
283

Notre Dame Journal of Formal Logic
Volume 37, Number 2, Spring 1996

Algebra and Theory of
Order-Deterministic Pomsets

AREND RENSINK

Abstract This paper is about partially ordered multisets (pomsets for short).
We investigate a particular class of pomsets that we call order-deterministic,
properly including all partially ordered sets, which satisfies a number of inter-
esting properties: among other things, it forms a distributive lattice under pom-
set prefix (hence prefix closed sets of order-deterministic pomsets are prime al-
gebraic), and it constitutes a reflective subcategory of the category of all pom-
sets. For the order-deterministic pomsets we develop an algebra with a sound
and (ω-) complete equational theory. The operators in the algebra are concate-
nation and join, the latter being a variation on the more usual disjoint union of
pomsets. This theory is then extended in order to capture refinement of pomsets
by incorporating homomorphisms between models as objects in the algebra and
homomorphism application as a new operator.

1 Introduction We investigate a class of structures commonly called partially or-
dered multisets (a term proposed by Pratt [19]), or pomsets for short. Pomsets are
node-labeled directed graphs where the edges constitute an irreflexive and transi-
tive relation (i.e., a partial order) over the nodes, interpreted up to label- and edge-
preserving isomorphism so that the identity of the nodes (but not their ordering) is
abstracted away from. The multiset referred to in the term “pomset” is the multiset
of node labels. Thus, pomsets can be thought of as generalizations of traces (also
called strings or words), where the ordering of the nodes is linear.

It has been proposed by many researchers that pomsets can be used as mathemat-
ical representations of runs of a concurrent system; see, for instance, Grabowski [8],
Pratt [19], Gischer [7], Nielsen et al. [17]. In this representation, the nodes of the
graph model activities of the system on some abstract level of description where it is
not necessary to model any finer-grained structure within such an activity. The na-
ture of the activity associated to a node is described by an action name given as the
node label. The edges represent dependencies or causalities between the activities
which are due to, for instance, sequential composition (control flow) or communi-
cation (data flow). In this interpretation, activities are unordered, or independent, if

284 AREND RENSINK

they take place concurrently or in different parts of a distributed system and neither
of them uses data generated by the other.

For instance, if a system has a component sending a message and then doing
some local activity, and a second component that first does something locally and then
receives the message, the corresponding fragment of behavior may be modeled by the
following pomset:

snd→ loc↘
loc →rcv

Because according to this point of view, the ordering of the nodes reflects an actual
relation between the activities of the system, one might call the model and its under-
lying interpretation intensional. There would seem to be some obvious advantages to
such an intensional model: since there is precise information about dependencies, it
should be easier to analyze properties of system behavior, or, vice versa, to provide a
distributed implementation of behavior specified through such a model.

Contrasting the intensional interpretation, there is the extensional interpretation
that models a system according to what can be observed about it in terms of the ac-
tivities it performs, i.e., the actions that it executes. This in turn depends on what
counts as an observation. A very popular point of view is that it suffices to consider
linear observations. This leads to the interleaving interpretation, according to which
a system executing actions concurrently is no different from one that executes them
in arbitrary sequential order. For instance, the system modeled by the pomset above
would have the following sequential runs:

snd loc loc rcv
snd loc rcv loc
loc snd loc rcv
loc snd rcv loc

It is clear that some information is lost in the interleaving interpretation; for instance,
the four sequential runs above could also have arisen from the following pomset,
which specifies more dependencies than the previous one:

snd→ loc↗↘
loc →rcv

However, if one adheres to the point of view that this information was not relevant to
the correct functioning of a system, then such an abstraction step is in fact desirable.

The debate between the adherents of the intensional, partial-order school and the
extensional, interleaving school has been going on for quite some time, and a defini-
tive answer does not yet seem to be forthcoming. In the meanwhile, the least one
can do is to study and compare the models that are being proposed. This paper aims
to contribute to the already considerable amount of material that has been collected
in the course of that study. Our approach to this aim is outlined below. In short, we
distinguish a class of pomsets with particularly nice properties, which we call order-
deterministic; the main part of this paper is concerned with an exhaustive study of this
subclass, especially including the development of a corresponding equational theory.

ORDER-DETERMINISTIC POMSETS 285

The paper is structured as follows. After an introductory account of our approach
and an overview of existing pomset algebras and theories in the remainder of this sec-
tion, in Section 2 we introduce the basic facts about order-deterministic pomsets by
studying the notion of pomset prefix. Specifically, in Section 2.3 we show that the sub-
class of order-deterministic pomsets is a distributive lattice with respect to the prefix
ordering and that, given a suitable notion of morphism, it sits within the category of
pomsets in a special way (it forms a reflective subcategory).

In Section 3 we investigate the equational theory of order-deterministic pom-
sets. It is proved sound and complete, and ω-complete in the presence of enough ele-
ments. In Section 4 we discuss refinement of order-deterministic pomsets, analogous
to an operation that has been investigated for series-parallel pomsets: see especially
Nielsen, Engberg, and Larsen [17]. This comes down to introducing automorphisms
over POM[E] as objects in the algebra and homomorphism application as a new op-
erator. The corresponding extension of the equations is again proved (ω-) complete.

In Section 5, after a summary of the results, we come back to the comparison
with some of the theories described above. We also give an overview of some possi-
ble ways to follow up on the results of the paper. Among other things, it would seem
possible to use the principles used here to generalize strings to pomsets in a simi-
lar way to generalize from ordinary modal logics, which are usually interpreted over
strings, to logics interpreted over pomsets.

In the full report [21], we give some additional results. In particular, we discuss
the notion of termination of pomsets and give complete equational theories for two
variations: distributed termination (where a pomset may have multiple exit points)
and global termination (where a pomset is either terminated as a whole or not termi-
nated at all).

1.1 Approach Since strings are clearly a special case of pomsets, one way to study
the latter is by generalizing and extending existing theory about the former. This is
indeed the approach that one generally finds in the literature. In particular, one may
introduce, in addition to the usual notion of (string) concatenation, an operation to
put elements in parallel, and study the objects that are generated in this way. Thus
the concept of regular languages is extended to pomsets.

One aspect of strings that does not generalize well along these lines is that of
prefix or initial segment. The property that one string is the initial segment of another
induces a partial ordering relation over the set of strings, which has infima; it is this
fact that allows us to regard an arbitrary set of strings as a tree, and to unfold arbitrary
transition systems into trees. For pomsets however, although a prefix relation may be
defined, it no longer has infima.

Example 1.1 The pomsets a→b
a→c

and
b↗

a→c
have common prefixes a→b and

a→c but no largest common prefix; in particular,
b↗

a→c
is itself not a prefix of a→b

a→c
.

We take the above observation as the starting point of our study. The order-determin-
istic pomsets that we concentrate on in this paper are precisely the class of pomsets in
which infima are defined. Consequently, over order-deterministic pomsets the prefix
relation has a very rich structure: apart from infima it also has all suprema (of finite

286 AREND RENSINK

sets, since we regard finite pomsets only), and moreover the two distribute over one
another. This in turn implies that every set of order-deterministic pomsets can be in-
terpreted as a prime algebraic basis in exactly the same way a set of strings can be
interpreted as a tree. Since prime algebraic bases play an important role in partial or-
der semantics, which in fact mirrors the role of trees in interleaving semantics, we
regard this as an encouraging result.

The join operation that yields the supremum of two pomsets is in fact a variant of
the well-known disjoint union of pomsets that lies at the heart of most of the existing
pomset theory. Concatenation and join give rise to a complete equational theory of
order-deterministic pomsets, which forms the main subject of this paper.

We now recall the basic definitions of pomsets and some theories that have been
developed for (special cases of) pomsets. Throughout the paper, we consider pom-
sets abstractly, without taking into account the nature of the elements that are being
ordered. The elements are assumed to be collected in a set E; we will use the letters
a–e to refer to arbitrary elements. A labeled partially ordered set or lposet over E is
a triple p = 〈V,<, �〉 where

• V is an arbitrary set of vertices;
• < ⊆ V × V is an irreflexive and transitive ordering relation;
• �: V → E is a labeling function.

We will assume the existence of a large enough universe of vertices, closed under
pairing. In examples we sometimes use the natural numbers for this purpose. The
class of lposets over E is denoted LPO[E]. We use Vp, <p, and �p to denote the
components of an lposet p, and ≤p to denote the reflexive closure of <p. A set V ⊆
Vp will be called left-closed (with respect to <p) if v <p w ∈ V implies v ∈ V .

Two lposets p and q are isomorphic, denoted p ∼= q, if there exists a bijection
f : Vp → Vq such that for all v,w ∈ Vp, v <p w if and only if f (v) <q f (w) and
�p(v) = �q(f (w)). A partially ordered multiset or pomset, finally, is an isomorphism
class of lposets. The class of pomsets over E is denoted POM[E] (= LPO[E]/∼=).
We use [p] = {q ∈ LPO[E] | q ∼= p} or [Vp,<p, �p] to denote the pomset with rep-
resentative p; by abuse of notation, we sometimes also write p for the pomset itself.

Graphically, we depict lposets by diagrams
1a↘
2b→3a

, where 1, 2, 3 are vertices

and a, b their labels; and the corresponding pomsets by
a↘
b→a

, i.e. by deleting the

vertex identifiers.

1.2 Existing theories

1.2.1 Strings A very special case of partially ordered multisets comprises the
strings over a given set of elements. Here the partial ordering is actually total. It is
well known that strings are free monoids, meaning that they are freely generated by
the signature �str = 〈ε, ·〉 with the following equations:

ε·x = x (1)

x·ε = x (2)

(x·y)·z = x·(y·z) (3)

ORDER-DETERMINISTIC POMSETS 287

ε denotes the empty string and · concatenation of strings; the latter is associative and
has the empty string as a left and right neutral element. The pomsets that can be gen-
erated in this way are precisely those p whose ordering is total, i.e., such that either
v ≤p w or w ≤p v for all v,w ∈ Vp. Hence for instance a→b→a can be generated

but a→b
a

cannot. The empty string ε is modeled by the empty pomset [∅,∅,∅], a

single element e ∈ E by [{0},∅, {(0, e)}] (where 0 is a simple placeholder without
intrinsic meaning), and the concatenation of p and q is defined by

p·q = [Vp ∪ Vq,<p ∪ (Vp × Vq) ∪ <q, �p ∪ �q],

where the representatives p and q are disjoint, i.e. are chosen such that Vp ∩ Vq = ∅.

1.2.2 Multisets Another very special case of partially ordered multisets comprises
the multisets (sometimes called bags) over a given set of elements. Here the elements
are actually completely unordered. Multisets are known to constitute free commuta-
tive monoids; that is, they are freely generated by the signature �mul = 〈ε,�〉 with
the following equations:

ε � x = x (4)

(x � y) � z = x � (y � z) (5)

x � y = y � x (6)

ε now denotes the empty multiset and � multiset addition; the latter is associative and
commutative, and has the empty multiset as its neutral element. The pomsets that
can be generated in this way are precisely those without any ordering whatsoever,

i.e. those p with <p = ∅. Hence, for instance,
a
a can be generated but a→a can-

not. The empty multiset and single-element multisets are modeled in the same way
as the empty string and single-element strings above; multiset addition is modeled by
disjoint pomset union:

p � q = [Vp ∪ Vq,<p ∪ <q, �p ∪ �q],

where again the representatives p and q should be disjoint.

1.2.3 Mazurkiewicz traces An interesting mixture of strings and multisets can
be found in the Mazurkiewicz traces, sometimes also called partially commutative
monoids; see e.g. Mazurkiewicz [15] and Aalbersberg and Rozenberg [1]. Here one
does not assume a standard set of elements E, but rather a set with structure 〈E, I〉
(sometimes called a concurrent alphabet) where I ⊆ E × E is an irreflexive and sym-
metric independency relation. This relation controls the degree to which the concate-
nation operator (which we will denote
 rather than · to distinguish it from string con-
catenation) is commutative: d
 e = e
 d precisely when d and e are independent.
Mazurkiewicz traces, then, are freely generated by �Maz = 〈ε,
, I〉 with equations

ε
 x = x (7)

(x
 y)
 z = x
 (y
 z) (8)

288 AREND RENSINK

and rules for I to extend it from elements to traces:

� ε I x (9)

x I y � y I x (10)

x I y, x I z � x I (y
 z) (11)

x I y � x
 y = y
 x. (12)

Note that x
 ε = x is derivable from (7), (9), and (12). It follows that if I = ∅ (no
independent elements) then the above system collapses to that for strings, whereas
if I = (E × E) � {(e, e) | e ∈ E} (total irreflexive independence) then it collapses to
that for multisets.

The ordering in the pomsets generated by the above signature satisfies the fol-
lowing condition: for all v,w ∈ Vp, if v �<p w �<p v then �p(v) I �p(w), whereas
if v <p w then ∃u ∈ Vp. v <p u ≤p w and ¬(�p(v) I �p(u)). This implies that in
principle only the dependent elements are ordered; some additional orderings must

be due to transitive closure. Hence, for instance, if c I a I d I b then
a→b↗
c→d

is a valid

trace; on the other hand,
a
a cannot be generated (independence is irreflexive), and nei-

ther can
a↘
b→b

(if a I b then the a should not be ordered with respect to the second

b, otherwise it should also be ordered with respect to the first b).
The independence relation is extended to pomsets by putting p I q if and only if

�p(v) I �q(w) for all v ∈ Vp and w ∈ Vq. The empty trace and single-element traces
are modeled in the same manner as before; the partially commutative concatenation
operation is defined by

p
 q = [Vp ∪ Vq,<p ∪ <pq ∪ <q, �p ∪ �q],

where p and q are disjoint representatives and v <pq w if and only if there exist v′ ∈
Vp and w′ ∈ Vq such that v ≤p v′, ¬(�p(v

′) I �q(w
′)) and w′ ≤q w. Note that the only

difference with respect to ordinary string concatenation lies in the fact that essentially
only the dependent vertices of p and q are ordered.

