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Cumulative versus Noncumulative
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Abstract In this paper I examine the nature of Russell’s ramified type theory
resolution of paradoxes. In particular, I consider the effect of construing the
types in Church’scumulative sense, that is, the range of a variable of a given
type includes the range of every variable of directly lower type. Contrary to
what seems to be generally assumed, I show that the decision to make the lev-
els cumulative and allow this to be reflected in the semantics isnot neutral with
respect to the solution of the paradoxes. I introduce a distinction betweensyn-
tactical andsemantical cumulativeness. It turns out that noncumulative type
theories (in either sense) are equally capable of dealing with the paradoxes. Fur-
thermore, whether cumulativeness is appropriate appears to be context depen-
dent.

1 Introduction In this paper I examine the nature of Russell’s ramified type the-
ory resolution of paradoxes. In particular, I consider the effect of construing the types
in thecumulative sense of Church [1], that is, the range of a variable of a given type
includes the range of every variable of directly lower type. Contrary to what seems
to be generally assumed, I show that the decision to make the levels cumulative and
allow this to be reflected in the semantics isnot neutral with respect to the solution
of the paradoxes. I introduce a distinction betweensyntactical andsemantical cumu-
lativeness. It turns out that noncumulative type theories (in either sense) are equally
capable of dealing with the paradoxes. Furthermore, whether cumulativeness is ap-
propriate appears to be context dependent.

I begin by presenting Russell’s ramified type theory, for the most part following
Church’s reconstruction [1]. Next I examine how Church’s (cumulative) theory deals
with a semantical paradox (the Grelling) and a nonsemantical paradox (the Bouleus),
followed by an analysis of the role of the cumulativeness assumptions in each. Fi-
nally, I discuss the issue of cumulativeness with respect to Russell’s more general
needs inPrincipia Mathematica.
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2 Russell’s ramified type theory Russell’s ramified theory of types (r-types) is in-
tended to preclude the possibility of paradox by prohibitingimpredicative definitions.
Precisely what one should understand by “impredicative” is problematic; Russell was
not of one voice in his diagnosis of the paradoxes. What is clear, however, is what
ramified typesdo: they systematically partition the domains of quantification in a
way that prevents quantification from “generating” new elements into the domain of
quantification.1

The ramified types are defined recursively. Individual variables belong tor-type
i and (by stipulation) have order 0. Ifm ≥ 0, n ≥ 1, andβ1, β2, . . . , βm arer-types,
then(β1, β2, . . . , βm)/n is anr-type to which belongm-ary functional variables of
level n. Propositions are taken to be the 0-ary propositional functions.2 Given a
propositional functionϕ of r-type(β1, β2, . . . , βm)/n, theorder of ϕ is defined recur-
sively to beN + n, whereN is the greatest of the orders of the typesβ1, β2, . . . , βm

(andN = 0 if m = 0). Thelevel of ϕ is n, which is related to Russell’s (nonsyntac-
tic) notion of abound variable in the following way: ifN is the greatest of the orders
of β1, β2, . . . , βm andk is the greatest of the orders of the bound variables occurring
in ϕ, thenn = 1 if k ≤ N, andn = k + 1 if k > N. In Russell’s terminology,ϕ is
predicative if and only if n = 1.3

Ther-type notation will be abbreviated as follows. The numberm will stand for
(i, i, . . . , i), where there arem i’s between the parentheses. So for example,( )/n is
abbreviated as 0/n, (i, i, i)/n as 3/n, and((i)/2, ( )/2)/1 as(1/2,0/2)/1. One may
take the levels and orders to becumulative in the sense that the range of a variable ofr-
type(β1, β2, . . . , βm)/n is taken to include the range of every variabledirectly lower,
that is, every variable withr-type of the form(α1, α2, . . . , αm)/k, wherek < n, and
α1 = β1, α2 = β2, . . . , αm = βm. For now I will follow Church’s “convention” of un-
derstandingr-types as being cumulative in thissyntactical sense. Church’s rationale
[1], p. 289 for construingr-types in this way is that it “facilitate[s] comparison with
both the simple types and . . . Tarski’s resolution of the semantical antinomies.” It
doesmore than this, as I argue below; it actuallyaffects the answer given by the type
theory to the paradox-generating questions.

