ €] * x cannot be reduced to a refinement-free term since we know nothing
in general about the presence of e in the term to be substituted for x. We are therefore
forced to introduce anew kind of normal form. (Thefact that open normal forms for
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A%, arenot trivially derived from closed normal forms can be regarded as a conse-
guence of an axiom in the theory that deals specifically with elements, viz. Equation
21,

Definition 4.12 (open x-normal forms)  Consider the following production rulefor
termsof T, (E, X):

N := (| Jsat'd set of N)-e| (|_|sat’d set of N)-([|_|sat’d set of N/€]eck * X)

whereee E, xe X, E Cin Eandaset T of N-produced termsissaturated if T/ € T
foral (|| T")-€ € T, and furthermore, if [te/€]ec e iSarefinement function appearing
in an N-produced term, then te # ¢-efor al e € E. A termisin open x-normal form
if it equals| | T for some saturated set T of N-produced terms.

Hencethe “tail pieces’ of open N-produced terms are (apart from the usual elements
€) not simply variables x but refined variables h * x, where the refinement function
hisitself also in normal form. For instance, the above term [t/€] * x corresponds to
the open x-normal form &-([t'/€] * X) where t’ is the open x-normal form of t. To
turn arbitrary open A%, -termsinto open x-normal form terms, we define arecursive
function which is avariation on norm:

normy(e) = O
normy(€) = {e-€}
normy(X) = {e-(idx*X)}
norm.(st) = norms(S) U {(|_|norm,(st))t" | t't" € norm. (1)}

norms(sut) n0TM4 (S) U norm (t)
normy(hxt) = U norms((h* s)-h(e))
seenormy(t)

U U {(L] normy(h*S))-(norm, (h*K) % x)}

s (kxX)enorm.(t)

where the normalization of refinement functionsis defined by pointwise extension

norms ([te/€lece) ‘= [|_| norm*(te)/e]eep (F ={ee€ E| norm.(te) # {e-€}}).

Note that we remove mappings te/e where te normalizesto ¢-e (= €); in our chosen
notation, such mappings are implicit for al events not in the syntactic domain of a
refinement function. Therole of norm, isformulated in the following lemma, which
is proved by atedious but straightforward induction on the term structure.

Lemma 4.13 (open x-normal forms exist) For all terms t € T ,(E, X),
|| norm, (t) isan open x-normal formsuch that A% . =t =| | norm. ().

We now come to the characteristic substitutions used to establish the normality of
normal forms. Again, the substitutions used in the proof of Theorem[3.11lno longer
suffice. We say that e does not occur in arefinement function [te/€]ece if it isneither
in the syntactic domain E nor in any of the images te.

Example4.14 If pst(X) = ex where e, isa*“fresh” event not occurring in s or t,
then h(ey) = e for any refinement function h occurring in s or t; hence for instance,
if s=[s/e] xxandt =[t'/€] x Xxwhere s/, t" are ground terms such that [[ST # [[t']],
then A go; = Sost = €x = tost but [[so]] # [to]] if p(X) =e.
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Basically, the problem is that the characteristic substitution must preserve enough
structure of the normal formsto which it is applied to be injective; this structure in-
cludes especially the “tail ends’ h « x allowed by Definition[4.12] To achieve this,
then, pst(X) must contain copies of all elements with anontrivial h-image, in such a
way, moreover, that these images can be re-retrieved from h x (ps(X)).

Again, let Egt be the set of events occurring syntactically in s or t. Assume a
fixed ordering over Es¢, such that Esy = {ej, ..., en}. Let {dy, ex}xex be aset of
pairwise distinct events digoint from Est. Now ps: X — T, isdefined asfollows:

Pst: X > Oy LI €x-€1-€x-€- - - Ex-En.

Thedy and e, play therole of special markers: dy signalsthe start of asubterm ps ¢ (x)
whereas the e separate the g. The g themselves are needed to record the effect of
refinements that pst(x) may be submitted to; by keeping this record one avoids the
accidental confusion of sost and tost asin Examplel4.14]

The pomsets constructed by terms of the form tps ; therefore have a specific for-
mat that allows to retrieve essentialy t (up to provable equality). We call p charac-
teristic if it has thisformat. Characteristicnessis defined as follows.