Example 1.2 If c I a I d I b as above then (a
 c)
 (b
 d) = a
c
 b

d
= a→b↗

c→d
.

1.2.4 Series-parallel pomsets Probably the most intensively studied approach to
obtain a more extensive theory of pomsets is the direct combination of the algebras of
strings and multisets, where the neutral elements of both are made to coincide. This
leads to the theory of series-parallel or N-free pomsets, described in, e.g., Aceto [2],
Gischer [7], Grabowski [8], Jónsson [11], Pratt [19]. Series-parallel pomsets are
freely generated by the signature �sp = 〈ε, ·,�〉 with the following equations:

ε·x = x (1)

x·ε = x (2)

(x·y)·z = x·(y·z) (3)

ε � x = x (4)

(x � y) � z = x � (y � z) (5)

x � y = y � x. (6)

ORDER-DETERMINISTIC POMSETS 289

It is seen that concatenation (serial composition) and disjoint union (parallel compo-
sition, hence series-parallel) do not interact at all. The models that can be generated
using this signature are N-free in the sense that the figure N cannot occur as a substruc-
ture of the ordering relation: if v <p v′ >p w <p w′ for distinct v, v′,w,w′ ∈ Vp then
v′ < w′ or w < v or v < w′.

Example 1.3
a→b↗
c→d

is not N-free: it must be augmented at least to one of the fol-
lowing:

(a � c)·b·d =
a↘
c→b→d

c·((a·b) � d) = c→a→b↘
d

(a � c)·(b � d) = a→b↗↘
c→d

.

The empty and singleton pomsets are clearly N-free, and N-freedom is preserved by
concatenation and disjoint union. It is less obvious that all N-free pomsets can be
generated in the above algebra; see however any of the papers cited above.

It should be mentioned that the theory of pomsets presented in the above papers,
especially [11], [19], and [7], extends far beyond this brief exposition. More details
are given in Section 5.

1.2.5 Forests Forests (i.e., multisets of trees) are pomsets with the special property
that all predecessors of a given element are totally ordered. Algebraically this can
be seen as an extension of multisets with an associative concatenation operator with
respect to which the empty forest is left cancellative (rather than left and right neutral
as for strings), and which distributes over addition from the right. We denote this
operator by ‘;’ to distinguish it from string concatenation. Hence, forests are freely
generated by the signature �tr = 〈ε, ;,�〉 with the following equations:

ε � x = x (4)

(x � y) � z = x � (y � z) (5)

x � y = y � x (6)

ε ; x = ε (14)

(x ; y) ; z = x ; (y ; z) (15)

(x � y) ; z = x ; z � y ; z (16)

Baeten and Weijland [3] present the above algebra with the additional axiom x � x =
x. Intuitively, concatenation of two forests p and q appends q to all the termination
points of p, which are essentially its maximal elements—although some maximal el-
ements may fail to be termination points (see below). The pomsets generated by this
system are hierarchical orders with termination, i.e., of the form p = [V,<, �,�]
such that u < w > v implies u ≤ v or v ≤ u for all u, v,w ∈ V , and where the ter-
mination points are modeled by the extra component � ⊆ max< V . For instance,

b↗
a→a�

is a forest but a�→a and
a↘
b→a

are not. The empty forest is modeled by

[∅,∅,∅,∅] (hence has no termination points) and single-element forests are mod-
eled by [{0},∅, {(0, e)}, {0}] (hence the single vertex is a termination point). Forest

290 AREND RENSINK

addition coincides with multiset addition (taking the union of the termination points);
concatenation is defined by p ; q = [V,<, �,�] such that

V = Vp ∪ (�p × Vq)

< = <p ∪ {(u, (v,w)) | u <p v ∈ �p,w ∈ Vq} ∪
∪{((u, v), (u,w)) | u ∈ �p, v <q w}

� = �p ∪ {((u, v), �q(v)) | u ∈ �p, v ∈ Vq}
� = {(u, v) | u ∈ �p, v ∈ �q}.

It follows that appending the empty forest has the sole effect of removing all ter-
mination points. Forest concatenation coincides with string concatenation if p is a
nonempty terminated string.

Example 1.4

a ; (b � a) ; c = b�↗
a→a�

; c� = b→c�↗
a→a→c�

a ; (b � a ; ε) ; b ; (c ; ε � c) = b�↗
a→a

;
c↗

b→c�
= a→b→b→c↘ ↘

a c�
Note that such forests can easily be interpreted as labeled transition systems where the
vertices become element-labeled transitions. This is in fact the usual interpretation of
the above axioms in process algebra; see for instance Baeten and Weijland [3].

1.2.6 Order-deterministic pomsets To enable a better comparison, we also show
the algebra we present in this paper, without going into details at this point. Rather
than changing the nature of concatenation, as in forests, we replace pomset union by
a new operator called join. The resulting signature is given by �det = 〈ε, ·,�〉 with
the following equations:

ε·x = x (1)

x·ε = x (2)

(x·y)·z = x·(y·z) (3)

ε � x = x (17)

(x � y) � z = x � (y � z) (18)

x � y = y � x (19)

x·(y � z) = (x·y) � (x·z). (20)

The term order-deterministic for the pomsets generated by this algebra is derived
from common usage in the case of forests interpreted as labeled transition systems
(see above): such a transition system is called deterministic if every transition is com-
pletely determined by its source node in combination with its label. Likewise, in
order-deterministic pomsets, as we will see, every vertex is completely determined
by its set of predecessors and its label. (See Rensink [23] for a more extensive dis-
cussion of various notions of determinism in partial order models; the notion of order-
determinism used here is called causal determinism there.)

ORDER-DETERMINISTIC POMSETS 291

The order-deterministic pomsets properly include all Mazurkiewicz traces (and
therefore all posets) but not all forests or series-parallel pomsets. Note that the only
syntactical difference with the theory of series-parallel pomsets is that concatenation
distributes over join from the left. Using (2), (17), and (20) it is straightforward to
derive x = x � x, i.e., join is idempotent.

2 An investigation of pomset prefix In this section we consider the prefix ordering
over pomsets. After showing that this notion is not very well behaved over arbitrary
pomsets, we restrict ourselves to those pomsets over which it is well behaved and
show that there it is very well behaved indeed.

2.1 Prefix relations and morphisms Recall that a binary relation R is functional
if x R y and x R z implies y = z, injective if x R z and y R z implies x = y, and one-
to-one if it is both functional and injective. The domain of R is defined as dom R =
{x | ∃y. x R y} and the codomain as cod R = {x | ∃y. y R x}.
Definition 2.1 (prefix relations and morphisms) Let p, q ∈ LPO[E] be arbitrary.

1. A prefix relation between p and q is a one-to-one relation R ⊆ Vp × Vq such
that both dom R ⊆ Vp and cod R ⊆ Vq are left-closed (according to <p resp.
<q) and for all v, v′ ∈ Vp and w,w′ ∈ Vq, if v R w and v′ R w′ then �p(v) =
�q(w) and v <p v′ ⇐⇒ w <q w′. (In other words, a prefix relation is an
isomorphism between left-closed segments of p and q.) Because of the latter
property, there is an unambiguous extension of R to sets of vertices.

2. A maximal prefix relation between p and q is a prefix relation R such that for all
v∈Vp,w ∈ Vq, if �p(v) = �q(w) and {v′ ∈ Vp | v′ <p v} R {w′ ∈ Vq | w′ <q w}
then either v∈dom R or w ∈ cod R.

3. A prefix morphism from p to q is a function f : Vp → Vq whose underlying rela-
tional graph {(v, f (v)) | v ∈ Vp} is a (maximal) prefix relation. If there exists a
prefix morphism from p to q then we say that p is a prefix of q, denoted p � q.

Example 2.2

• {(1, 3)} is a maximal prefix relation between p = 1a→2b and 3a→4c , but just

a (nonmaximal) prefix relation between p and
4c↗

3a→5b
since it can be extended

with (2, 5).

• 1a→2b �� 3a↘
4c→5b

; in particular, {(1, 3)} is a prefix relation but not a prefix

morphism since it is undefined on 2, whereas R = {(1, 3), (2, 5)} is not a prefix
relation since cod R = {3, 5} is not left-closed.

• 1a→2b � 4c↗
3a→5b

due to the prefix morphism {(1, 3), (2, 5)}.

• From 1a→2b to
3a→4c

5a→6b there are two maximal prefix relations, {(1, 3)} and

{(1, 5), (2, 6)}; only the latter is a prefix morphism.
• Maximal prefix relations are not closed under composition. For instance, R =

{(1, 3)} is a maximal prefix relation between 1a→2b and p = 3a→4c and

292 AREND RENSINK

S = {(3, 5), (4, 7)} between p and
6b↗

5a→7c
, but R; S = {(1, 5)} is not maximal

since it can be extended with (2, 6).

Some facts about prefix relations and morphisms (straightforward to check) are col-
lected in the following proposition.

Proposition 2.3 (prefix relations and morphisms)

1. If the union of two prefix relations (between the same lposets) is one-to-one,
then it is a prefix relation;

2. Prefix relations and maximal prefix relations (but not prefix morphisms) are
closed under inverse;

3. Prefix relations and prefix morphisms (but not maximal prefix relations) are
closed under composition;

4. Every identity function idVp is a prefix morphism from p to p.

Remark 2.4 On the existence of maximal prefix relations: note that such relations
are indeed maximal, in an order-theoretic sense, in the space of all prefix relations
between a given pair of lposets (ordered by ⊆). Since this space is necessarily finite
(we deal only with finite lposets), it follows that every prefix relation is a subrelation
of a maximal prefix relation. Furthermore, for arbitrary pairs of lposets, the empty
relation is a prefix relation. It follows that there is at least one maximal prefix relation
between every pair of lposets.

As a consequence of the fact that prefix morphisms are closed under composition, �
is transitive; in fact it is a preorder over LPO that contains lposet isomorphism as its
kernel.

Proposition 2.5 � is a reflexive and transitive relation such that p � q � p ⇐⇒
p ∼= q.

It follows immediately that prefix is well defined up to isomorphism and lifts to a par-
tial order over pomsets: [p] � [q] if and only if p � q. Also the number of maximal
prefix relations is invariant under isomorphism, although on the level of pomsets, the
prefix relations themselves are in general difficult to represent extensionally.

Example 2.6 There are two prefix morphisms from 1a to 2a
3a , viz. {(1, 2)} and

{(1, 3)}, but their difference cannot be seen on the level of pomsets; the same holds

for 1a
2a and

3a

4a→5b .

The prefix ordering as defined above in fact coincides with the standard notion of
pomset prefix, according to which [p] � [q] if p is isomorphic to a left-closed frag-
ment of q; indeed such a fragment is given by f (p) where f is the prefix morphism.
For the special case of strings, our definition of pomset prefix comes down to the usual
notion of string prefix, as the following proposition shows.

Proposition 2.7 If p, q are total orders then p � q if and only if there is a p′ such
that q ∼= p·p′.

ORDER-DETERMINISTIC POMSETS 293

Proof sketch: First note that there is exactly one maximal prefix relation between
every pair p, q of total orders. If p � q then apparently this is in fact a prefix mor-
phism f . Now p′ defined as that part of q not covered by f (p) (or possibly an isomor-
phic variant to satisfy the disjointness condition of concatenation) satisfies p·p′ ∼= q.

�
When one further investigates the structure of the subclass of total orders under the
prefix ordering, the following becomes apparent.

Proposition 2.8 Every nonempty set of total orders has an infimum with respect to
�.

This follows basically from the fact that the prefixes of a given total order are totally
ordered under prefix; hence so are the common prefixes of a set of total orders; more-
over this set of common prefixes is finite and nonempty (it contains at least the empty
string), hence it has a greatest element.

In general, sets of pomsets fail to have infima. We have shown a counterexam-
ple in the introduction. One may therefore ask if the existence of infima expresses
something particular about strings, or rather something that holds more generally but
not as generally as for the class of all pomsets. It turns out that the latter is the case.
In fact, uniqueness of maximal prefix relations is sufficient to guarantee the existence
of infima.

Lemma 2.9 If there is a unique maximal prefix relation from p1 to p2, then p1 and
p2 have a �-infimum with a unique maximal prefix relation to p1 and p2.

Proof: Let R be the unique maximal prefix relation from p1 to p2, and define p =
p1 � dom R (where restriction p � V is defined in the natural way). It follows that
idVp is a prefix morphism from p to p1, and R, taken as a function Vp → Vp2 , is a
prefix morphism from p to p2; hence p is a �-lower bound of p1 and p2.

Now assume that q is also a �-lower bound of p1 and p2; let fi: Vq → Vpi be
prefix morphisms from q to pi (i = 1, 2). f −1

1 ; f2 is then a prefix relation from p1

to p2; hence f −1
1 ; f2 ⊆ R, implying f2 ; R−1 ⊆ f1. Furthermore, for arbitrary v ∈

Vq we have (f1(v), f2(v)) ∈ f −1
1 ; f2 ⊆ R and hence f2(v) ∈ cod R, implying v ∈

dom(f2 ; R−1); hence Vq ⊆ dom(f2 ; R−1). We may conclude that f1 = f2 ; R−1,
and since the f2 ; R−1 is a prefix relation from q to p and f1 is a total function, it
follows that f1 is a prefix morphism from q to p.