In Church’s syntactically cumulative system, a propositional variable (that is,
one of r-type 0/n) is a well-formed formula when standing alone. A formula
f(x1, x2, . . . , xm) is well-formed if and only iff is a variable or constant ofr-type
(β1, β2, . . . , βm)/n, wherem > 0 andx j is a variable or constant whoser-type isβ j

or directly lower thanβ j, for j = 1,2, . . . , m. In addition to an infinite alphabet of
variables in eachr-type, the primitive symbols include a (unspecified) list of prim-
itive constants, each of definiter-type, the usual notation for negation, disjunction,
and the universal quantifier. The following standard formation rules are assumed:
given thatP andQ are well-formed anda is a variable, then¬P, [P ∨ Q], and(a)P
are well-formed. A comprehension axiom (for both propositional variables and func-
tional variables) that reflects the orders of the variable is also assumed. In particular,

(∃p)[p ≡ P], p not free inP,

wherep is a propositional variable ofr-type 0/n, the bound variables ofP are all of
order less thann, and the free variables and constants ofP are all of order not greater
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thann, and

(∃f)(x1, x2, . . . , xm)[f(x1, x2, . . . , xm) ≡ P], f not free inP,

wheref is a functional variable ofr-type (β1, β2, . . . , βm)/n, and thex j are distinct
variables ofr-typeβ j ( j = 1,2, . . . , m), and the bound variables ofP are all of order
less than the order off, and the free variables ofP (including perhaps some or all of
thex j) and the constants occurring inP are all of order not greater than the order of
f.

Finally, a standard set of rules and axioms for propositional calculus and quanti-
fier logic will be assumed including the following rules of inference:modus ponens,
the laws of propositional calculus, the deduction theorem, and the following rules.

Universal instantiation: from (a)P to infer the result of substitutingb for
all free occurrences ofa throughoutP, wherea is
a variable,b is a variable or constant that is either
of the samer-type asa or of r-typedirectly lower
thana.

Existential generalization: from Q to infer (∃a)P, where Q is the result
of substitutingb for all free occurrences ofa
throughoutP, and wherea, b, andP satisfy the
same conditions laid out for UI.

Existential instantiation: from P, Q � S to infer P, (∃a)Q � S, where the
variablea is free only inQ.

I note for future reference that the syntactical cumulativeness of this system is re-
flected in the preceding formation, comprehension, and inference rules in that the rel-
evant restrictions onr-types do not requireidentical r-types, but rather require iden-
tical or directly lower r-types.

3 Grelling’s paradox Grelling’s paradox has to do withadjectives. An adjective is
called autological if it has the property it expresses; if not, it is called heterological.
For example, ‘polysyllabic’ is autological, and ‘long’ is heterological. The paradox-
generating question is whether the adjective ‘heterological’ is autological or hetero-
logical.

In the formal language, the individuals that are closest to adjectives are proposi-
tional forms with one free variable. Thus the formal language analog of anadjective
expressing aproperty will be that thepropositional form have avalue for each value
of its free variable. An infinite list of primitive constantsval2, val3, val4, . . . will
be introduced to formally capture this idea.

The termvaln+1(ai, vi, F1/n) should be understood as stating that thevalue of vi

is F1/n(xi) for every valuexi of the variableai, whereai is an individual variable and
vi is a propositional form (well-formed formula) havingai as its only free variable.
More intuitively, the idea is thatvaln+1(ai, vi, F1/n) means that the well-formed for-
mulavi with ai as its only free (individual) variabledesignates the propositional func-
tion λxF1/n(x).
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All of the symbols and expressions of (whatever version of) the ramified type
theory are assumed to be “individuals,” that is, objects ofr-type i. The constants
valn+1 will be taken to be of level 1. Thus ther-type ofvaln+1 is (i, i,1/n)/1, and
val(i,i,1/n)/1 will be abbreviated byvaln+1. The order ofvaln+1 is n + 1.

Based on this, the following postulates seem reasonable. First there is the prin-
ciple of univocacy in its weak (extensional) form:

Postulate 3.1 valm+1(a, v, F1/m) −→ [valn+1(b, v, G1/n) −→ (x)(F(x) ←→
G(x))].

Next there is anextensional postulate schema which can be informally verified (for
eachP) by takingv to be the propositional formP anda to be the individual variable
x:

Postulate 3.2 (schema) (∃a)(∃v)(∃F1/n)[valn+1(a, v, F) ∧ (x)(F(x) ←→ P)],
where P is a well-formed formula with no free variable other than ‘x’, with all of the
bound variables of order less than n, and constants not greater than order n.