Definition 4.15 (characteristic pomsets) Let Esi = {ey, ..., ey} and {dx, ex}yex be
sets of elements as above. A pomset p is called characteristic if for al v € Vp ~
€5 (Est)

p ,

o if £p(v) = dy then the set of characteristic vertices C, € V,, defined by

hasthe property that forall w € C, andu e Vp . C,, U <p wimpliesu <, vand
u>pwimpliesu >, v. Moreover, p [ C, = dy LI (- P1-€x- P2 - - €& Pn) Where
foral 1 <i < n, p; isacharacteristic pomset, sometimes denoted C,(€;);

o if £p(v) =exthereisaw e Vp suchthat £p(w) =dyand v € C,,.

We will not mention the sets Eg+ and {dx, ex}yxcx With respect to which this property
is defined when they are implicitly clear. If pischaracteristicand C, C V, isaset
of characteristic vertices, then C, can be contracted into a single node w, yielding a
pomset g from which p can be reconstructed by refining q accordingto w +— p | C,.
Notethat C, N C,, # @ for v, w € Vp suchthat £, (v) = dy and £p(w) = dy implies
C,cC,orC, CC,. Itfollowsthat for al v € V), either thereisno set C,, such that
v € Cy, or thereisaunique largest such C,,. Very important is the property that for
any characteristic p, if £,(v) = dy thenthe C, () are uniquely defined.

Example 4.16

1. Any pomset in which there are no dy- or ex-labeled vertices is characteristic.

2. If pstisacharacteristic substitutionthen p = [[ ps +(X)]] isacharacteristic pom-
set for al x € X: thereis exactly one v such that £,(v) = dx, where C, = Vy;
plC,=p=dxuexe---eey by construction, hence C,(g) = ¢ for al
1<i<n.
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3. Assume Es; = {a, b} and X = {x}. Then the following pomsets are not char-
acteristic.

a— dx a— dX

ey—a—e—b—ey &— a—>eg—b

In the left hand pomset, the subpomset ex-a-e4-b-e4 cannot be subdivided into
ex- Pa-€x: Pp SUch that p, and py are again characteristic, since either p, or py
must contain an ex-element but neither can contain a dy-element. In the right
hand pomset, on the other hand, thereisno appropriate set C, to the dy-element,
since theinitial a-element is not a predecessor of the ey.

4. Let Est and X be as above, and consider the upper pomset.

dy a

/!
b —  e—~b—b

a
NS /!

b e—~dy———Db

\‘ex—>ex—>a/r

dy b ex—b—b
a— exz) dX —>b/' —a
b e—e—a

This pomset is characteristic: the right hand side indicates its division into

principal subpomsets. It can be regarded as gﬁ X=& \where x is refined by

b
x—b
[b— bJ, where the refinement function hin p, isgiven by x+— dy LI (ex-e-ex-a).

dx LI (& Pa-€x-Pp), such that p, = C,(a) = h* and pp = Cy(b) =

One can prove, by induction on the term structure, that pomsets obtained by applying
acharacteristic ground substitution to an open A’ -term are always characteristic in
the above sense.

Lemmad4.l7 ForallsteT),(X), [tost] isacharacteristic pomset.

The next task consists of reconstructing a (normal form) term from an arbitrary char-
acteristic pomset, with the property that applying the characteristic substitution to that
term once moreyieldsthe pomset we started with. For this purpose we need one more
auxiliary notion. If pisacharacteristic pomset, then v € Vp, iscalled principal if ei-
ther thereisno w € Vp suchthat v € C,,, or £p(v) =dyand v € C,, impliesv = w.
(The latter is equivalent to saying that C, is maximal among all characteristic sets of
vertices containing v; we have seen above that such maximal C, aways exist.) The
principal vertices of p are denoted VP .