Finally, if S is a maximal prefix relation from p to p1 such that vSw for some
w �= v then S−1 ; R is a prefix relation from p1 to p2 such that w (S−1 ; R) w′ where
w′ is uniquely determined by v R w′. Since R is functional, it follows that S−1 ; R �⊆
R, contradicting the uniqueness of R. It follows that S ⊆ idVp , and since S is assumed
to be maximal, S = idVp . We may conclude that idVp is the unique maximal prefix
relation from p to p1. Similarly, if S is a maximal prefix relation from p to p2, one
can prove S = R; hence R is the unique maximal prefix relation from p to p2. �

2.2 Order-determinism Lemma 2.9 suggests that it may be important to study the
conditions for uniqueness of maximal prefix relations. A maximal auto-prefix relation
of p will be a maximal prefix relation between p and itself. The identity relation over
Vp is a trivial maximal auto-prefix relation; however, some lposets also have non-
trivial maximal auto-prefix relations.

294 AREND RENSINK

Example 2.10
1a

2a→3b has the nontrivial maximal auto-prefix relation {(1, 2),

(2, 1)}.
We call an lposet prefix unique if it has no nontrivial maximal auto-prefix relations.
Clearly, if we want to restrict ourselves to lposets with unique maximal prefix rela-
tions, we must stay within the class of prefix unique lposets. The following lemma
shows that we need no further restrictions.

Lemma 2.11 Between a pair of prefix unique lposets there is exactly one maximal
prefix relation.

Proof: Let R and S be maximal prefix relations between prefix unique lposets p
and q. It follows that R ; S−1 is a prefix relation from p to p, hence gives rise to a
maximal auto-prefix relation of p, which must equal idVp ; hence R ∪ S is injective.
On the other hand, also R−1 ; S ⊆ idVq ; hence R ∪ S is functional. It follows that
R ∪ S is a prefix relation; however, it cannot be larger than either R or S since those
are maximal; therefore we may conclude that R = S (= R ∪ S). �
Lemma 2.9 then gives rise to the following result.

Corollary 2.12 The class of prefix unique pomsets has �-infima of nonempty sets.

(The existence of the infimum of an infinite set P follows from the fact that the set
of lower bounds of P is bound to be finite; in fact, it is also the set of lower bounds
of a finite subset of P, and thus has a greatest element.) In fact, from the proof of
Lemma 2.9 it is clear that the infimum of p and q is defined as follows:

p � q := p � dom R,

where R is the unique maximal prefix relation between p and q.
We now have that the class of prefix unique pomsets generalizes the strings in

such a way that the existence of prefix infima is preserved. Moreover, it turns out that
this class also has prefix suprema.

Proposition 2.13 The class of prefix unique pomsets has �-suprema of finite sets.

Proof: The empty set has supremum ε, and the supremum of a singleton set {p} is
given by p. We show the existence of suprema of pairs pi = 〈Vi,<i, �i〉 (i = 1, 2).
Consider the lposet q such that

Vq = ((V1 � dom R) × {∗}) ∪ ({∗} × (V2 � cod R)) ∪ R

<q = {((v, v′), (w,w′)) | v <1 w ∨ v′ <2 w′}
�q = {((v, v′), a) | �1(v) = a ∨ �2(v

′) = a}.
where R is the unique maximal prefix relation between p and q and ∗ /∈ V1 ∪ V2 is an
arbitrary vertex identifier. (Those who are familiar with event structures will recog-
nize the similarity of this construction to the synchronization of two event structures;
see e.g. Winskel [26], Boudol and Castellani [4].) For i = 1, 2 let πi denote the partial
projections from Vq to Vi; these are in fact maximal prefix relations, and the π−1

i are
prefix morphisms from pi to q.

First we prove that q is prefix unique. Let S be a maximal auto-prefix relation
of q. Combining the facts that R′ = {(π1v, π2w) | vSw} is a prefix relation between

ORDER-DETERMINISTIC POMSETS 295

p1 and p2 and hence R′ ⊆ R, and Ri = {(πiv, πiw) | vSw} is an auto-prefix relation
of pi and hence Ri ⊆ idVi , it can be derived that S = idVq .

Now we prove that q is the �-supremum of p and q. Because the π−1
i are prefix

morphisms, q is certainly a �-upper bound. Now assume pi � q′ for i = 1, 2 where q′

is prefix unique; let the relevant prefix morphisms be given by fi. It follows that the
πi ; fi are prefix relations between q and q′ such that π1 ; f1 ∪ π2 ; f2 is one-to-one,
hence π1 ; f1 ∪ π2 ; f2 is a prefix morphism, proving q � q′. �
In the remainder of this paper, we will essentially restrict ourselves to the prefix
unique pomsets. We will in fact use a more explicit characterization of prefix unique-
ness. The principal ideals of an lposet p are sets ↓p v = {w ∈ Vp | w ≤p v} for
v ∈ Vp. We call v the top of ↓p v and ⇓p v = (↓p v) � {v} the pre-set. We omit the
index p whenever this does not give rise to confusion.

Definition 2.14 (order-determinism) An lposet p ∈ LPO is called order-determin-
istic if every vertex of p is completely determined by the combination of its pre-set
and its label, i.e., if

∀v,w ∈ V. ⇓ v = ⇓w ∧ �(v) = �(w) =⇒ v = w.

Example 2.15 a→b and a→c have
b↗

a→c
as their supremum, whereas for

instance a→b and the non-prefix-unique
a→c
a have no supremum (

a→c
a→b

and

a→c↘
a b

are upper bounds with no common lower bound).

The class of order-deterministic lposets will be denoted DLPO[E]; we also use
DPOM[E] = DLPO[E]/∼= to denote the order-deterministic pomsets. The following
proposition states that order-determinism in fact precisely coincides with the unique-
ness of auto-prefix morphisms.

Proposition 2.16 An lposet is order-deterministic if and only if it is prefix unique.

Proof: (⇒) Assume that p ∈ POM is not order-deterministic. Let v,w ∈ Vp be such
that ⇓ v = ⇓w and �(v) = �(w) but v �= w; then R = {(u, u) | u < v} ∪ {(v,w)} is a
prefix relation from p to p, hence can be extended to a nontrivial maximal auto-prefix
relation, which implies that p is not prefix unique.

(⇐) Assume that p ∈ POM is not prefix unique. Let R be a nontrivial maximal
auto-prefix relation, and let S ⊆ R be a minimal prefix relation that is not a subre-
lation of idV . It follows that there is a unique (v,w) ∈ S such that v �= w, hence
(⇓ v) S (⇓w) implies ⇓ v = ⇓w; moreover �(v) = �(w). It follows that p is not
order-deterministic. �
The empty pomset and all single-element pomsets are trivially order-deterministic,
and concatenation preserves order-determinism; not so however disjoint union, since

for instance a � a = a
a . Instead of disjoint union we will therefore use the supre-

mum as defined in the proof of Proposition 2.13 as a constructor, which we will call
join in the remainder of this paper. The join of order-deterministic pomsets can be for-
mulated alternatively as a slight variation of disjoint union, where instead of taking

296 AREND RENSINK

disjoint representatives, isomorphic common ideals are merged together. Similarly,
the meet of order-deterministic pomsets corresponds to the intersection of such rep-
resentatives.

Example 2.17
b↗

a→c
and a→b

c
have the isomorphic common ideal a→b . Their

join is given by
a→b↘
c c

and their meet by a→b .

Formally, this is defined as follows. We call lposets p and q compatible if

∀v ∈ Vp,w ∈ Vq. ⇓p v = ⇓q w ∧ �p(v) = �q(w) =⇒ v = w.

Note that pairs of order-deterministic pomsets always have compatible representa-
tives: for if p and q are disjoint representatives with maximal prefix relation R be-
tween them, then the lposet obtained from p by replacing the vertices in the domain
of R by their R-images is isomorphic to p and compatible with q. In fact, we have
the following slightly stronger result.

Proposition 2.18 Every set of order-deterministic pomsets has a set of pairwise
compatible representatives.

Now the meet and join are characterized as follows: if p and q are compatible repre-
sentatives then

p � q = [Vp ∩ Vq,<p ∩ <q, �p ∩ �q]

p � q = [Vp ∪ Vq,<p ∪ <q, �p ∪ �q].

Hence the only difference between disjoint union and join is the choice of represen-
tatives.

Example 2.19

1. (a·b) � (a·c) = 1a→2b � 3a→4c = a→b
a→c

whereas (a·b) � (a·c) =

1a→2b � 1a→3c = b↗
a→c

.

2. ((a � c)·b) � (c·a) =
a↘
c→b

� c→a = a→b↗
c→a

; hence we can construct N-

shaped pomsets, which is not possible in the theory of series-parallel pomsets,
as mentioned in the Introduction.

As a final fact concerning the relation between disjoint union and join we mention the
following:

Proposition 2.20 If p, q ∈ DPOM then p � q = p � q if and only if p � q = ε.

The following property lies at the heart of the completeness proofs in Sections 3 and 4.

Proposition 2.21 If p ∈ DPOM then p = ⊔
v∈Vp

(p � ⇓ v)·�(v).

ORDER-DETERMINISTIC POMSETS 297

2.3 Properties of order-deterministic pomsets In this subsection we discuss some
additional properties of order-deterministic pomsets. First we discuss the structure of
the class of order-deterministic pomsets under prefix; then we investigate, in a cate-
gory theoretic setting, the manner in which the order-deterministic pomsets sit inside
the full class of pomsets.

The characterization above of prefix suprema and infima in terms of union and
intersection immediately gives rise to the following distributivity property: for all
p1, p2, q ∈ DPOM

(p1 � p2) � q = (p1 � q) � (p2 � q).

An ordered structure 〈X,�〉 is called distributive if the above property is satisfied
whenever the relevant infima and suprema exist. Moreover, we call an ordered struc-
ture 〈X,�〉 a basis if it has all nonempty infima but no infinite suprema. (Note that the
existence of nonempty infima implies consistent completeness, this being the prop-
erty that all sets with an upper bound have a supremum; hence the absence of infi-
nite suprema in a basis implies the absence of upper bounds of infinite sets, which in
turn implies that no element of a basis may have an infinite number of predecessors.
In fact, there is a one-to-one correspondence between bases in the above sense and
consistently complete partial orders (ccpo for short); the latter are obtained from the
former by adding suprema of directed sets, whereas the inverse operation consists of
omitting all elements with infinitely many predecessors; see Rensink [20] for details.
We will henceforth ignore the difference between bases and ccpos.) We then have the
following strong order-theoretic structure of the order-deterministic pomsets.

Corollary 2.22 〈DPOM,�〉 is a distributive basis with all finite suprema.

Note that this property is stronger than the fact that 〈DPOM,�,�〉 is a finitary dis-
tributive lattice (where finitariness is the property that compact elements have only
finitely many predecessors—compactness of elements in turn being defined by the
nonexistence of certain suprema, in particular infinite ones), since as remarked above,
in a basis all elements have only finitely many predecessors. (Another way of stat-
ing this is that in a basis, all elements are compact.) A further consequence of Corol-
lary 2.22 is that all prefix closed subclasses of 〈DPOM,�〉 form distributive bases,
too, although these do not necessarily contain all finite suprema.

Distributivity of a basis can be characterized in quite a different way as well. A
basis 〈X,�〉 is called prime algebraic if for all x ∈ X,

x = ⊔ {y � x | y is prime}

where y ∈ X is called prime if for all consistent Y ⊆ X (i.e., such that Y has an
upper bound and hence a supremum), y � ⊔

Y implies y � z for some z ∈ Y .
Prime algebraic bases play an important role in partial order semantics. For instance,
Winskel [25] has shown that every prime algebraic domain arises as the set of con-
figurations of a prime event structure; Corradini et al. [5] give a similar result for safe
parallel graph grammars, which include all safe Petri nets. Now distributive bases
are known to be exactly the same objects as prime algebraic bases (see e.g. [25]);
therefore Corollary 2.22 implies the following.

298 AREND RENSINK

Corollary 2.23 Every �-left-closed subset of 〈DPOM,�〉 is a prime algebraic ba-
sis.

It follows that every set P of order-deterministic pomsets determines a prime alge-
braic basis given by its left-closure with respect to �, with certain “terminated” ele-
ments corresponding to the members of P. This is analogous to the total order case,
where every prefix-closed set of strings determines a (deterministic) tree ordered by
string prefix, and every (arbitrary) set of strings L a tree with termination points corre-
sponding to the elements of L. It is also not difficult to see that just as every determin-
istic tree arises in this way as a prefix closed set of strings, so every prime algebraic
domain can be obtained as a prefix closed set of order-deterministic pomsets. For
the restricted case of unlabeled posets (which correspond to pomsets with injective
labeling functions) more details can be found in Rensink [20].

Example 2.24 The set of order-deterministic pomsets containing a→b ,
a→c
b

,

b→c and
a↘

b→c→a
gives rise to the following prime algebraic basis (where termi-

nated elements are marked �):

a→b �
↗

a → a→c → a→c
b

�↗ ↘ ↗
ε

a
b↘ ↗ ↘

b → b→c �→ a
b→c

→
a↘

b→c→a
�

When considering the class of pomsets and the subclass of order-deterministic pom-
sets, a natural question is whether anything can be said about the nature of this sub-
class, and about the relation (if any) between the pomsets outside to those inside the
subclass. To make the question precise and provide an answer to it, we make a brief
excursion to the field of category theory. For the duration of this excursion we once
more view our objects as lposets rather than pomsets.

It turns out that under an appropriate notion of morphism, one may characterize
the order-deterministic lposets as a reflective subcategory of the lposets.

Definition 2.25 (determinizing morphisms) Let p, q ∈ LPO. A determinizing
morphism from p to q is a function f : Vp → Vq that preserves labeling and ordering
and is image left-closed in the following sense: if v <q f (w) then v = f (u) for some
u <p w.

The typical effect of a determinizing morphism is to merge vertices with the same
predecessors and the same label, i.e., precisely such vertices as should coincide in
order-deterministic lposets, according to Definition 2.14.