The following postulate allows the constantsvaln+1 to reflect the cumulative charac-
ter of ourr-typed variables.4

Postulate 3.3 valn+1(a, v, F1/n) −→ valm(a, v, F1/n), where m > n + 1.

The analog of the word ‘heterological’ in the informal version of Grelling’s paradox
may then defined as

Definition 3.4 hetn+1(v) =df (∃a)(∃F1/n)[valn+1(a, v, F) ∧ ¬F(v)].

The following three theorems may then be proven.

Theorem 3.5 hetn+1(v) −→ hetm+1(v), if m ≥ n.

Theorem 3.6 [valm+2(a, v, G1/m+1) ∧ (x)(G(x) ←→ hetm+1(x))] −→
¬hetn+1(v), if m ≥ n.

Theorem 3.7 [valm+2(a, v, G1/m+1) ∧ (x)(G(x) ←→ hetm+1(x))] −→
hetn+1(v), if m < n.

The proofs of these theorems are straightforward; I will not present them here. (See
[1], pp. 296–97, for analogous proofs.) It is important to note, however, that (3.3) is
needed to prove each of these three theorems. Finally, using (3.2) with hetm+1(x) as
the propositional formP we get the following.

Theorem 3.8 (∃a ) (∃v ) (∃G1/m+1 ) [ valm+2 ( a, v, G ) ∧ (x) ( G (x) ←→
hetm+1(x))].

To see how the contradiction is produced in the simple type theory, simply disre-
gard ther-type indicators: the constantsvaln+1 collapse into a single constant, Postu-
lates3.1and3.2remain evident, Postulate3.3becomes a tautology, and the proofs of
Theorems3.5–3.8 still go through. Theorems3.6–3.8 then constitute a contradic-
tion. With ther-types in place, however, (3.6) – (3.8) do not constitute a contradic-
tion. Moreover the ramified theory of types also provides ananswer to the question of
whether the propositional formhetm+1(x) is autological or heterological. The answer
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is that by (3.6) it is autological for all ordersn ≤ m + 1, and by (3.7) it isheterological
for all ordersn > m + 1.5

4 The Grelling resolution: cumulativeness As I have claimed above, supple-
menting Russell’sr-type theory with cumulative levels/orders affects the solution the
theory offers. In order to see this I will consider how anoncumulative ramified theory
can (if in fact it can) deal with Grelling’s paradox. The Grelling discussion suggests
two senses in which a type theory may be cumulative. The first is asyntactical sense:
the range of a variable of a given type includes the range of every variable of directly
lower type. Cumulativeness in this sense was introduced (by Church) with thesyn-
tax of the ramified type theory. The second sense is asemantical sense: the constants
valn+1 are such that if they are true of a form/function pair of a given order, then they
are true for all higher orders. Cumulativeness in this second sense was introduced in
(3.3), which characterized the cumulative nature of thesemantical constantsvaln+1.

The syntactical sense is more fundamental in the following way. While syntac-
tical cumulativeness may be seen as a motivation for introducing semantical cumu-
lativeness, it would still be consistent to retain syntactical cumulativeness and reject
semantical cumulativeness, that is, simply dropping (3.3) would accomplish this. On
the other hand, semantical cumulativeness without syntactical cumulativeness makes
no sense at all—(3.3) is not well-formed without syntactical cumulativeness.

Consider first the effect of dropping only thesemantical cumulativeness of the
type theory, which was introduced by (3.3). The effect of omitting (3.3) on (3.5) –
(3.7) is as follows. (3.5) which held form ≥ n now can be seen directly to hold (triv-
ially) only for m = n. Call this version (3.5′). (3.6) which also held form ≥ n and
whose proof made use of (3.5), still goes through form = n. Call this version (3.6′).
(3.7) which held form < n and whose proof used (3.5) has no restricted version di-
rectly provable from (3.5′). Notice first that the (semantically) noncumulative type
theory still prevents the direct attempt to restore the paradox, since as before it can-
not be (directly) shown that form = n

(4.1) [valm+2(a, v, G1/m+1) ∧ (x)(G(x) ←→ hetm+1(x))] −→ hetn+1(v).