Now we recursively define apartial function R,: DPOM — Fin(T}_, (X)) from
characteristic pomsets to finite sets of open x-normal terms, as follows:

Rap) = {(UR«(pT4v))-L(w)|ve VP, £(v) #dx} U
{UR(p T Y-
([ Re(Cy(©)/Elecks,c @0 * XV € VP, £(v) = dx}.
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In words. the principal vertices v are turned into N-produced terms (see Defini-
tion[412), where the vertex label ¢,(v) determines if the produced subterm has a
“simpletail” consisting of asingle element £,(v) # dy, or a“complex tail” hx x cor-
responding to the refinement of avariableif £,(v) = dx. Inthelatter case, the refine-
ment function hisreconstructed from the subpomset determined by the characteristic
vertices C,.

Note that the saturation requirement of normal formsis fulfilled due to the fact
that if v <p w for two principal verticesv, w € VP then v € ||, w and hence the
R.(p | J w) will include the subterm (]_| T,)-t, constructed for v.

Example4.18  For the pomset in Example[4.16l4, R, yields the set
{e-a, &-b, (¢-a)-(hy % X), (¢-aLl (¢-a)-(hy % X))-a},

where

hi: ar sbue(hyxx)u(e-(hyxx))-b, b~ ebu(s-b)b;
hy: arm¢ b ¢a.

Thefollowing lemmastates therole of the function R,. It isanalogousto Lemma[3.9]
and proved by induction on the structure of open x-normal form terms.

Lemma 4.19 (open x-normal formsareunique) Ift e T} , (X) isanopenx*-normal

€

formtermandse T}, (X) isarbitrary then| | R, (Ttos]) =t.

Proof sketch of Theorem[4.11] Lets te T%,(E, X) bearbitrary, andlet , t’ bethe
corresponding open x-normal formterms, i.e., suchthat A%, , Fs=s',t =t'. Theex-
istence of s’ and t’ isensured by Lemmal4.13] If [so]] = [to]] for al ground substitu-
tions p, thenaso [[S'ps v]l = [t ps v ]I; hences' = | | RIS ps.v] = || RIt'ps v] =’
(Lemmal19). It followsthat A%, Fs=t. O

5 Concluding remarks It remains to summarize the results of this paper, to com-
pare them in somewhat more detail with existing work, and to discuss extensions and
future work.

5.1 Summary We have introduced the class of order-deterministic pomsets, and
have shown that this class satisfies the following properties:

e Order-deterministic pomsets arise as a generalization of strings, by freely
adding objects corresponding to the prefix-suprema of arbitrary finite sets of
strings.

e The class of order-deterministic pomsets forms a distributive basis with all fi-
nite suprema; hence prefix-closed sets of pomsets form prime algebraic bases.

e Given an appropriate notion of (prefix-preserving) Iposet morphisms, order-
deterministic Iposets form a refl ective subcategory of the Iposets.

We have then formulated an algebra of order-deterministic pomsets by algebraizing
the supremum of pairsof such pomsets, resulting in an operator for pomset join. Pom-
set join is a dlight variation on pomset disjoint union: both can be defined by the
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union of Iposet representatives, the only difference being the choice of representa-
tives, which for digoint union have to be disjoint in their sets of vertices, but for join
should coincide precisely on isomorphic prefixes.

Based on pomset join, we have developed an algebraic theory of order-deter-
ministic pomsets and proved it sound and complete, and w-complete in the presence
of sufficiently many elements. The algebrais denoted A ;,; (see Section[3], consist-
ing of the signature X ., = (e, -, L) and equations (HB) and (T-20) (see Section
1.2.6). ¢ isthe empty pomset, - is concatenation of pomsets, and LI denotes pomset
join. Models are order-deterministic pomsets.

Furthermore, we have defined an extension of A,,; with a notion of refine-
ment which basically algebraizes homomorphism application. Thisyields an alge-
bra denoted A*_, (see Section .2 with signature X% _, = (e, -, L, [/€]ece * -) and
equations (MJ—3) and ()—E0]) (Section 1.2.6) and (Section 4.2). Models
are order-deterministic pomsets and finite refinement functions mapping elements to
order-deterministic pomsets (finite meaning that they are the identity except on afi-
nite number of elements).