Example 2.26 From p = 1a→2b
3a→4c to q = 5a→6b↘

8a 7c
there is a single determinizing

morphism, viz. {(1, 5), (2, 6), (3, 5), (4, 7)}. Note that there is no prefix morphism
from p to q.

The following facts are straightforward to establish.

ORDER-DETERMINISTIC POMSETS 299

Proposition 2.27 (determinizing morphisms)

1. Prefix morphisms are determinizing morphisms, but not necessarily vice versa.
2. There is at most one determinizing morphism from a given lposet to any order-

deterministic lposet.
3. Every determinizing morphism from an order-deterministic lposet is a prefix

morphism.
4. Every identity function on vertices is a determinizing morphism.
5. Determinizing morphisms are closed under composition.

From the latter two facts it follows that determinizing morphisms give rise to a cat-
egory of lposets (where isomorphism corresponds to standard lposet isomorphism);
moreover, in the full subcategory of order-deterministic lposets, the morphisms coin-
cide with prefix morphisms. This subcategory is in fact a preorder category (at most
one morphism between every pair of objects); hence meets and joins are products and
coproducts, respectively.

Theorem 2.28 The lposets with determinizing morphisms form a category LPOdet

with full subcategory DLPOdet = DLPO (where the latter has prefix morphisms).

Now from an arbitrary lposet p we can construct an order-deterministic lposet Dp by
collapsing all isomorphic prefixes of p, as follows: let ∼p ⊆ Vp × Vp be the largest
label and prefix preserving equivalence relation in Vp, i.e., such that if v ∼p w then
�p(v) = �p(w) and for all v′ <p v there is a w′ <p w such that v′ ∼p w′. Such a
largest equivalence exists because the identity relation is a label and prefix preserving
equivalence, and label and prefix preservation are preserved by union and transitive
closure. (Note the analogy of ∼p to bisimilarity, which is an equivalence over transi-
tion systems (cf. e.g. Milner [16]). This is not coincidental: lposets can be seen as fi-
nite labeled transition systems in such a way that isomorphism of order-deterministic
lposets is fully abstract with respect to bisimilarity.) Now for Dp take Vp/∼p as a
new vertex set, with the ordering and labeling induced from p; hence

V <Dp W :⇔ ∃v ∈ V,w ∈ W. v <p w

�Dp(V) = a :⇔ ∃v ∈ V. �p(v) = a

where V, W ∈ VDp = Vp/∼q. It should be clear that Dp is indeed order-deterministic.
In fact, since ∼p = idVp if p is order-deterministic already, it follows that in that case
Dp ∼= p. Furthermore, from an arbitrary determinizing morphism f from p to q we
can define a prefix morphism Df from Dp to Dq (which is therefore in fact deter-
minizing) as follows: for all v ∈ Vp,

Df : [v]∼p �→ [f (v)]∼q .

It follows that D is left adjoint to the inclusion functor U: DLPO ↪→ LPOdet ; the
existence of such a left adjoint is called reflectivity of the subcategory.

Theorem 2.29 DLPO is a reflective subcategory of LPOdet .

Proof: We have to show that for all lposets p ∈ LPO and q ∈ DLPO there are as
many prefix morphisms from Dp to q as there are determinizing morphisms from p

300 AREND RENSINK

to Uq, i.e., from p to q. We have already remarked above that there is at most one
determinizing morphism to any order-deterministic lposet; hence we have to show
that Dp � q if and only if there is a determinizing morphism from p to q. Since Dq ∼=
q, any determinizing morphism f from p to q gives rise to a prefix morphism Df from
Dp to Dq, hence Dp � q. On the other hand, if f is a prefix morphism from Dp to q
then g: Vp → Vq defined by g: v �→ f ([v]∼p) is a determinizing morphism from Dp
to q. �
Among other things, it is known that right adjoints preserve colimits, in particular
coproducts. It follows that LPOdet has coproducts, and indeed for arbitrary pomsets
p and q, p � q with identity injections idVp and idVq is the coproduct of p and q in
LPOdet (but not in LPO with prefix morphisms, as we have seen).

The object part of the functor D also preserves the Asp-structure of LPOdet

modulo isomorphism, i.e., the structure induced by the signature �sp = 〈ε, ·,�〉 and
the corresponding equations. To be precise, ε and · are mapped to themselves whereas
� is mapped to �, hence

D(p � q) = Dp � Dq.

Note that the equations of Asp automatically remain valid under this mapping, since
joins are commutative and associative, and ε is a neutral element with respect to join.
This property is formulated in the following theorem.

Theorem 2.30 The object part of D is an Asp-homomorphism from POM to
DPOM, where disjoint union in POM is carried over to join in DPOM.

3 An equational theory of order-deterministic pomsets We have seen that order-
deterministic pomsets arise rather naturally from an attempt to preserve the properties
of string prefix in the more general class of pomsets. The investigation so far has been
based solely on the models we have defined for strings and pomsets. However, it is
well known that strings can be characterized algebraically: they are the free model
generated by E in the algebra of monoids. That is, if we take the signature �str =
〈ε, ·〉 with the equations

ε·x = x (1)

x·ε = x (2)

(x·y)·z = x·(y·z) (3)

(see also the Introduction), then the class of strings is isomorphic to Tstr (E)/�, where
Tstr (E) is the set of terms obtained by applying the operators of �str to the elements
of E, and � ⊆ Tstr (E)× Tstr (E) is “provable equality,” i.e. the equivalence generated
by the equations above plus the rules of reflexivity, symmetry, transitivity, instantia-
tion and congruence.

Now let us regard once more the standard definition of string prefix:

x � y :⇔ ∃z. y = x·z.

Using the equations above it can be deduced, besides the fact that � is a partial or-
dering relation with smallest element ε, that string concatenation is monotonic in its

ORDER-DETERMINISTIC POMSETS 301

right operand: for if y � z then z = y·y′ for some y′, hence x·z = x·(y·y′) = (x·y)·y′,
implying x·y � x·z. (However, concatenation is not monotonic in its left operand, as
is apparent from a � a·b = ab but ac �� abc.)

As a next step, we can algebraize the prefix ordering by introducing a join-like
operator, which for the moment is only partial; in other words, we let

x � y :=



x if y � x
y if x � y
undefined otherwise.

Using this definition we can express various properties of the prefix ordering equa-
tionally, in the sense that the equation holds if and only if the corresponding property
holds for �:

Reflexivity: x � x = x.
Transitivity: (x � y) � z = x � (y � z).
Smallest element: ε � x = x.
Right-monotonicity: x·(y � z) = (x·y) � (x·z).

These equations should be understood as follows: for all valuations of x, y, z, either
both sides are undefined, or both are defined and provably equal. (Note, by the way,
that the reflexivity equation can be proved from the others.) In addition, the following
is obvious:

Symmetry of definition: x � y = y � x.

3.1 The algebra Adet To obtain a theory of order-deterministic pomsets, all one
has to do now is turn the join operator into a constructor of the algebra rather than
a derived notion, with the above equations as axioms. This implies that join is now
totally defined, i.e., we have to add objects to represent the joins that were hereto-
fore undefined. Of course, these “new” objects are exactly those pomsets that are not
linear. We obtain a signature �det = 〈ε, ·,�〉 with equations (1)–(3) and in addition

ε � x = x (17)

(x � y) � z = x � (y � z) (18)

x � y = y � x (19)

x·(y � z) = (x·y) � (x·z). (20)

This is the theory that we already announced in the introduction. Denoting the result-
ing algebra by Adet , we have the following result.

Theorem 3.1 DPOM[E] is the free Adet -model generated by E.

Proving this involves showing that DPOM[E] is closed under the intended interpre-
tation of ε, · and � and the equations hold under this interpretation (soundness), that
every object in DPOM[E] can be denoted using a term of the algebra (no junk), and
that terms denoting the same object are provably equal (no confusion). The latter two
properties together are also known as completeness of the theory, and we will in fact
prove a slightly stronger version of it.

302 AREND RENSINK

It is now important to distinguish carefully between objects and their denota-
tions: the former correspond to pomsets, the latter to terms of the signature �det .
Tdet (E, X), ranged over by s, t, will denote the set of �det -terms on generators E and
variables X, and Tdet (E) the corresponding set of ground terms, i.e., terms without
variables. We will drop the parameter E when this does not give rise to confusion.
A substitution is a function ρ: X → Tdet (X) mapping variables to terms; ρ is called
ground if its images are ground terms. Substitutions inductively give rise to func-
tions ρ: Tdet (X) → Tdet (X) (note the overloading of the symbol ρ); applications of
the latter are postfix denoted, e.g., tρ. The semantics of terms, i.e., the corresponding
pomsets, are returned by a function [[]]: Tdet → DPOM defined inductively on the
structure of ground terms.

Theorem 3.1 is equivalent to Theorems 3.2, 3.3, and 3.5 below. The first of these
states that the semantic function is well behaved in that it maps to the intended class of
models (the order-deterministic pomsets) and preserves provable equality as pomset
equality (= lposet isomorphism); in other words, that DPOM is indeed a model of
Adet .

Theorem 3.2 (Adet is sound) For all s, t ∈ Tdet , [[t]] ∈ DPOM, and Adet � s = t
implies [[s]] = [[t]].

Next, we state that all the objects of our model can be denoted. For the proof, the fol-
lowing meta-notation is convenient:

⊔
T for finite sets T ⊆ Tdet stands for the join of

all t ∈ T , where
⊔

∅ = ε and
⊔ {t} = t. We also use

⊔
i∈I ti where I is an index set

such that ti = t j implies i = j, corresponding to
⊔ {ti | i ∈ I}. This meta-notation is

well-defined up to provable equality of terms, due to the fact that � is commutative,
associative, and idempotent with identity ε (Equations (17)–(19)). Now we recur-
sively define a function R: DPOM → Fin(Tdet) (the latter denoting the set of finite
subsets of Tdet) as follows:

R(p) := {(⊔ R(p � (⇓p v)))·�p(v) | v ∈ Vp}.
Hence p is decomposed into all prefixes with a unique top element, and R is recur-
sively applied to the predecessors of those prefixes. This can be shown to be well de-
fined by induction on the size of p. The following theorem then states that this yields
a denotation for all order-deterministic pomsets. It can be proved by induction on
the size of p, using the fact that p = ⊔

v∈Vp
(p � ⇓ v)·�(v) for all order-deterministic

pomsets p (Proposition 2.21).

Theorem 3.3 (no junk) For all p ∈ DPOM, p = [[
⊔

R(p)]].

Example 3.4 The R-constructed denotation for
a→c↗
b→a

is ε·a � ε·b � (ε·a � ε·b)·c �
(ε·b)·a, or in meta-notation,

⊔ {(⊔∅)·a, (
⊔

∅)·b, (
⊔ {(⊔∅)·a, (

⊔
∅)·b})·c, (

⊔ {(⊔∅)·b})·a}.
A simpler denotation for the same pomset is, e.g., (a � b)·c � b·a.

Finally, we show that our equational theory is strong enough to prove all equalities
that hold in the model; in other words, that denotations of objects are unique up to
provable equality.

ORDER-DETERMINISTIC POMSETS 303

Theorem 3.5 (no confusion) For all s, t ∈ Tdet , if [[s]] = [[t]] then Adet � s = t.

As usual, this theorem is proved by rewriting terms to normal forms.

Definition 3.6 (normal forms) Consider the following production rule for terms in
Tdet (E):

N ::= (
⊔

saturated set of N)·e,
where e ∈ E and a set T of N-produced terms is saturated if T ′ ⊆ T for all (

⊔
T ′)·e′ ∈

T . A term is in normal form if it equals
⊔

T for some saturated set T of N-produced
terms.

Notation 3.7 For the sake of readability, we will in practice not write normal forms
using the meta-notation

⊔
T , but rather use ε, t and t1 � · · · � tn for (respectively)⊔

∅,
⊔ {t} and

⊔ {t1, . . . , tn}.
Saturation is required to guarantee uniqueness of normal forms, as the following ex-
ample shows.

Example 3.8
b↗

a→c
is generated by

⊔
T1 and

⊔
T2 where T1 and T2 are sets of

N-produced terms:

T1 = {(ε·a)·b, (ε·a)·c}
T2 = T1 ∪ {ε·a}.

T1 is not saturated since (ε·a)·b ∈ T1 but ε·a /∈ T1. This is remedied in T2, and indeed
T2 is saturated and

⊔
T2 is in normal form.

The function R defined above in fact yields normal forms; moreover, on normal forms
R is the left inverse of the semantic mapping. It follows that there is at most one nor-
mal form term describing a given pomset; in other words, normal forms are unique.
This is stated in the following lemma.

Lemma 3.9 (normal forms are unique)
⊔

R([[t]]) = t for all normal form terms t.

Proof: By induction on the structure of normal forms. First note that if s = s′·e
then [[s]] has a unique greatest vertex v with �[[s]](v) = e and [[s]] � (⇓ v) = [[s′]].
Furthermore, if T is a saturated set of N-produced terms then there is a one-to-one
correspondence between the elements of T and the vertices of p = [[

⊔
T]], i.e., for

all v ∈ Vp there is exactly one s ∈ T with [[s]] = p � (↓p v) = (p � ⇓p v)·�p(v).
Assume that T is a saturated set of N-produced terms such that R([[

⊔
T]]) = T

and R([[
⊔

Ts]]) = Ts for all s = (
⊔

Ts)·es ∈ T , and consider the N-produced term
t = (

⊔
T)·e. It follows that

R([[t]]) = {(⊔ R([[t]] � ⇓ v))·�(v) | v ∈ V[[t]]}
= {(⊔ R([[

⊔
T]] � ⇓ v))·�(v) | v ∈ V[[�T]]} ∪ {(⊔ R([[

⊔
T]]))·e}

= {(⊔ R([[
⊔

Ts]]))·es | s ∈ T} ∪ {t}
= {(⊔ Ts)·es | s ∈ T} ∪ {t}
= T ∪ {t}.