Now consider what this version yields as an answer to the question of whether the
propositional formhetm+1(x) is autological or heterological. By (3.6′) hetm+1(x) is
autological for orderm + 1, while for orders�= m + 1 the theory does not provide
an answer. This result agrees with the cumulative version for orderm + 1. We see
that while accepting (3.3) is equivalent to accepting the answer given by the theory
for orders�= m + 1, the answer the theory gives for orderm + 1 is independent of
accepting (3.3).

If cumulativeness is dropped altogether, it is easily seen that type theory still
saves us from directly producing the contradiction, since again (4.1) cannot be (di-
rectly) shown form = n. Even so, there is an intuitive difference lurking here between
this (noncumulative) theory and the (merely) syntactically cumulative theory. The
syntactically cumulative theory naturally urges a question to which it cannot (directly)
provide an answer. In asking whetherhetm(x) is n-heterological (m �= n), one natu-
rally follows the reasoning backward from (3.6) – (3.8) to (3.5), and finally to (3.3).
Thus on the syntactically cumulative theory, one is naturally lead to ask (3.3) which
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the theory is unable to answer. On the noncumulative theory, however, the same line
of questioning is not left open; one cannot ask (3.3), since it on this theory it is “ill-
posed.” In this sense, the noncumulative theory “disallows” the question of whether
hetm(x) is n-heterological (m �= n), in contrast to the syntactically cumulative theory,
which “allows” the question but fails to answer it.

So which of the three possibilities, (fully) noncumulative, partially (syntactically
only) cumulative, or (fully) cumulative, deals most satisfactorily with the paradox?
All three avoid the direct production of the paradox and provide an answer to whether
hetm(x) is heterological for orderm. Based on other considerationsinternal to the
paradox, however, the noncumulative version seems to be the most reasonable. The
partially cumulative version is clearly inferior to the noncumulative for the reason
discussed immediately above. The problem with (Church’s original) cumulative ver-
sion is that it provides what amounts to ad hoc answers to a myriad of questions that
it unnecessarily proliferated in the first place by construing ther-types cumulatively.
The answers provided for ordersn �= m appear ad hoc since they follow directly for
the otherwise unmotivated (3.3); whereas the answer provided for orderm is inde-
pendent of (3.3). The myriad of mixed-order questions are unhelpful because they
constitute a further departure from the Grelling question as it naturally arises.

By its very nature, a formal (even more so atyped formal) solution to a natu-
ral language problem introduces elements that were not present in the original prob-
lem. So while it is not reasonable to reject such solutions merely because they go
beyond the natural language, still it is reasonable to insist that they remain as close
to the original problem as possible. Considerations of this kind favor the noncumula-
tive solution. Introducing the typed notion of “heterological,”hetm+1(x), is already
astep away from the natural language inspiration of the paradox, but to allow differ-
ent orders at whichhetm+1(x) may or may not be heterological is to take yet another
step away. The fully noncumulative solution “recognizes” the question of whether
hetm+1(x) is heterological only for its own order; it does not further proliferate “type
questions” as do the cumulative versions. On the noncumulative version, we get one
question; construe it at whatever order you will, it is still the same question with the
same answer for the same reasons.

5 The Bouleus paradox The Bouleus paradox concernsbeliefs.6 Bouleus believes
that some of his beliefs are mistaken, but all his other beliefs are in fact true, (except
possibly for some that are logically implied by this belief together with his true be-
liefs). The paradox generating question is whether it is true that Bouleus is sometimes
mistaken.

To formalize the paradox we will need the primitive constants,bel2, bel3, . . .

wherebeln+1(S i, P(0/n)) should be interpreted as meaning personS i believes propo-
sition P(0/n). It hasr-type (i,0/n)/1 which will be abbreviated as above. For the
present, thesyntax should be understood as cumulative. The formal rendition of the
critical propositionP0 is then

(5.1) Pn+1
0 (S i) =df (∃Pn)[beln+1(S i, Pn) ∧ ¬Pn],

for n ≥ 1. To formalize the fact that the scope of the critical propositionP0 concerns
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Bouleus’sother beliefs (excludes the critical belief itself), we have

(5.2) Pn+1
0 (S i) −→ (∃Pn)[(Pn �= Pm

0 (S i)) ∧ beln+1(S i, Pn) ∧ ¬Pn],

wheren ≥ 1 andm ≥ 2. For the present, I will assume that the maximum order of the
propositions believed by Bouleus is finite; letN be this maximum.7 Bouleus believes
Pn+1

0 for somen, hence the order of this proposition should be the maximum order
N, since its scope is all of his other beliefs. To assert then that Bouleus believes this
is