5.2 Relatedwork Inthe course of the paper we have already given afairly detailed
comparison with existing work on series-parallel pomsets, based as it is on the dis-
joint union of pomsetsrather than pomset join. Relevant papersarefor instance (inor-
der of appearance) Grabowski [[8], Jonsson [[11], Pratt [[19], Gischer [[7], and Aceto[2].

Oneimportant point of difference that has not been stressed so far is the follow-
ing: pomset join isonly partially defined, namely only between pomsets which have
compatible representatives (see Section[2.2); these are in fact precisely the order-
deterministic pomsets. Hence although within the class of order-deterministic pom-
sets we have very satisfactory results, they appear to be difficult to extend to larger
classes. This contrasts with digoint union, which istotally defined on POM.

Anather point of differenceisthat where we have concentrated on asmall num-
ber of operators—basically pomset join, refinement, and sequential composition—
the existing theory of series-parallel pomsetsis much more extensive, covering many
operators and considering sets of pomsets as well as single pomsets.

All other things being equal, the principal difference between the two theories,
series-parallel versusorder-deterministic, isin the class of pomsetsfor which they are
a—c
bi d
Whereas is not order-deterministic. Any question concerning which of the two is
the more appropriate can therefore only be answered in the context of some specific
application.

Another well-devel oped theory of pomsets, which has received somewhat short
shrift here, is that of Mazurkiewicz traces, introduced in Mazurkiewicz [IE; good
references are Aabersberg and Rozenberg [ and Mazurkiewicz [[15]. Aswe have
remarked in the introduction, all Mazurkiewicz traces are in fact order-deterministic
pomsets, and some of the facts proved for order-deterministic pomsets in this paper
constitute a proper generalization of known Mazurkiewicz trace theory; in particu-
lar the fact that prefix closed sets of Mazurkiewicz traces form prime algebraic bases
(see e.g. Nielsen, Sassone, and Winskel [18], whereit isin fact proved for the inter-

complete. These classes are incomparable: for instance, isnot series-parallel
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mediate class of pomsets without auto-concurrency, which isproperly in between the
Mazurkiewicz traces and the order-deterministic pomsets). However, the concept of
a concurrent alphabet which is central to Mazurkiewicz trace theory and underlies
the associated operators (especially concatenation) is totally absent from this paper,
and indeed the actual algebraic theories have little in common.

Thefinal related field wewish to mention hereisthetheory of trees, asdevel oped
especialy in the context of process algebra (see e.g. [[3] for agood exposition of the
algebraic side), but also in adifferent setting for instancein [@I Therearein fact two
ways in which trees may be related to pomsets: trees can either be directly regarded
as pomsets themselves, with a specific condition on the ordering relation according
to which all predecessors of a given vertex must be totally ordered; or they may be
regarded as prefix closed sets of pomsets, which for the specific case of trees are then
in fact prefix closed sets of total orders.

In the first interpretation, note that the order-deterministic pomsets in fact cor-
respond to deterministic forests, where forests are multisets of trees (see also Sec-
tion E and pomset join merges such forests from their roots up to the first branch
where they differ. However, pomset concatenation would not in general correspond
to avery useful operator sinceit very easily leads outside the class of trees or forests.
There are anumber of variations on thistheme—for instance, one may chooseto read
pomsets backwards to obtain trees, which gets rid of the restriction to deterministic
trees. for the finite models we have studied here this in fact yields a fully abstract
model with respect to strong bisimulation, which has been studied, e.g., by Rutten
in [24]; however, due to the reversal in the interpretation, the extension to infinite
trees requires non-well-founded pomsets.

The second interpretation is the one propagated by De Nicola and Labella [[6].
For an exhaustive comparison with the results of this paper, one would haveto inves-
tigate the theory of prefix closed sets of A 4.;-pomsets; we briefly discuss this below
asapossible extension. One observation that can be maderight away, however, isthat
such an extension of A 4.; once more would be enable to describe only deterministic
trees.