304 AREND RENSINK

Now let
⊔

T be a normal form term such that R([[
⊔

Ts]]) = Ts for all s ∈ T ; since
Ts ⊆ T (T is saturated), it follows that

R([[
⊔

T]]) =
⋃
s∈T

R([[s]]) =
⋃
s∈T

Ts ∪ {s} = T.

This proves the lemma. �
It follows that syntactically different normal form terms yield different pomsets,
which is one of the two crucial properties of normal forms. The second crucial prop-
erty is that every term can be rewritten up to provable equality to a normal form term.
To see that this holds, consider the following inductively defined algorithm:

norm(ε) := ∅

norm(e) := {ε·e}
norm(s·t) := norm(s) ∪ {(⊔norm(s·t′))·e | t′·e ∈ norm(t)}

norm(s � t) := norm(s) ∪ norm(t).

It can be proved by induction on the term structure that for all t ∈ Tdet (E), norm(t)
yields a finite saturated set of N-produced terms whose join is provably equal to t.
Hence every term can be rewritten to a normal form term up to provable equality.
This is stated in the following lemma.

Lemma 3.10 (normal forms exist) For all terms t ∈ Tdet ,
⊔

norm(t) is a normal
form such that Adet � t = ⊔

norm(t).

Proof sketch: By induction on the term structure of t. We just show the (most in-
teresting) case of concatenation. Assume that the lemma holds for s and t and for all
s·t′ where t′ � t, and regard the term s·t. The elements of norm(s·t) are by induction
N-produced terms. To see that norm(s·t) itself is saturated, consider (

⊔
T ′)·e′ ∈

norm(s·t); then by construction of norm(s·t), one of the following cases holds.

• (
⊔

T ′)·e′ ∈ norm(s), in which case T ′ ⊆ norm(s) due to the saturation of
norm(s);

• T ′ = norm(s·t′) where t′·e′ ∈ norm(t), meaning that for all t1 ∈ T ′, either t1 ∈
norm(s) and hence t1 ∈ norm(s·t), or t1 = (

⊔
norm(s·t2))·e2 where t2·e2 ∈

norm(t′); but then also t2·e2 ∈ norm(t) and hence t1 ∈ norm(s·t).
Finally, we prove that the norm-rule for s·t preserves provable equality.⊔

norm(s·t) = ⊔(
norm(s) ∪ {(⊔norm(s·t′))·e | t′·e ∈ norm(t)})

= ⊔
norm(s) �

⊔
t′·e∈norm(t)

(
⊔

norm(s·t′))·e

= s �
⊔

t′·e∈norm(t)

(s·t′)·e

= s·
⊔

t′·e∈norm(t)

(ε � t′·e)

= s·⊔norm(t)

= s·t.
This concludes the proof of this case. The other cases are analogous. �

ORDER-DETERMINISTIC POMSETS 305

Proof of Theorem 3.5: If [[s]] = [[t]] for two terms s, t ∈ Tdet then by applying
Lemma 3.10 and Lemma 3.9 we can prove Adet � s = ⊔

norm(s) = ⊔
R([[s]]) =⊔

R([[t]]) = ⊔
norm(t) = t. �

3.2 ω-completeness of Adet If there are enough elements around (E is large
enough) then not only the above completeness property holds, but one which is even
stronger. Whereas Theorem 3.5 expresses that Adet is complete for ground terms,
a more interesting notion is completeness for open terms. This is the property that
if two terms denote the same object under arbitrary ground substitutions then they
are are provably equal before substitution. This is also called inductive completeness
(because it implies that all theorems that can be proved by induction on the structure
of terms can also be proved equationally) or ω-completeness. See, e.g., Groote [9],
Heering [10], or Lazrek et al. [13] for a general discussion.

Theorem 3.11 (Adet is ω-complete) Assume |E| = ω. For all s, t ∈ Tdet (E, X), if
[[sρ]] = [[tρ]] for all ground substitutions ρ: X → Tdet (E) then Adet � s = t.

The side condition |E| = ω is needed to ensure that for any pair of terms s, t ∈
Tdet (E, X) there are enough “unused elements,” i.e., not occurring in s or t, to “en-
code” the free variables of t.

Example 3.12 If |E| = 1 then Adet is not ω-complete. The order-deterministic
pomsets over a one-element set are in fact totally ordered; hence they are isomorphic
to the natural numbers (by mapping p to |Vp|), where pomset concatenation corre-
sponds to addition and pomset join to the maximum. It follows that under all ground
substitutions, the following equations are valid:

x·y = y·x
(x � y)·z = (x·y) � (x·z).

However, these equations are not provable in Adet (and indeed do not hold in general),
hence we do not have ω-completeness.

To prove ω-completeness, two general techniques can be found in the literature.
One technique, proposed by Groote [9], is to construct for any pair of open terms
s, t ∈ Tdet (X) a “characteristic” ground substitution ρs,t with the property that Adet �
sρs,t = tρs,t if and only if Adet � s = t. Clearly, if such characteristic substitutions
exist then ω-completeness reduces to ordinary (ground) completeness. A more spe-
cialized variant of this technique, described by Heering in [10] and by Lazrek, Les-
canne and Thiel in [13], is to use normal forms once more, in particular open normal
forms, with the following properties:

• for any open term there is a normal form that is provably equal to it;
• for any pair of different normal forms there is a ground substitution that maps

them to (closed) terms denoting different objects.

The difference from the first proof idea is that the substitutions required by the lat-
ter property, which correspond to the characteristic substitutions of Groote’s, are ap-
plied only to normal forms, which makes their characteristicness a good deal easier
to prove. This advantage is offset by the need to define an appropriate normal form
in the first place.

306 AREND RENSINK

Definition 3.13 (open normal forms) Consider the following grammar for terms of
Tdet (E, X):

N ::= (
⊔

sat’d set of N)·e | (
⊔

sat’d set of N)·x,
where e ∈ E, x ∈ X and a set T of N-produced terms is saturated if T ′ ⊆ T for all
(
⊔

T ′)·t′ ∈ T . A term is in open normal form if it equals
⊔

T for some saturated set
T of N-produced terms.

This format is a simple variation on Definition 3.6 in which variables x are treated
in the exact same way as elements e. Since all our equations allow variables to be
handled in the same way as elements (there are no special equations for elements),
the first step of the ω-completeness proof (every open term has a provably equal open
normal form) is immediate. The characteristic substitution required in the second step
(for every pair of different open normal forms there is a characteristic substitution
mapping them onto different ground terms) is also easy: every variable is mapped to
a distinct new element not yet occurring in the normal forms being compared.

Proof sketch of Theorem 3.11: For every open term t there is an open normal form
term t′ such that Adet � t = t′. The proof is analogous to that of Theorem 3.5.

Now let s, t be syntactically different open normal forms, and let Es,t ⊆ E be the
set of elements that occur syntactically in s or t. For all x ∈ X let ex ∈ E � Es,t be a
distinct element (note that since Es,t is certainly finite, the cardinality of E guarantees
that there are enough such ex), and define ρs,t: x �→ ex for all x ∈ X. Then sρs,t and
tρs,t are two syntactically different (ground) normal forms, hence [[sρs,t]] �= [[tρs,t]].
Hence Adet � s = t for open normal forms if and only if s = t (syntactically).

Now if s, t are arbitrary open terms such that [[sρ]] = [[tρ]] for all ground substitu-
tions ρ, and s′ and t′ are corresponding open normal forms (i.e., Adet � s = s′, t = t′),
then also [[s′ρs′,t′]] = [[t′ρs′,t′]] for the specific characteristic ground substitution ρs′,t′

and hence s′ = t′; it follows that Adet � s = t. �

4 Refinement of pomsets In this section we will be looking at refinement, which
is the principle of replacing the elements of a pomset by entire pomsets. After dis-
cussing in detail the relation between refinement and homomorphism application, we
proceed to introduce it as an operator in the algebra of order-deterministic pomsets.
For the extended algebra we once more give an ω-complete equational theory.

4.1 Homomorphisms, refinement, and determinization Let us consider Adet -
homomorphisms from DPOM to itself, i.e., functions h mapping order-deterministic
pomsets to order-deterministic pomsets while preserving the operations of �det . This
preservation comes down to the following equations:

h(ε) = ε

h(p·q) = h(p)·h(q)

h(p � q) = h(p) � h(q).

Because in DPOM there is no junk, h is completely determined by its action on the
generators E, i.e., by the images h(e) for all e ∈ E. On the other hand, because there

ORDER-DETERMINISTIC POMSETS 307

is no confusion in the model and none of the equations refer to single elements, every
function h: E → DPOM[E] can be extended to a homomorphism. We will overload
the symbols h, k to denote both kinds of functions.

A homomorphism h has the effect of a substitution or refinement: in principle,
its application to a pomset has the effect that every element of the pomset is replaced
by (a copy of) its h-image. We can define this operation directly as follows: p[h] =
[V,<, �] where

V = {(v,w) | v ∈ Vp,w ∈ Vh(�p(v))}
< = {((v,w), (v′,w′)) | v <p v′ ∨ (v = v′ ∧ w <h(�p(v)) w′)}
� = {((v,w), e) | �h(�p(v))(w) = e}.

Hence vertices v ∈ Vp are replaced by vertices (v,w) for all w from the h-image of
�p(v); these new (v,w) receive their label from w. The ordering is inherited partly
from p (as far as ordering between (v,w) and (v′,w′) for v �= v′ is concerned) and
partly from h(�p(v)) (as far as the ordering of (v,w) and (v,w′) is concerned).

Example 4.1 Let h map a to itself, b to ε and c to c→d
e

; then for instance,

c→b→a [h] = c→d↘
e→a

and
a→a↗↘
c→b

[h] =
a↘

c→d→a↗
e

.

Unfortunately, refinement does not always yields an order-deterministic pomset even
if p and the images of h are order-deterministic.

Example 4.2 Let p = a
b

and let h map a to c→d and b to c→e . Now p[h] =
c→d
c→e

which is not order-deterministic; on the other hand, h(p) = h(a) � h(b) =

c→d � c→e = d↗
c→e

.

Hence in general it is not the case that h(p) = p[h]. In particular, as the above exam-
ple shows, refinement does not distribute over join, i.e., (p � q)[h] = p[h] � q[h] does
not hold in general. On the other hand, refinement does distribute over concatenation
and disjoint union.

Proposition 4.3 For all p, q ∈ POM and h: POM → POM the following equa-
tions hold:

p[h]·q[h] = (p·q)[h]

p[h] � q[h] = (p � q)[h].

This follows directly from the definitions of concatenation, disjoint union, and re-
finement. The reason why refinement fails to distribute over join is basically that the
images of different elements may fail to be sufficiently different themselves; in partic-
ular, they may share initial elements, as h(a) and h(b) in Example 4.2, in which case
refinement no longer yields an order-deterministic pomset. We can, however, formu-
late necessary and sufficient conditions on h under which h(p) = p[h] does hold for
all p. Let us call a homomorphism image distinct if the following conditions hold:

308 AREND RENSINK

• the images are nonempty: h(e) �= ε for all e ∈ E;
• different images have nothing in common: d �= e implies h(d) � h(e) = ε for

all d, e ∈ E.

Proposition 4.4 Let h: DPOM → DPOM be an arbitrary homomorphism; then
h(p) = p[h] for all p ∈ DPOM if and only if h either is image distinct or maps all
pomsets to ε.

The proof follows below. The proof of the “if” part depends on the following lemma.

Lemma 4.5 If h: DLPO → DLPO is image distinct with pairwise compatible im-
ages and p, q ∈ DLPO are compatible, then p[h] and q[h] are also compatible.

Proof: Let (v,w) ∈ Vp[h] and (v′,w′) ∈ Vq[h] be arbitrary such that ⇓p[h](v,w) =
⇓q[h](v

′,w′) and �p[h](v,w) = �q[h](v
′,w′). The set ⇓p[h](v,w) can be split up into

the disjoint subsets

X(v,w) = {(v′′,w′′) ∈ Vp[h] | v′′ <p v}
Y(v,w) = {(v,w′′) ∈ Vp[h] | w′′ <h(�p(v)) w}.

Likewise, ⇓q[h](v
′,w′) can be split up into

X(v′,w′) = {(v′′,w′′) ∈ Vq[h] | v′′ <q v′}
Y(v′,w′) = {(v′,w′′) ∈ Vq[h] | w′′ <h(�q(v′)) w′}.

If Y(v,w) ⊆ X(v′,w′) then apparently v <q v′, which would imply (v,w) <q[h] (v′,w′),
contradicting ⇓q[h](v

′,w′) = ⇓p[h](v,w). Hence Y(v,w) ∩ Y(v′,w′) �= ∅, immediately
implying Y(v,w) = Y(v′,w′). This in turn implies ⇓h(�p(v)) w = ⇓h(�q(v′)) w

′. We also
have �h(�p(v))(w) = �p[h](v,w) = �q[h](v

′,w′) = �h(�q(v′))(w
′), implying w = w′

since all images of h are compatible. Because clearly h(�p(v)) � h(�q(v
′)) contains

at least w, by the distinctness of h it also follows that �p(v) = �q(v
′).

Furthermore, Y(v,w) = Y(v′,w′) also implies X(v,w) = X(v′,w′), and therefore

{v′′ <p v | ∃w′′. (v′′,w′′) ∈ Vp[h]} = {v′′ <q v′ | ∃w′′. (v′′,w′′) ∈ Vq[h]}.