(5.3) beln+1(B, PN
0 ),

whereB stands for Bouleus. In the interest of readability, I will generally suppress
(as I have here) the argument “(B )” i n writing the propositional functionPn+1

0 (S i)

evaluated atB. Also, I will assume that Bouleus knows that he is Bouleus so that
Bouleus’s belief thatPN

0 (B ) is a belief abouthimself . Finally the fact that his other
beliefs are true yields

(5.4) (Pn)[beln+1(B, Pn) ∧ (Pn �= PN
0 ) −→ Pn],

The above three conditions set up the paradox; the paradox-generating question is
whetherPN+1

0 or ¬PN+1
0 .

To show how the contradiction arises in simple type theory I will disregard the
r-type superscripts. Then if we assume

(5.5) PN+1
0 ,

from (5.1), (5.2), (5.5), modus ponens, and existential instantiation (n = N, m = N,
andPN

1 for Pn) weget

(5.6) (PN
1 �= PN

0 ) ∧ belN+1(B, PN
1 ) ∧ ¬PN

1 ,

which by rules for propositional calculus yields

(5.7) ¬PN
1 .

From (5.4) with universal instantiation (PN
1 for Pn) we get

(5.8) belN+1(B, PN
1 ) ∧ (PN

1 �= PN
0 ) −→ PN

1 ,

and (5.6) with rules for propositional calculus gives

(5.9) (PN
1 �= PN

0 ) ∧ belN+1(B, PN
1 ).

Finally from (5.8), (5.9), and modus ponens we get

(5.10) PN
1 ,

and this contradicts (5.7). Conversely if we assume

(5.11) ¬PN+1
0 ,
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then negating the definition ofP0 in (5.1) we get

(5.12) (PN )¬[belN+1(B, PN ) ∧ ¬PN ],

universal instantiation (withPN+1
0 for PN) yields

(5.13) ¬[belN+1(B, PN+1
0 ) ∧ ¬PN+1

0 ],

but (5.3) and (5.11) with rules for propositional calculus give us

(5.14) belN+1(B, PN
0 ) ∧ ¬PN+1

0 ,

which contradicts (5.13).
Now consider how ther-types prevent the contradiction. Going back through the

steps of the first deduction fromPN+1
0 , (5.5)–(5.10), ther-types allow the deduction

to go through. The second deduction, however, from¬PN+1
0 , (5.11)–(5.14), does not

go through. In moving from (5.12) to (5.13), the constantPN+1
0 was substituted for

the variablePN , but with ther-types in place this substitution is not allowed since
the order ofPN+1

0 is greater than the order ofPN . Thus ther-type theory blocks the
contradiction and yields the result that¬PN+1

0 . This may be interpreted as saying
that it is false that Bouleus isN-mistaken—all his beliefs of ordern ≤ N are true, but
this means that he is (N + 1)-mistaken because he believes wrongly theN + 1 order
proposition that he isN-mistaken, that is,PN+2

0 is true.
Notice also that since, by assumption, Bouleus has no beliefs of order greater

than N + 1, the first conjunct in (5.1),beln+1(B, Pn) will be (trivially) false for all
Pn, n > N + 1, and hencePn

0 will be false forn > N + 2, that is, Bouleus is not
n-mistaken forn ≥ N + 2.

6 The Bouleus resolution: cumulativeness Again it turns out that the solution one
obtains depends on whether (and how) the levels/orders of the type theory are taken to
be cumulative. Recall that in the Bouleus application discussed above, ther-type the-
ory was taken to be only syntactically cumulative, that is, the levels/orders of the type
theory itself were taken to be cumulative. To facilitate comparison with thesemanti-
cally cumulative version it will be convenient to have more “control” of the relevant
r-types in the definition of the critical belief than (5.1) allows. Consider the following
generalization of (5.1):

(6.1) Pn+1,m
0 (S i) =df (∃Pn)[belm(S i, Pn) ∧ ¬Pn], wherem > n.

This definition allows the order of the belief to be different from (higher than the next
above) the order of the proposition believed. The following postulate allows these-
mantics to reflect the cumulative nature of the syntax.

Postulate 6.2 beln+1(S i, Pn) −→ belm(S i, Pn), where m > n.

This postulate introduces semantical cumulativeness into the formal language in a
way analogous to (3.3) of the Grelling. The following theorem is an immediate con-
sequence of (6.2) and Bouleus’s critical beliefPn+1,m

0 as defined in (6.1).