5.3 Extensions We briefly review a number of directions in which the results of
this paper can be extended.

5.3.1 Infinite pomsets A straightforward extension is to consider infinite as well
as finite pomsets. In fact all the theory developed in this paper extends smoothly to
this more general case if we introduce infinitary joins. The relevant models are the
well-founded order-deterministic pomsets. These form a proper class, which may be
seen as adirect generalization of the ordinalsin which there exist, instead of asingle
successor function, afamily of different ones (onefor each elementin E). A detailed
discussion is outside the scope of this paper.

5.3.2 Augmentation  Apart from the prefix relation, which we have studied in con-
siderable detail here, there is another relation over pomsets that has received much
attention in the literature, viz. that of augmentation; see for instance the papers on
series-parallel pomsets cited above.
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Basically, apomset is said to augment another if it contains strictly more order-
ing but is the same otherwise. Currently we do not have any genera results tying
this relation into the framework of this paper. However, if we restrict our attention
to posets rather than pomsets (which can be regarded as pomsets with an injective
labeling function) then the following may be established: the smallest partial order-
ing relation over posetsincluding prefix and inverse augmentation coincides with the
finest pre-congruence with respect to join and concatenation that subsumes prefix: in
other words, it isthe smallest transitive relation < over pomsets such that p C g im-
plies p < gand

Pr< P2= (P1UQ =< P2U A (P1;g =< P2;Q A (Q; PL =< T; P2),

where py, p2 and q arearbitrary posets. For instance, pre-congruence allowsto derive

a
<["\. [from@ac E and indeed it holdsthat [a—b] which isanin-

c—b

a
verse augmentation of C\ b Thisresult isnot directly useful however, since due to
9

the inversion of the augmentation relation, |eft-closure with respect to < would cor-
respond to augmentation right-closure rather than left-closure. We have not pursued
this matter further.

5.3.3 Prefixideals InGischer [, animportant roleisplayed by augmentation | eft-
closed sets of pomsets, which he calls (augmentation) ideals. Ananalogous extension
that we have studied in [[22] is to consider prefix closed sets of pomsets as models; one
might call such sets prefix ideals. The basic ideaisto interpret the constants of A 4.,
as prefix ideals—in particular, letting each e € E correspond to the set containing all
prefixes of e— and introducing a union-like operator +, which may be thought of as
modeling choice. Choice can be captured equationally as follows:

E+X = X
X+Yy Y+ X
(X+Y)+2 = X+ (Y+2)

X(Y+2 = Xy+xz
X+Vy)z = xXz4Yyz
Xu(y+2 = (Xuy)+ (xuz).

(This operator isin fact entirely analogous to the one described in e.g. Gischer [ for
arbitrary sets of processes.) In other words, we obtain a third monoid, whose neutral
element ¢ equal sthose of concatenation and join, and whose operator allowsall others
to distribute over it. For the purpose of modeling prefix ideals this is not yet quite
satisfactory, since in fact the models are not only closed under pomset prefix but in
fact also under the weaker relation < € DPOM x DPOM discussed briefly above.
Thisisdueto thefact that concatenation is not left-monotonic with respect to pomset
prefix. To repair it one needs a notion of termination; see [21], [22] for an extensive
discussion.
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5.3.4 Pomsetlogics Based ontheresultsof thispaper, it seemsan interesting prob-
lem to define apomset |ogic, whose model s are pomsets and which has special modal-
ities to deal with pomset join and concatenation. In fact, it would seem that pomset
joinin some sense correspondsto logical conjunction, and therefore theinterpretation
of the logic could contain the following rule:

PEoAY when p=quqysuchthat g F ¢ and q; E .

In particular, this correspondsto thefact that DPOM formsacompletelattice under L
and the dual m (Section[2.3). Negation, however, does not let itself be defined easily
in thisway since the lattice is not complete, and hence certainly not Boolean. On the
other hand, pomset concatenation would seem to correspond to the sequential com-
position of programs, for which there are well-known logical characterizations (see
e.g. [[l2]). For instance, one could define alogical operator *;’ with the following se-
mantics:

PE@; ¥ when p=qi-gsuchthatq; Fgand gy F ¢.
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