Because by assumption h(e) �= ε for all e ∈ E, for all v′′ <p v there is a w′′ ∈ Vh(�p(v)),
hence (v′′,w′′) ∈ Vp[h]; likewise, for all v′′ <q v′ there is a w′′ ∈ Vh(�q(v′)) and hence
(v′′,w′′) ∈ Vq[h]. Hence the above equality is equivalent to ⇓p v = ⇓q v′. Together
with �p(v) = �q(v

′), already deduced above, and the fact that p and q are compatible,
this implies v = v′. In combination with w = w′, already deduced above, this proves
the compatibility of p[h] and q[h]. �
Proof of Proposition 4.4: (⇐) If h(a) = ε for all a then h(p) = p[h] = ε for all p.
Otherwise assume that the h-images, regarded as lposets, are compatible (there are
such compatible representatives according to Proposition 2.18), and that p and q are
compatible; then according to Lemma 4.5, p[h] and q[h] are compatible as well. A
straightforward application of the definitions of join and refinement then establishes
that (p � q)[h] = p[h] � q[h] for all p, q ∈ DPOM. h(p) = p[h] can then be shown
by induction on the structure of p.

ORDER-DETERMINISTIC POMSETS 309

(⇒) Assume h is not constantly ε. If h(a) = ε and h(b) = p �= ε then e.g.
a→b
b

[h] = a→b [h] � b [h] = p � p �= p = h

(
a→b
b

)
. On the other hand, if

h(a) � h(b) �= ε then h(a) � h(b) �= h(a) � h(b) and hence for instance
a
b

[h] =

h(a) � h(b) �= h

(
a
b

)
. �

Another consequence of Lemma 4.5 is the following.

Proposition 4.6 Every image distinct homomorphism h: DPOM → DPOM is in-
jective.

Proof: Assume h(p) = h(q) where p �= q, with p and q compatible. It fol-
lows that p[h] = h(p) = h(q) = q[h] according to Proposition 4.4; let f be the
(unique) isomorphism from p[h] to q[h]. Let (v,w) ∈ Vp[h] be <p[h]-minimal
such that f (v,w) = (v′,w′) �= (v,w). It follows by minimality that ⇓p[h](v,w) =
f (⇓p[h](v,w)) = ⇓q[h](v

′,w′), and �p[h](v,w) = �q[h](v
′,w′) because f is an iso-

morphism. Because p[h] and q[h] are compatible (Lemma 4.5) it follows that
(v,w) = (v′,w′), which contradicts the assumptions; hence such p, q do not exist.

�
If we are working with arbitrary homomorphisms h rather than image distinct ones,
there is still a clear relation between refinement and homomorphism application,
through the determinization of a refined pomset (see Section 2.3). Namely, if we de-
terminize p[h] then the resulting order-deterministic pomset does correspond to h(p)

for arbitrary h. For the combination of refinement and determinization we introduce
a new operator ∗, defined by

h ∗ p := D(p[h]).

The following lemma states that it does not matter if we first determinize p before
applying h ∗ .

Lemma 4.7 For all p ∈ POM and h: POM → POM, h ∗ p = h ∗ Dp.

Proof: Established by comparing ∼p[h] with ∼(Dp)[h]. In particular, it can be seen
that for all v ∈ Vp and w ∈ Vh(�p(v)), ([v]∼p ,w) <(Dp)[h] ([v′]∼p ,w

′) if and only
if there is a v′′ ∼p v′ such that (v,w) <p[h] (v′′,w′), and that v ∼p v′ implies
(v,w) ∼p[h] (v′,w). It follows that

(v,w) ∼p[h] (v′,w′) ⇐⇒ ([v]∼p ,w) ∼(Dp)[h] ([v′]∼p ,w
′),

hence the function f : Vh∗p → Vh∗Dp defined by

f : [(v,w)]∼p[h] �→ [([v]∼p ,w)]∼(Dp)[h]

is an isomorphism. �
We are now ready to state and prove the correspondence of refinement followed by
determinization to homomorphism application.

Theorem 4.8 For all p ∈ DPOM and h: DPOM → DPOM, h(p) = h ∗ p.

310 AREND RENSINK

Proof: First recall Theorem 2.30 which states that D takes · over POM to · over
DPOM, and � to �. Using also Proposition 4.3, we can derive

h ∗ (p·q) = D((p·q)[h]) = D(p[h]·q[h]) = D(p[h])·D(q[h]) = (h ∗ p)·(h ∗ q).

Furthermore, by applying Lemma 4.7 we get

h ∗ (p � q) = h ∗ D(p � q) = h ∗ (p � q) = D((p � q)[h]) =
= D(p[h] � q[h]) = (h ∗ p) � (h ∗ q).

Finally, it is clear that h ∗ ε = D(ε[h]) = Dε = ε and for all e ∈ E, h ∗ e = D(e[h]) =
D(h(e)) = h(e). The theorem therefore follows by induction on the structure of
terms in Tdet . �
The following corollary supplements Proposition 4.4 in that it states some more cir-
cumstances in which refinement corresponds directly to homomorphism application,
without the intermediate step of determinization.

Corollary 4.9 For all p ∈ DPOM and h: E → DPOM, p[h] = h(p) if and only if
p[h] is order-deterministic.

In the remainder of this paper we will apply the term “refinement” as equivalent to
“homomorphism application,” hence ignore the fact that a determinization step takes
place in between. Accordingly, we will refer to ∗ as the “refinement operator.”

4.2 Refinement algebraically: the algebra A∗
det Having established that for order-

deterministic pomsets, homomorphism application corresponds to a refinement-like
operator, we now want to introduce this operator into the algebra of order-determin-
istic pomsets. This entails introducing denotations for refinement functions. We will
restrict ourselves to refinement functions that are the identity almost everywhere, i.e.,
which map only a finite number of events to terms other than themselves. To denote
a refinement function h, we then list the pairs of events and images for which the
image does not syntactically equal the event: e.g., h = [t1/e1, . . . , tn/en] (abbreviated
[ti/ei]i∈I) denotes the function mapping ei to ti for all i ∈ I = {1, . . . , n}, and e to itself
for all events e ∈ E � {ei}i∈I ; in other words,

h: e �→
{

ti if e = ei

e if e �= ei for all i ∈ I.

We sometimes refer to {ei | i ∈ I} as the syntactic domain of h. The empty list, corre-
sponding to the identity function over E, is denoted id. This gives rise to an extended
algebra A∗

det with �∗
det = 〈ε, ·,�, [/e]e∈E ∗ 〉, where [/e]e∈E ∗ is an E-indexed

family of |E| + 1-ary operators. Hence, the refinement of t according to a refinement
function h is denoted h ∗ t. The refinement operator is also extended pointwise to
refinement functions as right hand operands, by setting h ∗ k = λe. h ∗ k(e); in our
chosen notation, this becomes

[se/e]e∈E ∗ [td/d]d∈F = [([se/e]e∈E ∗ td)/d, se/e]d∈F,e∈E�F .

Finally, for all finite E ⊆ E we introduce function terms hE = [xe/e]e∈E and kE =
[ye/e]e∈E mapping the events in E to distinct variables, i.e., such that xd �= xe if d �= e,

ORDER-DETERMINISTIC POMSETS 311

and xd �= ye for all d, e ∈ E. (Hence, in this notation, h∅ = id = k∅.) We then have
the following additional equations for all finite E, F ⊆ E:

hE ∗ e =
{

xe if e ∈ E
e otherwise.

(21)

hE ∗ ε = ε (22)

hE ∗ (x·y) = (hE ∗ x)·(hE ∗ y) (23)

hE ∗ (x � y) = (hE ∗ x) � (hE ∗ y) (24)

hE ∗ (kF ∗ x) = (hE ∗ kF) ∗ x (25)

id ∗ x = x (26)

Note that (21)–(25) actually correspond to a (countable) infinity of equations, one for
each instantiation of E resp. F. The alternative would be to introduce second-order
variables for refinement functions, for which a complete theory would be much more
difficult to obtain. For A∗

det we can prove basically the same soundness and complete-
ness properties as for Adet . First we state soundness and ordinary (ground) complete-
ness.

Theorem 4.10 (A∗
det is sound and complete) For all s, t ∈ T∗

det , A∗
det � s = t if and

only if [[s]] = [[t]].

Proof: The soundness of (21)–(26) is immediate; this together with Theorem 3.2
proves the “only if” part of the theorem. For the “if” part, note that every t ∈ T∗

det

can be rewritten modulo provable equality to a pomset normal form in the sense of
Definition 3.6, by application of (21)–(24); in particular, one may add the following
rule to the algorithm presented in the proof of Theorem 3.5:

norm(h ∗ t) :=
⋃

t′·e∈norm(t)

norm((h ∗ t′)·h(e)).

Note that equations (25) and (26) are not necessary for the purpose of this proof;
indeed, they are required only if we want to prove the stronger property of ω-
completeness, as we will see below. �

4.3 ω-completeness of A∗
det The theory of order-deterministic pomsets with re-

finement is stronger than is apparent from the results so far: just as for the basic the-
ory Adet we can also prove completeness for open terms. The relevant statement of
this property is as follows:

Theorem 4.11 (A∗
det is ω-complete) Assume |E| = ω. For all s, t ∈ T∗

det (E, X), if
[[sρ]] = [[tρ]] for all ground substitutions ρ: X → T∗

det (E) then A∗
det � s = t.

To prove this, we use the same technique as before, but its application this time
around has become a good deal more complicated. In particular, it is not the case
that refinement-free open normal forms suffice to capture all open A∗

det -terms: for in-
stance, [t/e] ∗ x cannot be reduced to a refinement-free term since we know nothing
in general about the presence of e in the term to be substituted for x. We are therefore
forced to introduce a new kind of normal form. (The fact that open normal forms for

312 AREND RENSINK

A∗
det are not trivially derived from closed normal forms can be regarded as a conse-

quence of an axiom in the theory that deals specifically with elements, viz. Equation
(21).)

Definition 4.12 (open ∗-normal forms) Consider the following production rule for
terms of T∗

det (E, X):

N ::= (
⊔

sat’d set of N)·e | (
⊔

sat’d set of N)·([⊔ sat’d set of N/e]e∈E ∗ x)

where e ∈ E, x ∈ X, E ⊆fin E and a set T of N-produced terms is saturated if T ′ ⊆ T
for all (

⊔
T ′)·e′ ∈ T , and furthermore, if [te/e]e∈E is a refinement function appearing

in an N-produced term, then te �= ε·e for all e ∈ E. A term is in open ∗-normal form
if it equals

⊔
T for some saturated set T of N-produced terms.

Hence the “tail pieces” of open N-produced terms are (apart from the usual elements
e) not simply variables x but refined variables h ∗ x, where the refinement function
h is itself also in normal form. For instance, the above term [t/e] ∗ x corresponds to
the open ∗-normal form ε·([t′/e] ∗ x) where t′ is the open ∗-normal form of t. To
turn arbitrary open A∗

det -terms into open ∗-normal form terms, we define a recursive
function which is a variation on norm:

norm∗(ε) := ∅

norm∗(e) := {ε·e}
norm∗(x) := {ε·(id ∗ x)}

norm∗(s·t) := norm∗(s) ∪ {(⊔norm∗(s·t′))·t′′ | t′·t′′ ∈ norm∗(t)}
norm∗(s � t) := norm∗(s) ∪ norm∗(t)
norm∗(h ∗ t) :=

⋃
s·e∈norm∗(t)

norm∗((h ∗ s)·h(e))

∪
⋃

s·(k∗x)∈norm∗(t)
{(⊔norm∗(h ∗ s))·(norm∗(h ∗ k) ∗ x)}

where the normalization of refinement functions is defined by pointwise extension

norm∗([te/e]e∈E) := [⊔
norm∗(te)/e

]
e∈F (F = {e ∈ E | norm∗(te) �= {ε·e}}).

Note that we remove mappings te/e where te normalizes to ε·e (= e); in our chosen
notation, such mappings are implicit for all events not in the syntactic domain of a
refinement function. The role of norm∗ is formulated in the following lemma, which
is proved by a tedious but straightforward induction on the term structure.

Lemma 4.13 (open ∗-normal forms exist) For all terms t ∈ T∗
det (E, X),⊔

norm∗(t) is an open ∗-normal form such that A∗
det � t = ⊔

norm∗(t).

We now come to the characteristic substitutions used to establish the normality of
normal forms. Again, the substitutions used in the proof of Theorem 3.11 no longer
suffice. We say that e does not occur in a refinement function [te/e]e∈E if it is neither
in the syntactic domain E nor in any of the images te.

Example 4.14 If ρs,t(x) = ex where ex is a “fresh” event not occurring in s or t,
then h(ex) = ex for any refinement function h occurring in s or t; hence for instance,
if s = [s′/e] ∗ x and t = [t′/e] ∗ x where s′, t′ are ground terms such that [[s′]] �= [[t′]],
then Adet � sρs,t = ex = tρs,t but [[sρ]] �= [[tρ]] if ρ(x) = e.

ORDER-DETERMINISTIC POMSETS 313

Basically, the problem is that the characteristic substitution must preserve enough
structure of the normal forms to which it is applied to be injective; this structure in-
cludes especially the “tail ends” h ∗ x allowed by Definition 4.12. To achieve this,
then, ρs,t(x) must contain copies of all elements with a nontrivial h-image, in such a
way, moreover, that these images can be re-retrieved from h ∗ (ρs,t(x)).

Again, let Es,t be the set of events occurring syntactically in s or t. Assume a
fixed ordering over Es,t, such that Es,t = {e1, . . . , en}. Let {dx, ex}x∈X be a set of
pairwise distinct events disjoint from Es,t. Now ρs,t: X → T∗

det is defined as follows:

ρs,t: x �→ dx � ex·e1·ex·e2 · · · ex·en.