(6.3) Pn+1,n+1
0 −→ Pn+1,m

0 , wherem > n.
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This theorem has the effect that if Bouleus mistakenly believes at ordern + 1 apropo-
sition of ordern, then he mistakenly believes the proposition at orderm, wherem > n,
(i.e., he believes it at all higher orders). I will use the expression ‘m-mistaken’ to
mean thatPn+1,m

0 is true forsome n < m. Thus (6.3) can be interpreted as follows: if
Bouleus isn-mistaken, then he ism-mistaken for allm > n. It should be clear that the
cumulativeness principles (6.1) – (6.3) do not affect ther-type system’s ability to deal
with the paradox; the contradiction is blocked regardless of whether the type theory
is taken to be semantically cumulative.

Even prior to considering the details of the effect of the semantical cumulative-
ness principles on theresolution of the Bouleus, there is reason to question the plausi-
bility of the cumulativeness principles. Postulate6.2goes beyond what is called for
with respect to beliefs. It is most natural to have the order of thebel constant tied
immediately (one order higher) to the order of the proposition it takes as its (second)
argument. In other words, the order of a belief should reflect the order of the propo-
sition believed. Postulate6.2severs this connection and introduces the possibility of
having two beliefs that differ, not in the object/sense of the belief, but only in the or-
der of the belief—to whatever that amounts. If (6.2) is allowed, then Bouleus might
have two distinct beliefs that, say, the earth is round; these beliefs would be distinct
even though the proposition believed and the sense under which it is believed would
be identical. This is too fine-grained a system to be used in formalizing beliefs.

Recall that in the presentation of the Bouleus it was assumed that there was a
maximum order of Bouleus’s beliefs. The cumulativeness principle (6.2) requires us
to rethink this assumption since it guarantees beliefs of all orders greater thann, given
at least one belief of ordern. Were it worthwhile to pursue the fully cumulative system
in great detail, it would be necessary to replace the assumption of a maximum order
of belief with the notion of thereduced form of a beliefbelm(S i, Pn), which could be
defined as

(6.4) belr(S i, Pn), where r =df min{ j ∈ N|bel j(S i, Pn)}.
In words, the reduced form of a given belief,belm(S i, Pn), would be the subject’s
belief of least order that had the proposition in question as its object. Thus if one
were to assume a maximum orderN of thepropositions believed as per the previous
section and hence that the order of the critical propositionP0 is N, then the order of the
reduced form of this belief would serve as the critical order below which Bouleus is
not mistaken and at which he is. Bouleus would also be mistaken on all ordersabove
this critical order as an immediate consequence of (6.3) as discussed above. This is
an interesting difference from the syntactically cumulative version of the previous
section, which had Bouleusnot mistaken on orders above the critical order at which
he was (first) mistaken. Were the semantically cumulative system a viable candidate,
there would, of course, be further complications to be dealt with in fully developing
it.8 I take it, however, that the considerations of the previous paragraph are sufficient
to dispense with the syntactically cumulative version without further ado.

In considering the effect of moving to a (fully) noncumulative system, the first
thing to note is that such a system, which is more restrictive than either of the cumu-
lative versions, is equally effective as a means of circumventing the paradox. The
telling question is whether the lack of cumulativeness affects the language’s ability



394 ANTHONY F. PERESSINI

to formulate any of the crucial beliefs. While it does turn out that no expressibility
is lost with respect to the relevant beliefs and conditions, the noncumulative theory
may be seen as representing them in a less “natural” way. In this case the proposition
Pn+1

0 would not be interpreted as “I have a mistaken belief of order less than or equal
to n”; but rather as “I have a mistaken belief of (exactly) ordern.” One would then
make the following definition

(6.5) Qn
0 =df (Pn

0 ∨ Pn−1
0 ∨ · · · ∨ P1

0 ), wheren ≥ 1.

Bouleus’s critical belief would then be thatQn
0. As abelief Qn

0 is arguably less “nat-
ural” in that it involves the belief of an explicit disjunction of typed propositions.