The dx and ex play the role of special markers: dx signals the start of a subterm ρs,t(x)

whereas the ex separate the ei. The ei themselves are needed to record the effect of
refinements that ρs,t(x) may be submitted to; by keeping this record one avoids the
accidental confusion of sρs,t and tρs,t as in Example 4.14.

The pomsets constructed by terms of the form tρs,t therefore have a specific for-
mat that allows to retrieve essentially t (up to provable equality). We call p charac-
teristic if it has this format. Characteristicness is defined as follows.

Definition 4.15 (characteristic pomsets) Let Es,t = {e1, . . . , en} and {dx, ex}x∈X be
sets of elements as above. A pomset p is called characteristic if for all v ∈ Vp �

�−1
p (Es,t)

• if �p(v) = dx then the set of characteristic vertices Cv ⊆ Vp defined by

Cv := {w ∈ Vp | ∀u ∈ Vp. (u <p v ⇒ u <p w) ∧ (u >p v ⇒ u >p w)}

has the property that for all w ∈ Cv and u ∈ Vp � Cv, u <p w implies u <p v and
u >p w implies u >p v. Moreover, p � Cv = dx � (ex·p1·ex·p2 · · · ex·pn) where
for all 1 ≤ i ≤ n, pi is a characteristic pomset, sometimes denoted Cv(ei);

• if �p(v) = ex there is a w ∈ Vp such that �p(w) = dx and v ∈ Cw.

We will not mention the sets Es,t and {dx, ex}x∈X with respect to which this property
is defined when they are implicitly clear. If p is characteristic and Cv ⊆ Vp is a set
of characteristic vertices, then Cv can be contracted into a single node w, yielding a
pomset q from which p can be reconstructed by refining q according to w �→ p � Cv.
Note that Cv ∩ Cw �= ∅ for v,w ∈ Vp such that �p(v) = dx and �p(w) = dy implies
Cv ⊆ Cw or Cw ⊆ Cv. It follows that for all v ∈ Vp, either there is no set Cw such that
v ∈ Cw, or there is a unique largest such Cw. Very important is the property that for
any characteristic p, if �p(v) = dx then the Cv(ei) are uniquely defined.

Example 4.16

1. Any pomset in which there are no dx- or ex-labeled vertices is characteristic.

2. If ρs,t is a characteristic substitution then p = [[ρs,t(x)]] is a characteristic pom-
set for all x ∈ X: there is exactly one v such that �p(v) = dx, where Cv = Vp;
p � Cv = p = dx � ex·e1 · · · ex·en by construction, hence Cv(ei) = ei for all
1 ≤ i ≤ n.

314 AREND RENSINK

3. Assume Es,t = {a, b} and X = {x}. Then the following pomsets are not char-
acteristic.

a→dx↘
ex→a→ex→b→ex

a →dx
ex→ a →ex→b

In the left hand pomset, the subpomset ex·a·ex·b·ex cannot be subdivided into
ex·pa·ex·pb such that pa and pb are again characteristic, since either pa or pb

must contain an ex-element but neither can contain a dx-element. In the right
hand pomset, on the other hand, there is no appropriate set Cv to the dx-element,
since the initial a-element is not a predecessor of the ex.

4. Let Es,t and X be as above, and consider the upper pomset.

dx −−−−−−−−−−−−−−−−−−−−−−→ a
↗ ↗

a b −−−−−−−−→ ex→b→b
↘ ↗ ↗

b ex→dx −−−−−−→ b
↘ ↗

ex→ex→a

a→
dx b−−−−−−−−−−→ ex→b→b

↗ ↗
ex→ dx

ex→ex→a
→b →a

b

This pomset is characteristic: the right hand side indicates its division into

principal subpomsets. It can be regarded as
a→x→a
b where x is refined by

dx � (ex·pa·ex·pb), such that pa = Cv(a) = h ∗ b
x→b

and pb = Cv(b) =
b→b , where the refinement function h in pa is given by x �→ dx � (ex·ε·ex·a).

One can prove, by induction on the term structure, that pomsets obtained by applying
a characteristic ground substitution to an open A∗

det -term are always characteristic in
the above sense.

Lemma 4.17 For all s, t ∈ T∗
det (X), [[tρs,t]] is a characteristic pomset.

The next task consists of reconstructing a (normal form) term from an arbitrary char-
acteristic pomset, with the property that applying the characteristic substitution to that
term once more yields the pomset we started with. For this purpose we need one more
auxiliary notion. If p is a characteristic pomset, then v ∈ Vp is called principal if ei-
ther there is no w ∈ Vp such that v ∈ Cw, or �p(v) = dx and v ∈ Cw implies v = w.
(The latter is equivalent to saying that Cv is maximal among all characteristic sets of
vertices containing v; we have seen above that such maximal Cv always exist.) The
principal vertices of p are denoted VP p.

Now we recursively define a partial function R∗: DPOM → Fin(T∗
det (X)) from

characteristic pomsets to finite sets of open ∗-normal terms, as follows:

R∗(p) = {(⊔ R∗(p � ⇓ v))·�(v) | v ∈ VP , �(v) �= dx} ∪
{(⊔ R∗(p � ⇓ v))·
([

⊔
R∗(Cv(e))/e]e∈Es,t,Cv(e)�=e ∗ x)v ∈ VP , �(v) = dx}.

ORDER-DETERMINISTIC POMSETS 315

In words: the principal vertices v are turned into N-produced terms (see Defini-
tion 4.12), where the vertex label �p(v) determines if the produced subterm has a
“simple tail” consisting of a single element �p(v) �= dx, or a “complex tail” h ∗ x cor-
responding to the refinement of a variable if �p(v) = dx. In the latter case, the refine-
ment function h is reconstructed from the subpomset determined by the characteristic
vertices Cv.

Note that the saturation requirement of normal forms is fulfilled due to the fact
that if v <p w for two principal vertices v,w ∈ VP p then v ∈ ⇓p w and hence the
R∗(p � ⇓w) will include the subterm (

⊔
Tv)·tv constructed for v.

Example 4.18 For the pomset in Example 4.16.4, R∗ yields the set

{ε·a, ε·b, (ε·a)·(h1 ∗ x), (ε·a � (ε·a)·(h1 ∗ x))·a},

where

h1: a �→ ε·b � ε·(h2 ∗ x) � (ε·(h2 ∗ x))·b, b �→ ε·b � (ε·b)·b;
h2: a �→ ε b �→ ε·a.

The following lemma states the role of the function R∗. It is analogous to Lemma 3.9
and proved by induction on the structure of open ∗-normal form terms.

Lemma 4.19 (open ∗-normal forms are unique) If t ∈ T∗
det (X) is an open ∗-normal

form term and s ∈ T∗
det (X) is arbitrary then

⊔
R∗([[tρs,t]]) = t.

Proof sketch of Theorem 4.11: Let s, t ∈ T∗
det (E, X) be arbitrary, and let s′, t′ be the

corresponding open ∗-normal form terms, i.e., such that A∗
det � s = s′, t = t′. The ex-

istence of s′ and t′ is ensured by Lemma 4.13. If [[sρ]] = [[tρ]] for all ground substitu-
tions ρ, then also [[s′ρs′,t′]] = [[t′ρs′,t′]]; hence s′ = ⊔

R[[s′ρs′,t′]] = ⊔
R[[t′ρs′,t′]] = t′

(Lemma 4.19). It follows that A∗
det � s = t. �

5 Concluding remarks It remains to summarize the results of this paper, to com-
pare them in somewhat more detail with existing work, and to discuss extensions and
future work.

5.1 Summary We have introduced the class of order-deterministic pomsets, and
have shown that this class satisfies the following properties:

• Order-deterministic pomsets arise as a generalization of strings, by freely
adding objects corresponding to the prefix-suprema of arbitrary finite sets of
strings.

• The class of order-deterministic pomsets forms a distributive basis with all fi-
nite suprema; hence prefix-closed sets of pomsets form prime algebraic bases.

• Given an appropriate notion of (prefix-preserving) lposet morphisms, order-
deterministic lposets form a reflective subcategory of the lposets.

We have then formulated an algebra of order-deterministic pomsets by algebraizing
the supremum of pairs of such pomsets, resulting in an operator for pomset join. Pom-
set join is a slight variation on pomset disjoint union: both can be defined by the

316 AREND RENSINK

union of lposet representatives, the only difference being the choice of representa-
tives, which for disjoint union have to be disjoint in their sets of vertices, but for join
should coincide precisely on isomorphic prefixes.

Based on pomset join, we have developed an algebraic theory of order-deter-
ministic pomsets and proved it sound and complete, and ω-complete in the presence
of sufficiently many elements. The algebra is denoted Adet (see Section 3), consist-
ing of the signature �det = 〈ε, ·,�〉 and equations (1)–(3) and (17)–(20) (see Section
1.2.6). ε is the empty pomset, · is concatenation of pomsets, and � denotes pomset
join. Models are order-deterministic pomsets.

Furthermore, we have defined an extension of Adet with a notion of refine-
ment which basically algebraizes homomorphism application. This yields an alge-
bra denoted A∗

det (see Section 4.2) with signature �∗
det = 〈ε, ·,�, [/e]e∈E ∗ 〉 and

equations (1)–(3) and (17)–(20) (Section 1.2.6) and (21)–(26) (Section 4.2). Models
are order-deterministic pomsets and finite refinement functions mapping elements to
order-deterministic pomsets (finite meaning that they are the identity except on a fi-
nite number of elements).

5.2 Related work In the course of the paper we have already given a fairly detailed
comparison with existing work on series-parallel pomsets, based as it is on the dis-
joint union of pomsets rather than pomset join. Relevant papers are for instance (in or-
der of appearance) Grabowski [8], Jónsson [11], Pratt [19], Gischer [7], and Aceto [2].

One important point of difference that has not been stressed so far is the follow-
ing: pomset join is only partially defined, namely only between pomsets which have
compatible representatives (see Section 2.2); these are in fact precisely the order-
deterministic pomsets. Hence although within the class of order-deterministic pom-
sets we have very satisfactory results, they appear to be difficult to extend to larger
classes. This contrasts with disjoint union, which is totally defined on POM.

Another point of difference is that where we have concentrated on a small num-
ber of operators—basically pomset join, refinement, and sequential composition—
the existing theory of series-parallel pomsets is much more extensive, covering many
operators and considering sets of pomsets as well as single pomsets.

All other things being equal, the principal difference between the two theories,
series-parallel versus order-deterministic, is in the class of pomsets for which they are

complete. These classes are incomparable: for instance,
a→c↗
b→d

is not series-parallel

whereas
a
a is not order-deterministic. Any question concerning which of the two is

the more appropriate can therefore only be answered in the context of some specific
application.

Another well-developed theory of pomsets, which has received somewhat short
shrift here, is that of Mazurkiewicz traces, introduced in Mazurkiewicz [14]; good
references are Aalbersberg and Rozenberg [1] and Mazurkiewicz [15]. As we have
remarked in the introduction, all Mazurkiewicz traces are in fact order-deterministic
pomsets, and some of the facts proved for order-deterministic pomsets in this paper
constitute a proper generalization of known Mazurkiewicz trace theory; in particu-
lar the fact that prefix closed sets of Mazurkiewicz traces form prime algebraic bases
(see e.g. Nielsen, Sassone, and Winskel [18], where it is in fact proved for the inter-

ORDER-DETERMINISTIC POMSETS 317

mediate class of pomsets without auto-concurrency, which is properly in between the
Mazurkiewicz traces and the order-deterministic pomsets). However, the concept of
a concurrent alphabet which is central to Mazurkiewicz trace theory and underlies
the associated operators (especially concatenation) is totally absent from this paper,
and indeed the actual algebraic theories have little in common.

The final related field we wish to mention here is the theory of trees, as developed
especially in the context of process algebra (see e.g. [3] for a good exposition of the
algebraic side), but also in a different setting for instance in [6]. There are in fact two
ways in which trees may be related to pomsets: trees can either be directly regarded
as pomsets themselves, with a specific condition on the ordering relation according
to which all predecessors of a given vertex must be totally ordered; or they may be
regarded as prefix closed sets of pomsets, which for the specific case of trees are then
in fact prefix closed sets of total orders.

In the first interpretation, note that the order-deterministic pomsets in fact cor-
respond to deterministic forests, where forests are multisets of trees (see also Sec-
tion 1.2), and pomset join merges such forests from their roots up to the first branch
where they differ. However, pomset concatenation would not in general correspond
to a very useful operator since it very easily leads outside the class of trees or forests.
There are a number of variations on this theme—for instance, one may choose to read
pomsets backwards to obtain trees, which gets rid of the restriction to deterministic
trees: for the finite models we have studied here this in fact yields a fully abstract
model with respect to strong bisimulation, which has been studied, e.g., by Rutten
in [24]; however, due to the reversal in the interpretation, the extension to infinite
trees requires non-well-founded pomsets.

The second interpretation is the one propagated by De Nicola and Labella [6].
For an exhaustive comparison with the results of this paper, one would have to inves-
tigate the theory of prefix closed sets of Adet -pomsets; we briefly discuss this below
as a possible extension. One observation that can be made right away, however, is that
such an extension of Adet once more would be enable to describe only deterministic
trees.

5.3 Extensions We briefly review a number of directions in which the results of
this paper can be extended.

5.3.1 Infinite pomsets A straightforward extension is to consider infinite as well
as finite pomsets. In fact all the theory developed in this paper extends smoothly to
this more general case if we introduce infinitary joins. The relevant models are the
well-founded order-deterministic pomsets. These form a proper class, which may be
seen as a direct generalization of the ordinals in which there exist, instead of a single
successor function, a family of different ones (one for each element in E). A detailed
discussion is outside the scope of this paper.

5.3.2 Augmentation Apart from the prefix relation, which we have studied in con-
siderable detail here, there is another relation over pomsets that has received much
attention in the literature, viz. that of augmentation; see for instance the papers on
series-parallel pomsets cited above.