This aspect of the noncumulative system must be weighed against the follow-
ing potential “drawback” of the syntactically cumulative version. The noncumulative
system does not allow expressions such as

(6.6) belm(S i, Pn), wherem > n,

sincePn is of lower order than is required by ther-type ofbelm. The syntactically
cumulative system, however, does allow such expressions as well-formed, but it lacks
any sort of semantical principles to relate such expressions to ones that have obvious
interpretations, for example,beln+1(S i, Pn). Of course, it may be that the sensible
way to deal with a question such as whether (6.6) is true is to disregard it as ill-formed
for nonsyntactic reasons, (e.g., the ones offered in the discussion of the semantically
cumulative system). Nonetheless this aspect of the syntactically cumulative system
may be seen as something of a drawback in that it gives rise to unnecessary questions
that it cannot answer.

7 Reducibility, classes, and cumulativenessHaving examined the affects of cu-
mulativeness on the details of paradox resolution in ramified type theory, I now step
back and consider briefly how the issue of the cumulativeness of ther-types fits with
the general needs ofPM.

Consider first the relationship between (syntactic) cumulativeness and Russell’s
(in)famous Axiom of Reducibility. Two questions that come naturally to mind are
(1) whethercumulative levels/orders might alleviate the need for reducibility and (2)
whethernoncumulative levels/orders render the expression of a reducibility schema
problematic. With respect to the first concern, both Church [1] and Myhill [6] in their
respective reconstructions of Russell’s ramified type theory have incorporated cumu-
lativeness and explored therein the role of the Axiom of Reducibility. It is clear in
these systems that reducibility is still needed in order to reconstruct classical mathe-
matics (see [1], p. 303 and [6], p. 82). Thus the answer to the first question is “no.”

The answer to the second question is also “no.” Consider the following state-
ment of reducibility following [1]:

(F(β1,...,βm)/n)(∃G(β1,...,βm)/1)(xβ1
1 , . . . , xβm

m )[ F(x1, . . . , xm) ≡ G(x1, . . . , xm)],

wherem = 1,2,3, . . . andβ1, . . . , βm are arbitraryr-types. This axiom schema does
not violate syntactic noncumulativeness. Certainly it is true that ther-type of G is
directly lower than ther-type of F, and consequently if syntactic noncumulativeness
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is in place, then the range of a variable of ther-type of F would includeF and notG
(i.e., the same variable could not quantify over bothF andG). But clearly this is not
required in order to state reducibility—thearguments to F andG have precisely the
samer-types,β1, . . . , βm, which is all that is required.

Being able tostate areducibility axiom is a first step, but the need for the axiom
arises in the development of classical mathematics via Russell’s contextually defined
classes. Thus a natural next question is how cumulativeness affects Russell’s the-
ory of classes; more specifically, whether a fully cumulative grammar would hinder
contextual class definition since it does restrict what may be expressed in the sys-
tem. Indeed, a noncumulative grammar does render problematic Russell’s scheme
for contextually defining at leastsome class symbols. In particular, the class expres-
sion{xi : A} ∈ {z(i)/2 : B} which onPM’s scheme would be rendered as

(∃G)[ (x)[G(x) ≡ B(x)] & (∃F)((y)[ F(y) ≡ A(y)] & G(F)) ],

would be ill-formed, since ther-type of G(x) could not be assigned consistently so
as to agree with ther-type required by the class expression,((i)/2)/1, and ther-type
required by the expressionG(F), which is ((i)/1)/1 since ther-type of F is (i)/1.
This difficulty makes obvious one motivation for reconstructingPM (as Church does)
with a cumulative grammar, for with a syntactically cumulative grammarG may be
of r-type((i)/2)/1 and still allowG(F), whereF is of r-type(i)/1. For a noncumu-
lative grammar, however, this presents a genuine, though not intractable, problem.

The immediate source of the difficulty is the impredicative class variablez(i)/2:
the problem does not arise if the class variable is predicative (i.e.,z(i)/1). Thus a
straightforward way around this difficulty is to restrict the system so that there are no
nonpredicative predicate variables—all and only predicate terms are predicative. In
this case circumflexion would not be a predicate term forming operator and reducibil-
ity would be the sole comprehension principle. This move would, of course, alleviate
the difficulty with impredicative class expressions, but it is not especially amenable
to Church’s formulation of the Grelling paradox.9

There is, however, a middle ground response that falls somewhere between
Church’s cumulative system with unrestricted impredicative variables and the more
“Russellian” version that eschews impredicative variables altogether. This response
is suggested by Hatcher’s reconstruction ([3], p. 114ff) in which he retains nonpred-
icative variables and circumflex terms as grammatical, but effectively excludes them
from the system by a predicativity restriction in his abstraction principle. A variation
of this move is available for a noncumulative version of Church’s presentation; in
this system the predicative function terms appearing in contextual definitions of class
symbols are restricted to predicative function terms that take predicative termsas ar-
guments. This restriction effectively excludes problematic impredicative class terms
like z(i)/2 above, and such apredicative theory of classes is rich enough to develop
classical mathematics roughly along the lines Russell suggested (see, for example,
Hatcher’s [3], p. 116ff discussion). It should be noted, however, that in such a sys-
tem not all propositional functions will have extensions and while this consequence
does not affect the treatment of the paradoxes, to the extent that it is counterintuitive
it must be counted as a possible drawback of the fully noncumulativer-type system.
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8 Concluding remark We have seen that in the setting of the Grelling paradox,
one obtains distinct solutions to the paradox with each of the three possibilities with
respect to the cumulativeness of the type theory: (1) fully cumulative, (2) partially
(syntactically) cumulative, or (3) fully noncumulative. I argued that (3) offers the
most satisfactory solution. In the setting of the Bouleus paradox, I suggested that (1)
is clearly the wrong choice and that choosing between (2) and (3) is more difficult.
The slim edge that (3) may have with respect to the particulars of the Bouleus paradox
itself vanishes in the broader context of class theory and mathematical foundations
because of the unnatural consequences discussed in the previous section.

Finally, I hope to have shown that in general, the issue of whether anr-type the-
ory is cumulative (syntactically or semantically) is not merely a matter of notational
convenience. That, in fact, the particular answer given to the paradox-generating que-
tion and the plausibility of the resolution in general is dependent on issues of cumu-
lativeness.
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NOTES

1. Russell’s “self-reproductive” diagnosis in [7] fits most neatly with this characterization.

2. In this I follow Church in taking the range of a variable ofr-type 0/n to be 0-ary propo-
sitional functions—despite Whitehead and Russell’s explicit rejection that a proposition
is “a single entity at all” ([8], pp. 43–44). Church’s rationale for this is that “this is what
is clearly demanded by the background and purpose of Russell’s logic” ([1], p. 291). It
should be noted that Cocchiarella argues convincingly that (at least part of) Church’s
case for ignoring Russell’s rejection of propositions as single entities inPM is mistaken
([2], p. 44ff). Church seemed to have realized this as well; he replaces three sentences
in the original 1976 version of [1], p. 748, with two different ones in the 1984 reprint in
Martin [5], p. 291.

3. In [8], Russell’s characterization of a predicative function is that “a function . . . [is]
predicative when it is of the next order above that of its argument, i.e., of the lowest order
compatible with its having that argument” (p. 53). Thus it follows thatϕ is predicative
if and only if n = 1.

4. Again, I begin by following Church’s cumulative treatment ([1], p. 296), and consider
later the effect of dropping these assumptions. In the interest of readability, however, I
do not follow Church’s use of “≡x”; I use “(x)[. . . ←→ . . .]” instead.

5. Church took it to be a virtue of the type theory that it not only prevented the contradiction,
but that it provided ananswer to the paradox-generating question ([1], p. 298).

6. This paradox was mentioned in [1], p. 303n as an example of an antinomy that is “about
intensional matters but not semantical in nature.”

7. One way to motivate this finite order assumption would be to assume that Bouleus has a
finite number of beliefs, but this may be too restrictive: Bouleus might be seen as hav-
ing a (potentially?) infinite number of beliefs concerning the natural numbers (e.g., that
1 > 0, 2> 1, 3> 2, etc.) since it is implausible that Bouleus’s understanding of the nat-
ural numbers stops at some (arbitrary) stage of the hierarchy. While it seems plausible
to maintain that all of Bouleus’s beliefs concerning the natural numbers are confined to
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some finite order, this assumption too is complicated since, as is well known, type theory
yields a systematically ambiguous treatment of the natural numbers, representing them
on all higher-orders of the type theory. I note this, however, as an issue for type theory
in general.

8. The further complications would concern issues such as whether the reduced order of a
belief would necessarily be the next one higher than the order of the proposition believed,
and whether (5.3) should be formulated to allow more “distance” between the order of
the belief and the order of the proposition believed.

9. While I am not here trying to work out the most Russellian account, I note that this read-
ing fits the actualPM (1910) development quite well—at least as well as Church’s cu-
mulative reconstruction. See, for example, Hochberg [4].
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