318 AREND RENSINK

Basically, a pomset is said to augment another if it contains strictly more order-
ing but is the same otherwise. Currently we do not have any general results tying
this relation into the framework of this paper. However, if we restrict our attention
to posets rather than pomsets (which can be regarded as pomsets with an injective
labeling function) then the following may be established: the smallest partial order-
ing relation over posets including prefix and inverse augmentation coincides with the
finest pre-congruence with respect to join and concatenation that subsumes prefix: in
other words, it is the smallest transitive relation ≤ over pomsets such that p � q im-
plies p ≤ q and

p1 ≤ p2 =⇒ (p1 � q ≤ p2 � q) ∧ (p1;q ≤ p2;q) ∧ (q; p1 ≤ q; p2),

where p1, p2 and q are arbitrary posets. For instance, pre-congruence allows to derive

a→b ≤
a↘
c→b

from a � a
c , and indeed it holds that a→b � a→b

c
which is an in-

verse augmentation of
a↘
c→b

. This result is not directly useful however, since due to

the inversion of the augmentation relation, left-closure with respect to ≤ would cor-
respond to augmentation right-closure rather than left-closure. We have not pursued
this matter further.

5.3.3 Prefix ideals In Gischer [7], an important role is played by augmentation left-
closed sets of pomsets, which he calls (augmentation) ideals. An analogous extension
that we have studied in [22] is to consider prefix closed sets of pomsets as models; one
might call such sets prefix ideals. The basic idea is to interpret the constants of Adet

as prefix ideals—in particular, letting each e ∈ E correspond to the set containing all
prefixes of e— and introducing a union-like operator +, which may be thought of as
modeling choice. Choice can be captured equationally as follows:

ε + x = x

x + y = y + x

(x + y) + z = x + (y + z)

x·(y + z) = x·y + x·z
(x + y)·z = x·z + y·z

x � (y + z) = (x � y) + (x � z).

(This operator is in fact entirely analogous to the one described in e.g. Gischer [7] for
arbitrary sets of processes.) In other words, we obtain a third monoid, whose neutral
element ε equals those of concatenation and join, and whose operator allows all others
to distribute over it. For the purpose of modeling prefix ideals this is not yet quite
satisfactory, since in fact the models are not only closed under pomset prefix but in
fact also under the weaker relation ≤ ⊆ DPOM × DPOM discussed briefly above.
This is due to the fact that concatenation is not left-monotonic with respect to pomset
prefix. To repair it one needs a notion of termination; see [21], [22] for an extensive
discussion.

ORDER-DETERMINISTIC POMSETS 319

5.3.4 Pomset logics Based on the results of this paper, it seems an interesting prob-
lem to define a pomset logic, whose models are pomsets and which has special modal-
ities to deal with pomset join and concatenation. In fact, it would seem that pomset
join in some sense corresponds to logical conjunction, and therefore the interpretation
of the logic could contain the following rule:

p � ϕ ∧ ψ when p = q1 � q2 such that q1 � ϕ and q1 � ψ.

In particular, this corresponds to the fact that DPOM forms a complete lattice under �
and the dual � (Section 2.3). Negation, however, does not let itself be defined easily
in this way since the lattice is not complete, and hence certainly not Boolean. On the
other hand, pomset concatenation would seem to correspond to the sequential com-
position of programs, for which there are well-known logical characterizations (see
e.g. [12]). For instance, one could define a logical operator ‘;’ with the following se-
mantics:

p � ϕ ; ψ when p = q1·q2 such that q1 � ϕ and q2 � ϕ.

Acknowledgments The research reported in this paper was partially supported by the
HCM Cooperation Network “EXPRESS” (Expressiveness of Languages for Concurrency) and
the Esprit Basic Research Working Group 6067 CALIBAN (Causal Calculi Based on Nets).

320 AREND RENSINK

REFERENCES

[1] Aalbersberg, J. J., and G. Rozenberg, “Theory of traces,” Theoretical Computer Sci-
ence, vol. 60 (1988), pp. 1–82. Zbl 0652.68017 MR 89j:68042 1.2.3, 5.2

[2] Aceto, L., “Full abstraction for series-parallel pomsets,” pp. 1–25 in TAPSOFT ’91, Vol-
ume 1, edited by S. Abramsky and T. S. E. Maibaum, vol. 493 of Lecture Notes in Com-
puter Science, Springer-Verlag, Berlin, 1991. Zbl 0967.68517 MR 92i:68039 1.2.4,
5.2

[3] Baeten, J. C. M., and W. P. Weijland, Process Algebra, Cambridge University Press,
Cambridge, 1990. Zbl 0716.68002 MR 92i:68041 1.2.5, 1.2.5, 5.2

[4] Boudol, G., and I. Castellani, “Permutations of transitions: An event structure semantics
for CCS and SCCS,” pp. 411–427 in Linear Time, Branching Time and Partial Order
in Logics and Models for Concurrency, edited by J. W. de Bakker, W.-P. de Roever, and
G. Rozenberg, vol. 354 of Lecture Notes in Computer Science, Springer-Verlag, Berlin,
1989. MR 1035282 2.2

[5] Corradini, A., H. Ehrig, M. Löwe, U. Montanari, and F. Rossi, “An event structure se-
mantics for safe graph grammars,” pp. 423–446 in Programming Concepts, Methods
and Calculi, edited by E.-R. Olderog, vol. A–56 of IFIP Transactions, North-Holland,
Amsterdam, 1994. MR 96d:68128 2.3

[6] De Nicola, R., and A. Labella, “A completeness theorem for nondeterministic Kleene
algebras,” pp. 536–545 in Mathematical Foundations of Computer Science 1994, edited
by I. Prı́vara, B. Rovan, and P. Ruz̆ic̆ka, vol. 841 of Lecture Notes in Computer Science,
Springer-Verlag, Berlin, 1994. 5.2, 5.2

[7] Gischer, J. L., “The equational theory of pomsets,” Theoretical Computer Science,
vol. 61 (1988), pp. 199–224. Zbl 0669.68015 MR 90b:68058 1, 1.2.4, 1.2.4, 5.2, 5.3.3,
5.3.3

[8] Grabowski, J., “On partial languages,” Fundamenta Informaticæ, vol. IV (1981),
pp. 427–498. Zbl 0468.68088 MR 83i:68107 1, 1.2.4, 5.2

[9] Groote, J. F., Process Algebra and Structured Operational Semantics, Ph.D. thesis, Uni-
versity of Amsterdam, 1991. 3.2, 3.2

[10] Heering, J., “Partial evaulation and ω-completeness of algebraic specifications,” Theo-
retical Computer Science, vol. 43 (1986), pp. 149–167. 3.2, 3.2

[11] Jónsson, B., “Arithmetic of ordered sets,” pp. 3–41 in Ordered Sets, edited by I. Rival,
Reidel, Dordrecht, 1982. Zbl 0499.06001 MR 83i:06004 1.2.4, 1.2.4, 5.2

[12] Kröger, F., Temporal Logic of Programs, vol. 8 of EATCS Monographs on Theoretical
Computer Science, Springer-Verlag, Berlin, 1987. MR 89i:68084 5.3.4

[13] Lazrek, A., P. Lescanne, and J.-J. Thiel, “Tools for proving inductive equalities, rela-
tive completeness, and ω-completeness,” Information and Computation, vol. 84 (1990),
pp. 47–70. Zbl 0691.68026 MR 91k:68124 3.2, 3.2

[14] Mazurkiewicz, A., “Concurrent program schemes and their interpretations,” DAIMI
Report PB–78, Aarhus University, 1977. 5.2

[15] Mazurkiewicz, A., “Basic notions of trace theory,” pp. 285–363 in Linear Time, Branch-
ing Time and Partial Order in Logics and Models for Concurrency, edited by J. W.
de Bakker, W.-P. de Roever, and G. Rozenberg, vol. 354 of Lecture Notes in Computer
Science, Springer-Verlag, Berlin, 1989. Zbl 0683.68032 MR 1035279 1.2.3, 5.2

http://www.emis.de/cgi-bin/MATH-item?0652.68017
http://www.ams.org/mathscinet-getitem?mr=89j:68042
http://www.emis.de/cgi-bin/MATH-item?0967.68517
http://www.ams.org/mathscinet-getitem?mr=92i:68039
http://www.emis.de/cgi-bin/MATH-item?0716.68002
http://www.ams.org/mathscinet-getitem?mr=92i:68041
http://www.ams.org/mathscinet-getitem?mr=1035282
http://www.ams.org/mathscinet-getitem?mr=96d:68128
http://www.emis.de/cgi-bin/MATH-item?0669.68015
http://www.ams.org/mathscinet-getitem?mr=90b:68058
http://www.emis.de/cgi-bin/MATH-item?0468.68088
http://www.ams.org/mathscinet-getitem?mr=83i:68107
http://www.emis.de/cgi-bin/MATH-item?0499.06001
http://www.ams.org/mathscinet-getitem?mr=83i:06004
http://www.ams.org/mathscinet-getitem?mr=89i:68084
http://www.emis.de/cgi-bin/MATH-item?0691.68026
http://www.ams.org/mathscinet-getitem?mr=91k:68124
http://www.emis.de/cgi-bin/MATH-item?0683.68032
http://www.ams.org/mathscinet-getitem?mr=1035279

ORDER-DETERMINISTIC POMSETS 321

[16] Milner, R., Communication and Concurrency. Prentice-Hall, Englewood Cliffs, 1989.
Zbl 0683.68008 2.3

[17] Nielsen, M., U. Engberg, and K. G. Larsen, “Fully abstract models for a process lan-
guage with refinement,” pp. 523–549 in Linear Time, Branching Time and Partial Order
in Logics and Models for Concurrency, edited by J. W. de Bakker, W.-P. de Roever, and
G. Rozenberg, vol. 354 of Lecture Notes in Computer Science, Springer-Verlag, Berlin,
1989. Zbl 0683.68069 MR 91b:68031 1, 1

[18] Nielsen, M., V. Sassone, and G. Winskel, “Relationships between models for concur-
rency,” pp. 425–476 in A Decade of Concurrency, edited by J. W. de Bakker, W.-P.
de Roever, and G. Rozenberg, vol. 803 of Lecture Notes in Computer Science, Springer-
Verlag, Berlin, 1994. MR 95h:68052 5.2

[19] Pratt, V. R., “Modeling concurrency with partial orders,” International Journal of Par-
allel Programming, vol. 15 (1986), pp. 33–71. Zbl 0622.68034 MR 88a:68031 1, 1,
1.2.4, 1.2.4, 5.2

[20] Rensink, A., “Posets for configurations!” pp. 269–285 in Concur ’92, edited by W. R.
Cleaveland, vol. 630 of Lecture Notes in Computer Science, Springer-Verlag, Berlin,
1992. MR 94g:06002 2.3, 2.3

[21] Rensink, A., “Deterministic pomsets,” Hildesheimer Informatik-Berichte 30/94, Insti-
tut für Informatik, University of Hildesheim, 1994. 1, 5.3.3

[22] Rensink, A., “A complete theory of deterministic event structures,” pp. 160–174 in Con-
cur ’95: Concurrency Theory, edited by I. Lee and S. A. Smolka, vol. 962 of Lecture
Notes in Computer Science, Springer-Verlag, Berlin, 1995. 5.3.3, 5.3.3

[23] Rensink, A., “Denotational, causal, and operational determinism in event structures,”
pp. 272–286 in Trees in Algebra and Programming—CAAP ’96, edited by H. Kirchner,
vol. 1059 of Lecture Notes in Computer Science, Springer-Verlag, Berlin, 1996.
MR 1415912 1.2.6

[24] Rutten, J. J. M. M., “Processes as terms: Non well-founded models for bisimulation,”
Mathematical Structures in Computer Science, vol. 2 (1992), pp. 257–275.
Zbl 0798.68094 MR 93h:68080 5.2

[25] Winskel, G., “Event structures,” pp. 325–392 in Petri Nets: Applications and Relation-
ships to Other Models of Concurrency, edited by W. Brauer, W. Reisig, and G. Rozen-
berg, vol. 255 of Lecture Notes in Computer Science, Springer-Verlag, Berlin, 1987.
Zbl 0626.68022 MR 902670 2.3, 2.3

[26] Winskel, G., “An introduction to event structures,” pp. 364–397 in Linear Time, Branch-
ing Time and Partial Order in Logics and Models for Concurrency, edited by J. W.
de Bakker, W.-P. de Roever, and G. Rozenberg, vol. 354 of Lecture Notes in Computer
Science, Springer-Verlag, Berlin, 1989. Zbl 0683.68074 MR 1035280 2.2

Institut für Informatik
Universität Hildesheim
Postfach 101363
D–31113 Hildesheim
Germany
email: rensink@informatik.uni-hildesheim.de

http://www.emis.de/cgi-bin/MATH-item?0683.68008
http://www.emis.de/cgi-bin/MATH-item?0683.68069
http://www.ams.org/mathscinet-getitem?mr=91b:68031
http://www.ams.org/mathscinet-getitem?mr=95h:68052
http://www.emis.de/cgi-bin/MATH-item?0622.68034
http://www.ams.org/mathscinet-getitem?mr=88a:68031
http://www.ams.org/mathscinet-getitem?mr=94g:06002
http://www.ams.org/mathscinet-getitem?mr=1415912
http://www.emis.de/cgi-bin/MATH-item?0798.68094
http://www.ams.org/mathscinet-getitem?mr=93h:68080
http://www.emis.de/cgi-bin/MATH-item?0626.68022
http://www.ams.org/mathscinet-getitem?mr=902670
http://www.emis.de/cgi-bin/MATH-item?0683.68074
http://www.ams.org/mathscinet-getitem?mr=1035280
mailto: rensink@informatik.uni-hildesheim.de

